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Abstract 
Processing data from surveys using photos or videos remains a major 

bottleneck in ecology. Deep Learning Algorithms (DLAs) have been 

increasingly used to automatically identify organisms on images. However, 

despite recent advances, it remains difficult to control the error rate of such 

methods.  

Here, we proposed a new framework to control the error rate of DLAs. More 

precisely, for each species, a confidence threshold was automatically 

computed using a training dataset independent from the one used to train the 

DLAs. These species-specific thresholds were then used to post-process the 

outputs of the DLAs, assigning classification scores to each class for a given 

image including a new class called “unsure”. We applied this framework to a 
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study case identifying 20 fish species from 13,232 underwater images on coral 

reefs.  

The overall rate of species misclassification decreased from 22% with the raw 

DLAs to 2.98% after post-processing using the thresholds defined to minimize 

the risk of misclassification. 

This new framework has the potential to unclog the bottleneck of information 

extraction from massive digital data while ensuring a high level of accuracy in 

biodiversity assessment. 

Introduction 
In the context of accelerating human impacts on ecosystems (Diaz et al. 

2019), the capacity to monitor biodiversity at large scale and high frequency 

is an urgent although challenging goal (Schmeller et al. 2015). This urgency 

resonates with the ambition of international initiatives like the Group on Earth 

Observations Biodiversity Observation Network (GEO BON) and the call for 

monitoring Essential Biodiversity Variables (EBVs) (Pereira et al. 2013, Kissling 

et al. 2017). 

Remote sensors are rapidly transforming biodiversity monitoring in its widest 

sense from individuals (Kröschel et al. 2017) to species and communities of 

species (Steenweg et al. 2017). In the last decade, satellites (Wulder and 

Coops 2014, Schulte and Pettorelli 2018), drones (Koh and Wich 2012, 

Hodgson et al. 2018), camera traps (Steenweg et al. 2017), or underwater 

cameras (Mallet and Pelletier 2014, Aguzzi et al. 2015) have been extensively 

deployed to record pictures or videos of aquatic and terrestrial organisms. For 

instance, satellite data can be used to track whale shark movements (Robinson 

et al. 2016) or detect whales (Cubaynes et al. 2018) while photos from 

airborne or underwater vehicles can deliver accurate density estimations of 

vulnerable organisms like mammals or sharks (Hodgson et al. 2017, 

Kellengerer et al. 2018).  

Such massive records are also used by citizen science programs with for 

example public tools like inaturalist.org which share pictures and associated 

metadata, or fishpix (http://fishpix.kahaku.go.jp) which offers the possibility 

to upload individual fish images that are then identified by experts at the 

species level.  

However, processing photos or videos to identify organisms is a highly 

demanding task, especially in underwater environments, where some 

particular contexts add many difficulties (e.g., visual noise due to particles and 

small objects, complex 3D environment, color changing according to depth, 

etc.). For instance, identifying all fish individuals on videos may take up to 3 
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hours of expert analysis per hour of video (Francour et al. 1999). Under the 

avalanche of new videos and images to analyse, alternatives to fish 

identification by humans and trained experts must be found. 

Recently, an effort to use machine learning methods (Chuang et al 2016, 

Marini et al. 2018) and deep learning algorithms (DLAs) for ecological analysis 

have been made, thanks especially to computer-vision challenges on public 

databases of annotated photos or videos (e.g. for fish, Fish4Knowledge 

database (http://groups.inf.ed.ac.uk/f4k/) and Seaclef challenge 

(https://www.imageclef.org/lifeclef/2017/sea)). 

The last generation of DLAs offer much promise for passing the bottleneck of 

image or video analysis through automated species identification (Li et al. 

2015, Joly et al. 2017, Wäldchen and Mäder 2018, Villon et al. 2018). DLAs, 

and particularly convolutional neural networks (CNNs), simultaneously 

combine the automatic definition of image descriptors and the optimization of 

a classifier based on these descriptors (Lecun et al. 2015). Even though DLAs 

usually have a high accuracy rate, they do not provide information on the 

confidence of the outputs. Hence, it remains difficult to identify and control 

potential misclassifications which limits their application. 

Misclassification of images has two types of consequences for biodiversity 

monitoring. On one hand, if all individuals of a given species occurring in a 

given community are erroneously labelled as another species also occurring in 

the community, this species will be incorrectly listed as absent (false absence). 

The risk of missing present species because of misclassification is the highest 

for rare species, i.e. those with the lowest abundance in terms of the number 

of individuals per unit area. Yet missing these rare species can be critical for 

ecosystem heath assessment since some play important and unique roles like 

large parrotfishes on coral reefs (Mouillot et al. 2013) while others are invasive 

like the lionfish in Eastern Mediterranean Sea (Azzuro et Bariche 2017). In 

addition, since most species in a community are represented by a few 

individuals (Gaston 1994), such misclassifications could significantly lead to 

the underestimation of species richness. The other error associated with 

misclassification is when an individual of a given species is mistaken for 

another species not present in the community (false presence). Such 

misclassifications could lead to an overestimation of the abundance or 

geographical range of a species as well as it could artificially increase species 

richness, unless a species is consistently mistaken for another. Since 

biodiversity monitoring should be as accurate as possible, automated 

identification of individuals on images should provide high correct classification 

rates (close to 100%) even if a subset of images has not been classified by 

http://groups.inf.ed.ac.uk/f4k/
https://www.imageclef.org/lifeclef/2017/sea
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the algorithm with sufficient confidence and must be identified by humans a 

posteriori.  

Chow (1957) was the first to introduce the concept of risk for a classification 

algorithm. For instance, a clustering algorithm classifying an object placed in 

the center of a given cluster would present a low risk of misclassification, while 

classifying an object placed on the edge of a cluster would be highly risky. 

Chow (1957) proposed a classification framework, which contains n+1 

channels as outputs, n channels for the n classes considered and an additional 

channel called the “rejection” channel. When the risk of misclassification is too 

important, the algorithm rejects the classification. 

