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ABSTRACT

ASO [1] is an adaptive embedding scheme that has proved its
ef�ciency compared to HUGO [2] algorithm. It is based on
the use of a detectability map that is correlated to the security
of the embedding process. The detectability map is calcu-
lated using theKodovsḱy's ensemble classi�ers[3] as an ora-
cle, which preserves the distribution of the cover image and
of the sender's database. In this article, we give the techni-
cal points about ASO. We give the details of the detectability
map computation, then we study the security of the commu-
nication phase of ASO throughthe paradigm of the steganog-
raphy by database. Since the introduced paradigm allows the
sender to choose the most secure stego image(s) during the
transmission of his message, we propose some security met-
rics that can help him to distinguish between secure and in-
secure images. We thus signi�cantly increase the security of
ASO.

Index Terms— Steganography, Detectability map, En-
semble classi�ers, Oracle, Steganography by database.

1. INTRODUCTION

Steganography is the art of secret communication. The goal
is to hide a secret message in an unsuspicious object in such
a way that no one can detect it. With the Internet spread, sev-
eral philosophies of designing steganographic methods were
proposed. One of the most used embedding methods for real
digital images is the steganography by minimizing of the em-
bedding impact1.

Let x = ( x1; :::; xn ) be a cover support composed ofn
elements. The goal of steganography by minimizing the em-
bedding impact is to communicate a secret messagem =
(m1; :::; mm ) by making small perturbations of cover object
x to produce a stego objecty = ( y1; :::; yn ). For this, we
de�ne a distortion functionD(x; y ) that we minimize under
the constraint of a �xed payload. This distortion function is
generally based on the use of a detectability map� 2 Rn

+

1The principle of minimizing the embedding impact was proposed in
2007 [4]. It is based on the adaptivity of the embedding operation by the
use of a detectability map.

which assigns to each cover elementx i with i 2 f 1; :::; ng,
a detectability cost� i 2 R+ that models the impact on the
security caused by the modi�cation of thei th element.

The HUGO algorithm [2] used during the BOSS2 com-
petition [5] uses a detectability map, which attributes to each
pixel of a cover image a detectability cost� i 2 [0; 1 ], as
suggested in [6]. The calculation of the detectability cost
is based on the use of high-dimensional features, which are
calculated from the cover image. These features correspond
to the conditional probabilities in each pixel of the �ltered
image. The MOD3 algorithm proposed in 2011 [7], extends
the HUGO proposal by de�ning a parametric detectability
cost � i 2 [0; 1 ], which is parametrized by a high number
of parameters. The ASO4 embedding algorithm that we pro-
posed in [1], improves the concept of the detectability map
introduced by HUGO. It uses a non parametric detectabil-
ity map whereas MOD use a parametric approach. The de-
tectability map� = f � i 2 [0; 1 [gn

i =1 is de�ned by using the
functionalities of theKodovsḱy's ensemble classi�ers[3] as
an oracle. This preserves not only the cover image distribu-
tion, but also the distribution of the sender's database. Thus,
ASO introduces a new paradigm in steganography which is
the steganography by databasethat, furthermore, offers to the
sender the possibility to choose the most secure image(s) dur-
ing the transmission phase.

In this paper, we pursue the study about the adaptive
steganography by oracle [1]. We give the technical points
about the embedding algorithm (ASO), and we discuss about
the security of the ASO's embedding process thanks tothe
steganography by database paradigm. For this, we propose
some new security measures that re�ect the security level of
the stego images.

The rest of this paper is organized as follows. In Section
2.1, we recall some notions about the ASO algorithm. In Sec-

2BOSS (Break Our Steganography System) is the �rst challenge on Ste-
ganalysis. The challenge started the September 9th 2010 and ended the 10th
of January 2011. The goal of the player was to �gure out, which images
contain a hidden message and which images do not. The steganographic al-
gorithm was HUGO [2]. http://www.agents.cz/boss/BOSSFinal/.

3MOD: Model Optimized Distortion.
4ASO: Adaptive Steganography by Oracle [1].



tion 2.2, we give the technical points about the detectability
map construction. In Section 2.3, we discuss the paradigm of
the steganography by databaseand we propose the security
metrics. We give experimental results in Section 3, and we
conclude in Section 4.

For the sake of simplicity, we denote byx = ( x1; :::; xn ) 2
X = f 0; :::; 255gn andy = ( y1; :::; yn ) 2 Y = f 0; :::; 255gn

grayscale cover and stego images withn pixels. The use of
any other digital media is also possible.