Applied to machine learning, a first method consists in learning a rejection 

function during the training, in parallel to the classification learning (Cortes et 

al., 2016, Geifman et al. 2017, Corbière et al. 2019). Another method, called 

a meta-algorithm, uses two algorithms, one being a classifier, and the other 

one analyzing the classifier outputs, to distinguish predictions with a high risk 

of misclassification from those with a low risk (De Stefano et al. 2000). A 

recent comparative study suggests that meta-algorithm-based methods are 

the most efficient (Kocak et al., 2017).  

An extension of meta-algorithms to control the risk of misclassification is to 

calibrate models obtained through Machine Learning and Deep Learning 

algorithms. Machine Learning methods usually produce well-calibrated models 

for binary tasks (Niculescu-Mizil et al. 2005). The calibration consists of a 

matching between the score predicted by the machine-learning model and the 

real probability of true positives. While Deep Learning models produce more 

accurate classifications than other Machine learning models, these models are 

not well calibrated, and thus need a re-calibration to be used for real-world 

decisions (Guo et al. 2017). Several propositions have been made to improve 

the calibration of Machine Learning models through the post-processing of 

outputs. The Platt scaling (Platt 1999), the Histogram binning (Zadrozny 

2001), the Isotonic Regression (Zadrozny 2002) and the Bayesian Binning into 

Quantiles (Naeini 2015) are mapping the model outputs to real accuracy 

probabilities. More recently, Temperature Scaling, an extension of the Platt 

Scaling, was used to calibrate Deep Learning models using a single parameter 

for all classes (Guo et al .2017). This parameter is used, instead of the 

traditional softmax function, to convert the vector output from the neural 

network into a real probability.  

However, such calibration methods are based on a discretization of the Deep 

model outputs into bins. Many bins are not useful as they only contain a few 

outputs with low values, whereas many high values fall in the same bin and 
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are thus not discriminated. Moreover, the choice of the number of bins is left 

to the user, and therefore is not optimized to the Deep model nor to a specific 

application (Nixon et al. 2019). 

In this paper, we present a simple, yet efficient method that accounts for 

uncertainty in the classifier outputs. Unlike calibration methods, our approach 

is not changing algorithm outputs. Instead, we simply assess the behaviour of 

the model thanks to a validation dataset. We can then set-up a fine tuned 

threshold per class, allowing us to take into account that the model confidence 

can be highly variable between “easy” classes and “difficult” classes. Then, 

through the addition of a new class “unsure”, corresponding to predictions with 

scores lower than the predicted class threshold, we can control the coverage 

(total amount of images automatically identified) and misclassification rates. 

We applied this framework to classify 20 species of coral reef fishes in 

underwater images and assessed its efficiency for 3 real-case scenarios. 

Material and methods 
We decided to build our own dataset instead of using existing datasets (e.g. 

Fish4Knowledge: http://groups.inf.ed.ac.uk/f4k/), to be in phase with quality 

of videos currently used by marine ecologists. We used 3 independent fish 

images datasets from the Mayotte Island (Western Indian Ocean) to train and 

test our CNN model and our post processing method. For the 3 datasets, we 

used fish images extracted from 175 underwater high-definition videos which 

lasted between 5 and 21 minutes for a total of 83 hours. The videos were 

recorded in 1920x1080 pixels with GoPro Hero 3+ black and Hero 4+ black. 

The videos were recorded between 2 and 30 meters deep, with a broad range 

of luminosity, transparency, and benthic environment conditions on fringing 

and barrier reefs. 

We extracted 5 frames per second from these videos. Then, we cropped 

images to include only one fish individual with its associated habitat in the 

background. Thus, images of the same species differed in terms of size 

(number of pixels), colors, body orientation, and background (e.g. other fish, 

reef, blue background) (Fig. 1).  
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Fig. 1: Diversity of individual images and their environment for the same fish 
species (Moorish idol, Zanclus cornutus). 

We used 130 videos for the training dataset, from which we extracted a total 

69,169 images of 20 different fish species (Supp. Fig. 1). We extracted 

between 1,134 and 7,345 images per species.  

In order to improve our model, we used data augmentation (Perez et al. 2017). 

Each “natural” image yielded 4 more images: 2 with increased contrast (120% 

and 140%) and 2 with decreased contrast (80% and 60%) (Supp. fig 2). We 

then horizontally flipped all images to obtain our final training dataset (T0) 

composed of 691,690 images (Supp. Tab. 1). 

We then used two independent datasets made of different videos recorded on 

different days and on different sites than videos used to build the training 

dataset. The first dataset (T1) contained 6,320 images from 20 videos with at 

least 41 images per species, and the second (T2) contained 13,232 images 

from 25 videos with at least 55 images per species (Supp. Tab. 1). We then 

used dataset T1 to tune the thresholds and T2 as the test dataset. This method 

ensures that our results are not biased by similar acquisition conditions 

between the training, tuning and testing dataset and hence that algorithm 

performance was evaluated using a realistic full cross-validation procedure. 
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Building the convolutional neural network 

Convolutional neural networks (CNNs) belong to the class of DLAs. For the 

case of species identification, the training phase is supervised, which means 

that the classes to identify are pre-defined by human experts while the 

parameters of the classifier are automatically optimized in order to accurately 

classify a “training” database (Lecun et al. 2015). CNNs are composed of 

neurons, which are organized in layers. Each neuron of a layer computes an 

operation on the input data and transfers the extracted information to the 

neurons of the next layer. The specificity of CNNs is to build a descriptor for 

the input image data and the classifier at the same time, ensuring they are 

both optimized for each other (Goodfellow et al. 2016). The neurons extracting 

the characteristics from the input data in order to build the descriptors are 

called convolutional neurons, as they apply convolutions, i.e. they modify the 

value of one pixel according to a linear weighted combination of the values of 

the neighbor pixels. In our case, each image used to train the CNN is coded as 

3 matrices with numeric values describing the color component (R, G, B) of 

the pixel. The optimization of the parameters of the CNN is achieved during 

the training through a process called back-propagation. Back-propagation 

consists of automatically changing parameters of the CNN through the 

comparison between its output and the correct class of the training element to 

eventually improve the final classifications rate. Here we used a 100-layer CNN 

based on the TensorFlow (Abadi et al. 2016) implementation of ResNet (He et 

al. 2016). The ResNet architecture achieved the best results on ImageNet 

Large Scale Visual Recognition Competition (ILSVRC) in 2015, considered as 

the most challenging image classification competition. It is still one of the best 

classification algorithms, while being very easy to use and implement. 

All fish images extracted from the videos to build our datasets were resized to 

64x64 pixels before being processed by the CNN. Our training procedure lasted 

600,000 iterations; each iteration processed a batch of 16 images, which 

means that the 691,690 images of the training dataset were analyzed 14 times 

each by the network on average. We then stopped the training to prevent from 

overfitting (Sarle et al., 1996), as an over fit model is too restrictive and only 

able to classify images that were used during the training. 

Assigning a confidence score to the CNN outputs 
The last layer of our architecture, as in most CNNs, is a “softmax” layer (He et 

al. 2016). When input data passing through the network reaches this layer, a 

function is applied to convert the image descriptors into a list of n scores 𝑆𝑖, 

with 𝑖 = {1, . . , 𝑛}, and n the number of learned classes (here the 20 different fish 

species), with the sum of all scores equal to 1. A high score means a “higher 
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chance” for a given image to belong to the predicted class. However, a CNN 

often outputs a class with a very high score (more than 0.9) even in case of 

misclassification. To prevent misclassifications, the classifier should thus be 

able to add a risk or a confidence criterion to its outputs.  

Assessing the risk of misclassification by the CNN 
For a given input image, a CNN returns a predicted class, in our case a fish 

species. As seen in the previous section, the CNN outputs a decision based on 

the score, without any information on the risk of making an error (i.e. a 

misclassification). Following De Stefano et al. (2000), we thus propose to apply 

a post-processing step on the CNN outputs in order to accept or reject its 

classification decision. The hypothesis is that the higher the similarity between 

an unknown image and the images used for the training, the stronger the 

activation in the CNN during the classification process (i.e. the higher the score 

is), and thus, the more robust the classification is. 

For this method, the learning protocol is thus made of two consecutive steps 

performed on 2 independent training datasets. 

In the first phase, a classification model is built by training a CNN on a given 

database T0 (Fig. 2 (a)) 

Then, the second phase consists of tuning a risk threshold 𝜏𝑖  specific to each 

class (i.e. each species in our case), noted i, with 𝑖 ∈ {1, . . . , 𝑛}, using a second 

and independent database noted T1 (Fig. 2 (b)). 
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Fig. 2: Overview of the 3 parts of our framework: 2 consecutive steps for the 

learning phase, followed by the applicative testing step. 

(a) We trained a CNN model with a training dataset (T0) composed of images and a label for each image, in our case, 

the species corresponding to each fish individual.  

(b) Then, for each species i, we processed an independent dataset T1, with our model. For each image, we obtained 

the species j attributed by the CNN to the image and a classification score 𝑆𝑗. We have the ground truth and the result 

of the classification (correct/incorrect), so we can define a threshold according to the user goal. This goal is a trade-

off between the accuracy of the result and the proportion of images fully processed.  

(c) We then used this threshold to post-process outputs of the CNN model. More precisely, for a given image  , the 

classifier of the CNN returns a score for each class (here for each fish species). The most likely class 𝐶(𝑋) for this 

image is the one with the highest score 𝑆(𝑋) We then compared this highest score 𝑆(𝑋) with the computed confidence 

threshold for this species (𝜏𝐶(𝑋) ) obtained in the second phase. If the score was lower than the computed threshold 

that is  𝑆(𝑥) > 𝜏𝐶(𝑋) , then the input image was classified as “unsure”. Otherwise, we kept the CNN classification. 
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In terms of classification, it means we transform the 2 classification options 

(correct, wrong) in 3 options (Fig. 3) by applying equations (9, 10).

Fig.3: Impact of the post-processing framework on classification of images for 
a given species and a given threshold.  

Usually, the classification of an image of class i can either be correct, if the 

model classifies it as i, or wrong, if the classifier classifies it as j with j ≠ i (a). 

We propose a post processing to set a confidence threshold for each class to 

obtain 3 types of results, correct, misclassified, and unsure (b). The goal is 

then to transform as many misclassifications as possible as “Unsure”, while 

preventing to transform too many correct classifications “Unsure”. 

Computing the confidence thresholds 
After the phase 1 (model training phase), for an image 𝑋  of the threshold 

tuning dataset processed by the classifier, we obtain an output {𝐶(𝑋), 𝑆(𝑋)}, 

where 𝐶(𝑋) is the class (i.e. species, belonging to the trained set of species) 

with the highest classification score 𝑆(𝑋). For this image, we know the ground 

truth 𝑌 in {1, . . , 𝑛} belonging to the same set of species classes. 

So with 𝐶(𝑋) being the output class, 𝑌 the ground truth class, and #(. ) the 

enumeration function, the standard definition for Correctly Classified images 

(or true positives) rate of a class 𝑖 is:  

𝐶𝐶𝑖 =
#(𝐶(𝑋) = 𝑖 𝐴𝑁𝐷 𝑌 = 𝑖)

#𝑌 = 𝑖
                   (0.1) 
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 We can also write the standard definition of Misclassified images rate (or false 

negatives) of a class 𝑖 as: 

𝑀𝐶𝑖 =
#(𝐶(𝑋) ≠ 𝑖 𝐴𝑁𝐷 𝑌 = 𝑖)

#𝑌 = 𝑖
                   (0.2) 

Then, we can extend the Correct Classification rate (CC) and Misclassification 

(MC) rate of a species 𝑖 by introducing the thresholds 𝜏𝑖  and by adding the 

Unsure Classification (UC) rate: 

𝐶𝐶𝑖(𝜏𝑖 ) =
#((𝐶(𝑋) = 𝑖) 𝐴𝑁𝐷 (𝑆(𝑋) > 𝜏𝑖 )) 𝐴𝑁𝐷 (𝑌 = 𝑖)

#(𝑌 = 𝑖)
                   (1) 

     

𝑀𝐶𝑖(𝜏𝑖 ) =
#((𝐶(𝑋) ≠ 𝑖) 𝐴𝑁𝐷 (𝑆(𝑋) > 𝜏𝑖 )) 𝐴𝑁𝐷 (𝑌 = 𝑖)

#(𝑌 = 𝑖)
                   (2) 

 