2. ADAPTIVE STEGANOGRAPHY BY
ORACLE (ASO)

2.1. General scheme

ASO5 [1] is an adaptive embedding scheme that is based
on the principle of minimizing embedding impact [4, 6]. It
strives to hide a given messagem in a cover supportx ; while
minimizing an ad hoc distortion measure that is correlated
to the security of the embedding process. The embedding is
either simulated [4], or done by using the STC6 approach [6].
These embedding algorithms require to de�ne a detectability
map� that model the statistical detectability. In ASO an ora-
cle is used to calculate a detectability map� = f � i 2 Rgn

i =1
that assigns a detectability costs� i to each pixelx i :

� i = min
�

� (+)
i ; � ( � )

i

�
; (1)

with � (+)
i (resp. � ( � )

i ) the detectability cost of changing the
i th pixel by+1 (resp.� 1).

Since theKodovsḱy's FLD ensemble classi�ers[3] al-
lows to split the features space into cover and stego regions,
ASO [1] uses this separation as an oracle to de�ne the de-
tectability costs� (+)

i and� ( � )
i :

� (+)
i =

LX

l =1

� ( l )(+)
i , and � ( � )

i =
LX

l =1

� ( l )( � )
i ; (2)

where� ( l )(+)
i (resp.� ( l )( � )

i ) is the detectability cost provided
by thel th classi�er, andL is the number of the FLD classi-
�ers.

For each FLD classi�erFl , with l 2 f 1; ::Lg, that per-
formed its learning on a subspace ofdred dimension, the de-
tectability cost� ( l )(+)

i is de�ned as:

� ( l )(+)
i =

w ( l ) :
�

fx � xi
( l )(+) � fx

( l )
�

s( l )
; (3)

and the detectability cost� ( l )( � )
i by:

� ( l )( � )
i =

w ( l ) :
�

fx � xi
( l )( � ) � fx

( l )
�

s( l )
; (4)

5For more details about the ASO embedding algorithm, please refer to [1],
available on: http://www.lirmm.fr/� kouider/Publications.html.

6STC: Syndrome Trellis Codes.

with w ( l ) the vector orthogonal to the hyperplane separating
the two classes calculated by the classi�erFl , fx

( l ) the feature
vector that we wish to classify by the classi�erFl , fx � xi

( l )(+)

(resp.fx � xi
( l )( � ) ) the feature vector obtained after the modi-

�cation of the i th pixel by +1 (resp.� 1), ands( l ) 2 R+ the
normalization factor of thel th classi�er Fl (see [1]).

By using the functionalities of theKodovsḱy's ensemble
classi�ers[3] and the acquired knowledge of the learning
phase, ASO [1] manages to preserve not only the distribution
model of the current cover image, but also the distribution
model of the sender's database. It thus improves the security
of the embedding process.
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Fig. 1. General scheme of the Adaptive Steganography by Oracle
(ASO) [1].

As shown in Figure 1, the embedding process of ASO [1]
consists of two steps. The �rst step (labeled I in Figure 1)
aims to produce a �rst draft of ASO's stego images. In this
step, the computation of the detectability map� (Eq. 1) is per-
formed by using theKodovsḱy's ensemble classi�ers[3] that
is trained to distinguish between cover and the stego images
embedded with HUGO [2]. The second step (labeled II in Fig-
ure 1) is an iterative step that aims to improve the security of
ASO. The detectability map is calculated using aKodovsḱy's
ensemble classi�ers[3] that is trained to distinguish between
the cover and the ASO's stego images from the previous iter-
ation.

At the end of the embedding process, ASO allows to ob-
tain a set of a stego images, rather than only one stego image.

2.2. Technical points about detectability map computation

The computation of a feature vectorfx 2 Rd, with vector
dimensiond � dred , is CPU consuming. In our casefx

is obtained by �rst applying many high-pass �lter and then
count the m-uplets co-occurrences in the different high-pass
images. In the ASO algorithm, the computation of the de-
tectability map� requires to compute the values� ( l )(+)

i and
� ( l )( � )

i for each pixelx i , which involves the calculation of the



Fig. 2. Computation of the feature variations on a square window
area ofr = 9 width. The residual 1-Dimension �lter used to com-
pute the features has a size (s = 3).

two new feature vectorsfx � xi
( l )(+) andfx � xi

( l )( � ) resulting
from the modi�cation+1 or � 1 of the i th pixel (see Eq. 3
and Eq. 4). Since the vectorw ( l ) and the normalisation factor
s( l ) are calculated during the learning phase of the classi�er,
we do not need to calculate them again during the compu-
tation of � ( l )(+) and� ( l )( � ) . The computational complexity
for the construction of the detectability map� comes mainly
from the computation offx � xi

( l )(+) andfx � xi
( l )( � ) . To ad-

dress this problem, instead of calculating separately the fea-
ture vectorsfx � xi

( l )(+) and fx � xi
( l )( � ) , we propose to only

calculate, on a reduced area, the variation(fx � xi
( l )(+) � fx

( l ) )
and(fx � xi

( l )( � ) � fx
( l ) ) introduced by the modi�cation+1 or

� 1 of each pixelx i .