𝑈𝐶𝑖(𝜏𝑖 ) =
#((𝐶(𝑋) = 𝑖) 𝑂𝑅 (𝐶(𝑋) ≠ 𝑖 )) 𝐴𝑁𝐷  (𝑆(𝑋) < 𝜏𝑖 ) 

#(𝑌 = 𝑖)
                   (3) 

For each species we have: 

𝐶𝐶𝑖(𝜏) + 𝑀𝐶𝑖(𝜏) + 𝑈𝐶𝑖(𝜏) = 1                           (4) 

We can also note that the standard coverage definition (COV, the rate of 

images for which a classification is given) of a species 𝑖 can be extend with the 

introduction of thresholds as threshold 𝜏 as:  

𝐶𝑂𝑉𝑖(𝜏) = 𝐶𝐶𝑖(𝜏) + 𝑀𝐶𝑖(𝜏)                            (5) 

The question is now to select “optimal” thresholds {𝜏𝑖 }𝑖=1
𝑖=𝑛 based on the dataset 

T1. This is not straightforward as is it up to user specific objective, such as 

minimizing MC, maximizing CC, minimizing UC... In the following, we analyze 

three different goals corresponding to some standard protocols in marine 

ecology: 

The first goal G1 consists of keeping the best correct classification rate while 

reducing the misclassification error rate. For this, we used two steps. First, we 

identified the threshold(s) 𝜏 which maximizes  𝐶𝐶𝑖(𝜏). Since several thresholds 

could reach this maximum, we get a set of threshold(s) 𝑆𝑒𝑔1. Then, we selected 

the threshold with the lower 𝑀𝐶𝑖(𝜏). This can be mathematically written as: 

𝑆𝑒𝑔1 =  arg max
𝜏

𝐶𝐶𝑖(𝜏)                          (6.1) 

𝜏𝑖 =  arg min
𝜏′ 𝑖𝑛 𝑆𝑒𝑔1

𝑀𝐶𝑖(𝜏′)                          (6.2) 
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The second goal G2 consists in constraining the misclassification error rate to 

an upper bound of 5% while maximizing the correct classification rate. 

Reaching this goal requires to first find 𝑆𝑒𝑔2 the set of threshold(s) such as 

𝑀𝐶𝑖(𝜏) < 5%. If there is none, we considered 𝑆𝑒𝑔2 as the set of threshold(s), 

which minimize 𝑀𝐶𝑖. Then we defined the optimal threshold 𝜏𝑖   by choosing the 

one in 𝑆𝑒𝑔2 which maximizes 𝐶𝐶𝑖: 

𝑆𝑒𝑔2  = 𝜏 / 𝑀𝐶𝑖(𝜏) < 5%                           (7.1) 

𝑖𝑓 𝑆𝑒𝑔1 =  ∅ 𝑡ℎ𝑒𝑛 𝑆𝑒𝑔2 =  arg min
𝜏

𝑀𝐶𝑖(𝜏)                          (7.2) 

𝜏𝑖 =  arg max
𝜏′ 𝑖𝑛 𝑆𝑒𝑔2

𝐶𝐶𝑖(𝜏′)                          (7.3) 

The third goal G3 consists of keeping the lowest misclassification rate while 

raising the correct classification error rate (implying a lower coverage). First, 

we defined 𝑆𝑒𝑔3 as the set of threshold(s) 𝜏 that minimizes 𝑀𝐶𝑖(𝜏). If there were 

several thresholds with the same minimal value, we chose 𝜏𝑖 as the one which 

maximizes 𝐶𝐶𝑖 : 

𝑆𝑒𝑔3 =  arg min
𝜏

𝑀𝐶𝑖(𝜏)                          (8.1) 

 

𝜏𝑖 =  arg max
𝜏′ 𝑖𝑛 𝑆𝑒𝑔3

𝐶𝐶𝑖(𝜏′)                          (8.2) 

For a given image X in the test dataset, the classification and post-process is 

sequential as follows (Fig. 2 (c)): 

First, the image is given to the CNN, which outputs a list of scores, including 

𝑆(𝑋) the highest score obtained by a class. 

Second, for the class 𝐶(𝑋) (i.e the class with the highest classification score), 

the post-processing step estimates the risk of classifying the image as 

belonging to the class 𝐶(𝑋). If (𝑋) < 𝜏𝑗 , the prediction is changed to “Unsure”, 

otherwise, it is confirmed as the class j (Fig. 2 c). 

The misclassification rate for a species 𝑌 =  𝑖 after post-processing thus equals: 

𝑀𝐶′𝑖 =
#((𝐶(𝑋) ≠ 𝑌) 𝐴𝑁𝐷 (𝑆(𝑋) > 𝜏𝑗)) 𝐴𝑁𝐷 (𝑌 = 𝑖)

#(𝑌 = 𝑖)
                   (9) 

and the unsure classification rate equals: 

𝑈𝐶′𝑖 =
#((𝐶(𝑋) = 𝑗) 𝐴𝑁𝐷 (𝑆(𝑋) < 𝜏𝑗)) 𝐴𝑁𝐷 (𝑌 = 𝑖)

#(𝑌 = 𝑖)
                   (10) 
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First, to assess the effectiveness of our framework, we processed all the 

images contained in T2 through the DL algorithm, without post processing 

(threshold tuning+ threshold application).  

Second, we assessed whether a unique threshold for all the classes was 

sufficient to separate correct classifications from misclassifications for all 

species. For this test, we computed the distribution of correct classifications 

and misclassifications over scores for each species. During this study, we 

multiplied the softmax scores, which ranged from 0 to 1, by 100, for an easier 

reading. 

Then, to study the impact of the post-processing method in an hypothetical 

ideal condition, we selected the thresholds based on the dataset T2 and we 

applied them to the same dataset T2. For this experiment and the following, 

we also measured both the Correct Classification rate and the Accuracy, 

defined for a species 𝑖 as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =
#((𝐶(𝑋) = 𝑖) 𝐴𝑁𝐷 (𝑆(𝑋) > 𝜏𝑖)) 𝐴𝑁𝐷 (𝑌 = 𝑖)

#((𝐶(𝑋) = 𝑖) 𝐴𝑁𝐷 (𝑆(𝑋) > 𝜏𝑖))
 

The accuracy varies from 0 to 1, and increases when the number of false 

positives decreases and the number of true positives increases. Meanwhile, 

the CC rate varies from 0 to 100, and increases when the number of false 

negatives decreases and the number of true positives increases. 

Finally, to ensure that the post-processing method was relevant for any real-

life application, i.e. that thresholds are defined and tested on independent 

datasets, we used the dataset T1 for the threshold-setting phase and the 

dataset T2 for the testing phase. To assess the robustness of our method, we 

repeated the same experiment while switching the roles of T1 and T2. Note 

that we limited our experiments to the use of T1 and T2, but that it could be 

interesting in further work to assess the robustness of this method with 

datasets composed of less data. 

Results 

Results of the CNN model classification 

The mean rate of correct classification of fish images inT2 by the raw CNN was 

of 78.0%, with rates of correct classifications per species ranging from 54.4% 

to 99.1% (sd= 15.16) (Tab. 1). These results are the baseline for our following 

experiments. 

Table 1: Output of the deep learning classifier without post-processing. 

Percentages of correct classifications are shown for the 20 fish species. Each 

line shows  the species name, the correct classification rate of images of this 
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species present in the dataset T2, the softmax score above which we have 

95% of the correct classification (noted sq0.05), and the percentage of 

Misclassified images with score equal or above sq0.05. 

Species 

Test dataset T2 

(% of correct 

classifications) 

 

 

Softmax 

score for the 

0.05 

quantile of 

Correct 

Classification 

(sq0.05) 

 

 

% of 

Misclassification 

for sq0.05 

Chaetodon 

trifasciatus 
87.80 99.91 20 

Chaetodon 

trifascialis 
90.00 99.98 11.11 

Naso brevirostris 54.14 99.92 29.91 

Chaetodon 

guttatissimus 
85.50 99.82 10.77 

Thalassoma 

hardwicke 
90.90 99.92 0 

Pomacentrus 

sulfureus 
90.14 99.88 0 

Oxymonacanthus 

longirostris 
96.43 99.98 0 

Monotaxis 

grandoculis 
57.10 98.78 34.1 

Zebrasoma scopas 63.04 96.78 19.92 

Abudefduf vaigiensis 99.07 99.99 0 

Amblyglyphidodon 

indicus 
58.78 92.85 22.04 

Acanthurus lineatus 59.72 99.98 16.38 
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Chromis ternatensis 59.61 86.74 26.98 

Chromis opercularis 61.29 99.00 16.67 

Gomphosus 

caeruleus 
75.72 99.84 33.33 

Acanthurus 

leucosternon 
86.15 99.94 16.65 

Halichoeres 

hortulanus 
82.93 99.96 16.33 

Naso elegans 93.24 99.78 6.46 

Chaetodon auriga 87.05 99.98 10.77 

Zanclus cornutus 81.36 99.68 9.1 

Mean 78.00 98.64 17.49 

Standard Deviation 15.16 3.27 10.84 

Images obtained softmax scores between 41 and 100 with 80% of images classified 

with a score between 60 and 100 (Fig. 4 a). The distribution of correct classifications 

and misclassifications among scores was highly variable among species (Fig. 4 b, c, 

Tab.1). 

We plotted the results for all species (a), and for 2 species, the Brown 

unicornfish (Naso brevirostris) (b) and the Maldives damselfish 

(Amblyglyphidodon indicus) (c). We also plotted the 5% bottom line for each 

type of classification. We used violin plots for the visualisation. Violin plot are 

histograms with inverted axis allowing a graphical visualisation of a 

distribution, with the number of individuals on the Y axis and their value on X 

axis. The borders of the shapes show the number of individuals while the dots 

show the local density” (Hintze and Neslon 1998). 
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Fig 4: Distribution of correct classifications and misclassifications of fish 

images with respect to the score from the CNN model.  

Benchmark of the threshold fine-tuning method 

For each species 𝑖 , we computed 𝐶𝐶𝑖 , 𝑀𝐶𝑖, 𝑈𝐶𝑖 values while varying the 

threshold. We computed and applied the thresholds on T2, according to 

equations 6, 7, 8, 9 and 10. As the score varied from 0 to 99.9, the 

misclassification rate decreased to 0.9% (Fig. 5). This decrease was mainly 

compensated by the increasing rate of unsure classifications between 0 and 

99.9 of classification scores. 

Indeed, the rate of correct classifications experienced little variation along this 

distribution of threshold scores, remaining between 74-78% for threshold 

scores between 0 and 99.8 and decreasing to 61% for threshold scores >99.8. 

However, correct, wrong, and unsure classification rates were highly variable 

among species (Supp. Tab. 2).  
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Fig. 5: Average distribution of correct, wrong, and unsure classifications for all 

species along a gradient of confidence threshold score.  

 

For the first goal G1, we defined the thresholds (one per species) to minimize 

the misclassification with 𝐶𝐶𝑖 = max 𝐶𝐶𝑖. We obtained a mean rate of 78% 

(standard deviation= 15.15%) of correct classifications, 10.81% (s.d= 8.15%) 

of unsure classifications, and 11.19% (s.d= 9.58%) of misclassifications (Fig. 

6. a).  

For the second goal G2, we maximized the correct classifications while 

constraining the misclassification error rate to an upper bound of 5% (if 

possible). We obtained a rate of 75.47% (s.d= 17.83%) of correct 

classifications, 17.88% (s.d= 14.22%) of unsure classifications, and 6.66% 

(s.d= 6.44%) of misclassifications.  

For the third goal G3, we maximized the number of correct classifications with 

𝑀𝐶𝑖 = min 𝑀𝐶𝑖. We obtained a rate of 68.21% (s.d= 22.41%) of correct 

classifications, 29.71% (s.d= 22.14%) of unsure classifications, and 2.07% 

(s.d= 3.20%) of misclassifications, on average. Compared to the first goal, we 

decreased the rate of correct classifications by 8.9% and the rate of 

misclassifications by 2.6% (Supp. Tab. 4). 

The accuracy of the goals G1, G2, and G3 were, on average, higher than the 

raw accuracy (0.53) with respectively 0.72, 0.89 and 0.94.  (Tab. 2). 
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The thresholds showed higher variations among species for G1, with values 

ranging from 33.46 to 99.97, than for G3 for which values ranged from 99.86 

to 99.98 among the 20 species (Supp. Tab. 2 and 3). 