We thus de�ne for each pixelx i a square window area
of r width centred onx i . This window area gives the set of
pixels responsible of the changes between the vectorsfx

( l )

andfx � xi
( l )(+) (resp. fx � xi

( l )( � ) andfx
( l ) ). The pixels that

are outside of this area do not introduce change betweenfx
( l )

andfx � xi
( l )(+) (resp. fx � xi

( l )( � ) andfx
( l ) ). We thus do not

consider those pixels during the computation of the feature
variations.

The width r of the square window area depends on the
sizes of the high-pass 1-Dimension �lter, and the orderm of
the co-occurrence matrice used to calculate the feature vec-
tors [8]. The size of the window area, on which we calculate
the variations(fx � xi

( l )(+) � fx
( l ) ) and(fx � xi

( l )( � ) � fx
( l ) ),

must be large enough to cover all possible modi�cations in-
volved by changing the pixelx i . Knowing that changing
a given pixelx i by +1 or � 1 may affect (non pathologi-
cal case) the m-uplets(x i + a ; x i +( a+1) ; :::; x i +( a+ m ) ), with
a 2 f�b r

2 c; :::; br
2 c � mg, in all directions, choosingr =

s + 2( m � 1) guarantees a valid result for the computation of
the feature variations(fx � xi

( l )(+) � fx
( l ) ) and(fx � xi

( l )( � ) �
fx

( l ) ).

To take an example, for a residual 1-Dimension �lter with
s = 3 size andm = 4 (Figure 2), the involved variations
(fx � xi

( l )(+) � fx
( l ) ) and(fx � xi

( l )( � ) � fx
( l ) ) are calculated

on a square window area of widthr = 9 .
Our implementation of ASO, ford = 5330, L = 30,

dred = 250, andN = 10000 images of512 � 512, using

the parallel OpenMP library on an architecture of 8 proces-
sorsQuad-Core AMD Opeteron(tm) Processor 8384, at 2.69
GHz, took less than one day and half. Knowing that on a
monoprocessor, without the trick of the square window (Eq. 3
and Eq. 4), the calculation of one feature vectorfx took about
0.013s, the computation time of the detectability map� of the
10000 images would take0:013s� 2� 512� 512� 10000 =
68157440s (more than two years).

2.3. Paradigm of the steganography by database

As mentioned in Section 2.1, ASO introduces the new
”steganography by database” paradigm. The embedding
process of ASO takes into account not only the model dis-
tribution of the current cover image, but also the distribution
of the sender's database, thus improving the security of the
embedding process. Moreover, it allows to obtain a set of
stego images instead of just one stego image, which offers to
the sender the opportunity to choose the most secure image(s)
during the transmission of his secret message.

Choosing the most reliable image(s) during the transmis-
sion phase can improve the security of ASO. In order to select
the less detectable stego image(s), we compute for each stego
image a score value that re�ects its security level. One pos-
sible powerful method that offers ASO consists to compute
for each stego image the number of FLD classi�ers that have
classi�ed it as cover instead of stego, from theKodovsḱy's
ensemble classi�ers[3]. We thus de�ne the security score as:

SF LD
f : Rd ! f 0; :::; L g

x ! SF LD
f (x );

where: SF LD
f (x ) = L �

LX

l =1

F l (fx ); (5)

with Fl (fx ) the decision of the classi�erFl (1 for stego and 0
for cover), andfx the feature vector of the stego imagex. The
higher the scoreSF LD

f (x) is, the greater is the security of the
stego image. Note that with that measure, we obtain several
stego images with the same score.

For more �ner granularity of the score value, we may use
the sparsity measures that are generally used with the One
Class Neighbor Machine (OC-NM) steganalyzer [9, 10].

Let us assume that we haveK cover images from which
we computeK d -dimensional features. By taking the set of
cover images as a training base, the OC-NM computes for
each samplesx a sparsity measureSoc

f (x) that characterizes
the closeness ofx to the cover images. The OC-NM stegana-
lyzer strives to identify the best threshold so that all samples
x with Soc

f (x) >  are classi�ed as stego.

Several types of sparsity measures are proposed in the
original publication on OC-NM [9]. One of the most used
measure that can be adopted as a security score, is the so-
called Hilbert kernel density estimator:

Soc
f : Rd ! R

x ! Soc
f (x );



where:

Soc
f (x) = log

 
1

P K
k=1 1=

�
k fx � fk khd

2

�

!

; (6)

with fx the feature vector of the stego imagex, fk the feature
vector of thekth cover image of the training set,k : k2 the L2

norm,d the feature vectors dimension, andh a parameter of
smoothness.