Table 2: Accuracy of the models without post-processing, and with post 

processing according to our goals, with thresholds tuned and applied on T2. 

Each line shows the result for a species, with: the species name, the accuracy 

of the model without post processing, and the accuracy of the model with post 

processing according to the 3 goals defined earlier. 

Species 
Raw 

Accuracy 

G1 

Accuracy 

G2 

Accuracy 

G3 

Accuracy 

Abudefduf vaigiensis 0.51 0.65 0.9 0.97 

Acanthurus leucosternon 0.61 0.69 0.87 0.96 

Acanthurus lineatus 0.87 0.91 0.97 0.97 

Amblyglyphidodon indicus 0.08 0.74 0.94 0.98 

Chaetodon auriga 0.95 0.99 1 1 

Chaetodon guttatissimus 0.16 0.84 0.95 0.98 

Chaetodon trifascialis 0.97 0.87 0.95 0.96 

Chaetodon trifasciatus 0.56 0.62 0.79 0.97 

Chromis opercularis 0.68 0.8 0.96 1 

Chromis ternatensis 0.01 0.44 0.79 0.9 

Gomphosus caeruleus 0.24 0.31 0.54 0.72 

Halichoeres hortulanus 0.51 0.59 0.8 0.93 

Monotaxis grandoculis 0.77 0.81 0.96 0.99 

Naso brevirostris 0.02 0.9 0.96 1 

Naso elegans 0.89 0.92 0.97 0.97 

Oxymonacanthus longirostris 0.36 0.46 0.89 0.85 

Pomacentrus sulfureus 0.52 0.7 0.91 0.95 

Thalassoma hardwicke 0.78 0.85 0.93 0.95 

Zanclus cornutus 0.55 0.68 0.87 1 
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Zebrasoma scopas 0.61 0.7 0.81 0.81 

Mean 0.53 0.72 0.89 0.94 

Standard Deviation 0.30 0.18 0.10 0.07 

 

Application of the method 

For a real cross-validation experiment, thresholds were set using T2 and then 

applied on T1. The correct, wrong and unsure classification rates were very 

close (difference < 2.6%) to those obtained with the benchmark situation 

(Supp. Tab. 5). 

The proposed post-processing was able to decrease the misclassification rate 

by at least 10.05%, for all goals, and 19.02% at most compared to the raw 

output of the Deep Learning model (Fig. 6. b). The accuracy followed the same 

tendency, with an average accuracy for G1, G2 and G3 respectively equal to 

0.74, 0.81 and 0.92 (Tab. 3). 

 

Fig. 6: Benchmark scenario and cross–validation classification rates. 
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We compare results obtained by tuning the thresholds on T2 and using T2 as 

a testing set (a) and real-life scenario obtained by tuning the thresholds on T1 

and using T2 as a testing set (b). 

For sub-figure: From top to bottom, rates of correct classifications, 

misclassifications, and unsure classifications for each post-processing: 1) Goal 

1: Minimizing misclassification with 𝐶𝐶𝑖 = max 𝐶𝐶𝑖, 2) Goal 2: maximizing 

correct classifications under the constraint of having less than 5% of 

misclassifications, 3) Goal 3: maximizing correct classification with 𝑀𝐶𝑖 =

min 𝑀𝐶𝑖, 4) No post-Processing. 

Table 3: Accuracy of the model without post-processing, and with post 

processing according to our goals, on the cross-validation, with thresholds 

tuned on T1 and applied on T2. Each line shows the result for a species, with: 

the species name, the accuracy of the model without post processing, and the 

accuracy of the model with post processing according to the 3 goals defined 
earlier.  

Species 
Raw 

Accuracy 

G1 

Accuracy 

G2 

Accuracy 

G3 

Accuracy 

Abudefduf vaigiensis 0.51 0.61 0.92 0.97 

Acanthurus leucosternon 0.61 0.7 0.92 0.94 

Acanthurus lineatus 0.87 0.91 0.95 0.97 

Amblyglyphidodon indicus 0.08 0.72 0.97 0.97 

Chaetodon auriga 0.95 0.99 0.95 1 

Chaetodon guttatissimus 0.16 0.88 0.72 0.96 

Chaetodon trifascialis 0.97 0.9 0.96 0.98 

Chaetodon trifasciatus 0.56 0.62 0.43 0.85 

Chromis opercularis 0.68 0.83 0.03 1 

Chromis ternatensis 0.01 0.47 0.97 0.87 

Gomphosus caeruleus 0.24 0.31 0.89 0.75 

Halichoeres hortulanus 0.51 0.57 1 0.9 

Monotaxis grandoculis 0.77 0.82 0.99 0.98 

Naso brevirostris 0.02 0.92 0.89 1 
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Naso elegans 0.89 0.91 0.99 0.97 

Oxymonacanthus longirostris 0.36 0.46 0.72 0.8 

Pomacentrus sulfureus 0.52 0.92 0.71 0.91 

Thalassoma hardwicke 0.78 0.94 0.77 0.94 

Zanclus cornutus 0.55 0.64 0.4 0.98 

Zebrasoma scopas 0.61 0.66 0.99 0.8 

Average 0.53 0.74 0.81 0.93 

Standard Deviation 0.30 0.19 0.25 0.07 

 

Finally, we also performed the same experiment while switching T1 and T2 

roles (Supp. Tab. 6, 7, 8). For each goal, the unsure classification rate was 

higher after the switch (+3.8% for G1, +4.4% for G2, and +8.9% for G3), 

implying lower scores were obtained in both correct classification (-3.5%,  

-5%, -7.3%) and misclassification, with the exception of the 2nd goal (-0.2%, 

+0.6%, -1.6%). 

Discussion  
Biodiversity monitoring is experiencing a revolution with the emergence of new 

sensors (light, noise, image, environmental DNA) that generate massive 

datasets and require powerful and accurate treatment tools. Indeed, species 

misclassifications must be controlled and limited to avoid false negatives or 

absences i.e., missing species that are actually present and false positives or 

presences i.e., detecting species that are actually absent.    