Intuitively, since the sparsity measures re�ect the close-
ness of a given image to the covers, using these measures as
a security score allows us to evaluate the detectability of the
used stego image(s). The smaller is the sparsitySoc

f (x) of a
given stego image, the greater is its security.

3. EXPERIMENTAL RESULTS

Our experiments were conducted using the BossBase v1.00
cover database7 containing 10000512� 512grayscale cover
images in the pgm format, and the same 10000 images em-
bedded with ASO8 for each payload from 0.1 bpp to 0.5 bpp.

Each image is represented by a feature vector ofd = 5330
MINMAX features. The set of features comes from the 1458
dimensional MINMAX vector with the truncation threshold
T = 4 , and the 3872 dimensional SUM3 vector from the
HOLMES features [8].

To evaluate the necessity and the importance of the intro-
duced paradigm ofthe steganography by database, we have
built for each payload� from 0.1 bpp to 0.5 bpp two testing
databases of 500 ASO's stego images. The baseB( � )

1 con-
sists of 500 ASO's stego images that have been randomly se-
lected from the BossBase v1.00 ASO's stego images. The
baseB( � )

2 is composed of the most secure 500 ASO's stego
images selected from the BossBase v1.00 ASO's stego im-
ages using the security measureSF LD

f (see Eq. 5). Once
calculated, for each payload, the two testing databases are
then steganalyzed using the One-Class Support Vector Ma-
chine (OC-SVM) of LIBSVM9. The OC-SVM was trained on
the BossBase v1.00 cover database using the Gaussian ker-
nel k(x; y ) = exp( �  kx � yk2) with  = 0 :181526and
� = 0 :01which is the desired false positive rate. The training
data were scaled before, so that all features were in the range
[� 1; +1] (the scaling parameters were derived from cover im-
ages only).

By using the OC-SVM for the steganalysis of the two
testing databases (B( � )

1 and B( � )
2 ) for each relative payload

� from 0.1 bpp to 0.5 bpp, we seek to test if the stego images
that have been selected using the security measure criterion

7BossBase v1.00: A database of 10000 images available on
http://agents.cz/boss/BOSSFinal/.

8The embedding process of ASO was done usingL = 30 classi�ers,
d = 5330 , anddred = 250 [1].

9LIBSVM: A Library for Support Vector Machines, available on
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

(Eq. 5 and Eq. 6) are more secure than those selected ran-
domly by the sender. In other words, we want to prove the
importance of choosing the most reliable image(s) during the
secret communication phase (i.e. prove the additional security
feature ofthe steganography by databaseparadigm).
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From the results shown in Figure 3, for the �ve rela-
tive payloads from 0.1 bpp to 0.5 bpp the security of the
stego databaseB( � )

2 built using the security measure criterion
SF LD

f , is better than the security of the randomly selected
stego databaseB( � )

1 . For all relative payloads the detection
recall10 R of the OC-SVM steganalyzer onB( � )

2 is lower than
that onB( � )

1 . For instance, for� = 0 :5 bpp, the detection
recall R on B( � )

1 is 78%, whereas it is only 56% onB( � )
2 .

Similarly, the detection recallR on B( � )
2 at 0.4 bpp is less

than that onB( � )
1 ; 55% compared to 66%. In brief , the

detection recallR on B( � )
2 for all relative payloads is close

to 50-55%. The OC-SVM steganalyzer classi�es incorrectly
one out of two times a given stego image as cover image. In
other words, onB( � )

2 , the OC-SVM has a random behaviour,
since it can not distinguish between the cover and stego im-
ages. This con�rms that the stego databaseB( � )

2 is more
secure than the stego baseB( � )

1

Note that the detection recallR of B( � )
2 at 0.1 bpp is

higher than that at 0.2 bpp. It is 53.6% at 0.1 bpp, whereas
it is 50.2% at 0.2 bpp. Indeed, for payloads under 0.2 bpp,
the ASO embedding algorithm does not perform as well as
at higher payloads, since the oracle used for computing the
detectability map (Section 2.1) can not manage to distinguish
between secure and insecure areas [1].

The obtained results show that the setB( � )
2 of the stego

images selected using the security measureSF LD
f are more

secure than those ofB( � )
1 that have been randomly selected.

10The detection recallR = number of stego images correctly classi�ed
total number of stego images .
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Fig. 4. Some exemples of the selected stego images using the security measureSF LD
f criterion (� = 0 :5 bpp, andL = 30).

By using a simple security metrics, such asSF LD
f , we obtain

a strong security. The used steganalyzer can not distinguish
between cover and stego images. This con�rms the relevance
of choosing the most reliable image(s) during the transmis-
sion phase of the secret message. Moreover, we believe that
using a more �