In this paper, we demonstrated that the risk of misclassification by CNN 

algorithms can be measured and controlled in a post-processing step to 

provide more accurate identification of species on pictures. Such post-

processing can be applied with any classifier as long as the output is a vector 

of scores. Reducing the misclassification rate is at the detriment of the correct 

classification rate and increases “unsure” classifications, which implies a low 

coverage and a greater human effort needed to identify unclassified 

individuals. Hence, there is a trade-off between a more secure (less 

misclassifications) or a more automatic (more classifications) method so 

species thresholds can be set according to the goal or priority of the study or 

the availability and time of experts. Here we define three main goals which 

represent archetypal study cases. The first goal, maximizing the correct 

classification rate but not limiting misclassifications, can be applied when 
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avoiding false negatives is more important than detecting false positives. This 

can be the case for monitoring invasive species, since the priority is to detect 

the first occurrence of such invasive individuals with potential deleterious 

consequences on native biodiversity and ecosystem functioning (Catford 2018) 

particularly on islands (Spatz 2017, Leclerc 2018). For instance, the Indo-

Pacific predator lionfish (Pterois volitans and P. miles) has invaded most reefs 

of the Western Atlantic and depleted many native prey populations, and are 

starting to spread in the Eastern Mediterranean Sea (Azzuro et Bariche 2017).. 

To better anticipate the impact of such species, ecosystem mangers needs to 

be aware of the first occurrence on reefs and can thus accept having “false 

alarms”. The same constrains applies for detection particular or emblematic 

individuals, like Whale Sharks, through photo-identification (McKinney 2017) 

where the primary goal is to avoid missing an occurrence. In both ecological 

cases, experts will eventually validate the few false positive identifications of 

targeted organisms by the algorithm to discard them. 

The second goal, maximizing the correct classification rate while limiting 

misclassifications at 5% maximum per species, can be applied when avoiding 

false negatives and false positives are both important. This is the trade-off 

scenario that requires the least human effort and that can process massive 

datasets with few errors. It can be recommended to analyze long videos (>2 

hours) for monitoring biodiversity metrics that are weakly influenced by 

undetected species (rare or classified as “unsure”), like the assessment of 

taxonomic or functional diversity (Mouillot et al. 2013), and that can feed 

initiatives like the Group on Earth Observations Biodiversity Observation 

Network (GEO BON) and provide robust estimates of Essential Biodiversity 

Variables (EBVs) (Pereira et al. 2013, Kissling et al. 2017).  

The third goal, minimizing the misclassification rate, can be applied when 

detecting false positives is more problematic than avoiding false negatives, 

which creates many “unsure” classifications. This can be the case when priority 

is to accurately analyze a relatively small dataset with the support of many 

experts who can help to identify species on potentially a high number of 

“unsure” images. For instance, assessing abundance of all species within a 

given area to explain ecosystem functioning (e.g. Maire et al. 2018) or to 

monitor changes in species relative abundances (e.g. Newbold 2018) requires 

a minimum number of misclassifications.  

Whatever the goal, our framework is highly flexible and can be adapted by 

tuning the species thresholds regulating the trade-off between classification 

robustness and coverage in an attempt to monitor biodiversity through big 

datasets where species are unidentified. To unclog the bottleneck of 

information extraction about organism forms, behaviors and sounds from 
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massive digital data, machine learning algorithms, and particularly the last 

generation of deep learning algorithms, offer immense promises. Here we 

propose to help the users to control their error rates in ecology. This is a 

valuable addition to the ecologist’s toolkit towards a routine and robust 

analysis of big data and real-time biodiversity monitoring from remote sensors. 

With this control of error rate in the hands of users, Deep Learning Algorithms 

can be used for real applications, with acceptable and controlled error rates, 

lower than any state of the art fully automatic process, while fixing the effort 

by human experts to correct algorithm mistakes. 
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Supplementary 

 

Supp. Fig. 1: The 20 reef fish species considered in the study.  
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Supp. Fig 2: Example of training dataset augmentation 

Each original image is transformed 9 times using flips and different contrast 

enhancements 
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Supp. Tab. 1: Number of images per species in our 3 datasets (after data augmentation).  

Family Species 

Training 

dataset 

T0 

First 

dataset  

T1 

 

Second 

dataset  

T2 

 

 

Acanthuridae 
Acanthurus 
leucosternon 

32,590 235 491 
 

Acanthuridae 
Acanthurus 

lineatus 
10,080 114 864 

 

Acanthuridae Naso brevirostris 11,340 539 1932  

Acanthuridae Naso elegans 73,450 1,436 3,896  

Acanthuridae Zebrasoma scopas 49,700 48 579  

Chaetodontidae Chaetodon auriga 21,340 737 502  

Chaetodontidae 
Chaetodon 

guttatissimus 
11,820 221 68 

 

Chaetodontidae 
Chaetodon 

trifascialis 
52,340 41 630 

 

Chaetodontidae 
Chaetodon 

trifasciatus 
44,210 71 82 

 

Labridae 
Gomphosus 

caeruleus 
31,310 57 173 

 

Labridae 
Halichoeres 

hortulanus 
31,920 40 287 

 

Labridae 
Thalassoma 
hardwicke 

49,510 181 275 
 

Lethrinidae 
Monotaxis 
grandoculis 

38,930 797 1,422 
 

Monacanthidae 
Oxymonacanthus 
longirostris 

25,530 54 55 
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Pomacentridae 
Abudefduf 

vaigiensis 
51,240 376 216 

 

Pomacentridae 
Amblyglyphidodon 

indicus 
11,880 636 1,310 

 

Pomacentridae 
Chromis 

opercularis 
15,250 81 93 

 

Pomacentridae 
Chromis 

ternatensis 
36,400 300 156 

 

Pomacentridae 
Pomacentrus 

sulfureus 
54,090 270 142 

 

Zanclidae Zanclus cornutus 38,760 86 59  

TOTAL   691,690 6,320 13,232  
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Supp. Tab. 2: Values of misclassification scores without post processing, and after 

processing with the threshold selected by optimizing the correct classification rate 

(threshold tuned and tested on the same dataset). 

  
Without post 

processing 
Goal1 

Species 
Misclassification 

rate 

Threshold 

value 

Misclassification 

rate 

Unsure 

rate 

Chaetodon trifasciatus 12.19 94.23 6.10 6.10 

Chaetodon trifascialis 10 99.83 6.35 3.65 

Naso brevirostris 45.86 33.47 34.36 11.49 

Chaetodon guttatissimus 14.59 99.73 14.49 0 

Thalassoma hardwicke 9.09 96.15 1.45 8 

Pomacentrus sulfureus 9.85 99.66 2.82 7.04 

Oxymonacanthus longirostris 3.57 99.97 3.57 0 

Monotaxis grandoculis 42.89 40.86 27.78 15.12 

Zebrasoma scopas 36.96 66.78 19.17 19.51 

Abudefduf vaigiensis 0.92 99.71 0.46 0.46 

Amblyglyphidodon indicus 41.22 40.86 18.55 23.36 

Acanthurus lineatus 40.28 98.74 23.15 17.13 

Chromis ternatensis 40.38 33.47 12.18 31.41 

Chromis opercularis 38.71 97.52 19.35 21.50 

Gomphosus caeruleus  24.28 99.21 16.18 8.09 

Acanthurus leucosternon 13.85 96.15 7.94 5.90 

Halichoeres hortulanus 17.07 98.86 9.75 8.36 

Naso elegans 6.8 33.47 3.90 2.93 

Chaetodon auriga 12.95 99.8 6.37 6.57 

Zanclus cornutus 18.64 99.71 5.08 13.56 
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Supp. Tab. 3: Values of misclassification scores without post processing, and after 

processing with the threshold selected by optimizing the Misclassification rate (threshold 

tuned and tested on the same dataset). 

  
Without post 

processing 
Goal 3 

Species 
Misclassification 

rate 

Threshold 

value 

Misclassification 

rate 

Unsure 

rate 

Chaetodon trifasciatus 12.19 94.22 0 12.19 

Chaetodon trifascialis 10 94.63 3.65 6.35 

Naso brevirostris 45.86 99.98 12.73 38.72 

Chaetodon guttatissimus 14.59 99.84 11.59 7.25 

Thalassoma hardwicke 9.09 99.39 0 10.55 

Pomacentrus sulfureus 9.85 99.98 
0.70 23.24 

Oxymonacanthus 

longirostris 

 

3.57 

 

99.98 0 3.57 

Monotaxis grandoculis 42.89 99.98 3.66 62.59 

Zebrasoma scopas 36.96 99.9 1.90 51.64 

Abudefduf vaigiensis 0.92 99.98 0.46 0.93 

Amblyglyphidodon indicus 41.22 99.98 1.22 66.34 

Acanthurus lineatus 40.28 99.94 9.26 32.18 

Chromis ternatensis 40.38 99.98 0 75 

Chromis opercularis 38.71 99.65 1.08 43.01 

Gomphosus caeruleus 24.28 99.87 4.05 24.28 

Acanthurus leucosternon 13.85 99.97 2.44 16.50 

Halichoeres hortulanus 17.07 99.79 3.13 14.98 

Naso elegans 6.8 99.98 0.38 16.30 

Chaetodon auriga 12.95 99.97 3.39 13.15 

Zanclus cornutus 18.64 99.95 0 25.42 
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Supp. Tab. 4: Rates of unsure, correct, and misclassifications for each goal, with a 

threshold learned and applied on the same dataset. 

 

  

 

Goal 1 (%) 

 

 

Goal 2 (%) 

 

 

Goal 3 (%) 

 

 

Unsure 

classifications 
10.8  17.88 29.71 

Misclassifications 11.19 6.66 2.07 

Correct 

classifications 
78 75.47 68.22 

 

Supp. Tab. 5: For each case, the first number shows the result shown obtained with 

thresholds tuned in real cross validation, and the second number corresponds to the 

difference between benchmark conditions and real cross validation. 

  

 

Goal 1 (%) 

 

 

Goal 2 (%) 

 

 

Goal 3 (%) 

 

 

Unsure 

classifications 10.51 (-0.3) 18.80(+0.92) 27.21(-2.5) 

Misclassifications 11.95(+0.77) 5.77(-0.89) 2.98(+0.91) 

Correct 

classifications 77.53(-0.46) 75.43(-0.03) 69.81(+1.59) 
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Supp. Tab. 6: Difference between 1) results obtained with the classifier without post 

processing and 2) results obtained with post processing with a threshold learned on an 

independent dataset (cross-validation). For each case, the number shown corresponds to 

the results obtained with cross-validation threshold minus the results obtained without 

post processing. 

 

 

 

Goal 1 (%) 

 

 

Goal 2 (%) 

 

 

Goal 3 (%) 

 

 

Unsure classifications 10.51 18.80 27.21 

Misclassifications -10.04 -16.23 -19.01 

Correct classifications -0.46 -2.57 -8.19 

 

Supp. Tab. 7: Classification results of our model without post processing. 

 

Species Dataset 1 (T1) 

Chaetodon trifasciatus 0.96 

Chaetodon trifascialis 0.71 

Naso brevirostris 0.45 

Chaetodon guttatissimus 0.49 

Thalassoma hardwicke 0.84 

Pomacentrus sulfureus 0.90 

Oxymonacanthus longirostris 0.87 

Monotaxis grandoculis 0.61 

Zebrasoma scopas 0.69 

Abudefduf vaigiensis 0.88 

Amblyglyphidodon indicus 0.62 

Acanthurus lineatus 0.83 
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Chromis ternatensis 0.78 

Chromis opercularis 0.68 

Gomphosus caeruleus 0.72 

Acanthurus leucosternon 0.84 

Halichoeres hortulanus 0.92 

Naso elegans 0.90 

Chaetodon auriga 0.71 

Zanclus cornutus 0.91 

Average 76.33 

 

Supp. Tab. 8: Rates of unsure, correct, and misclassifications for each goal. The table 

shows the results obtained when we tuned the thresholds on T2 and applied them on T1 

(cross validation). 

 

 

 

Goal 1 (%) 

 

 

Goal 2 (%) 

 

 

Goal 3 (%) 

 

 

Unsure 

classifications 14.29 23.22 36.14 

Misclassifications 11.72 6.36 1.42 

Correct 

classifications 73.99 70.43 62.44 

 


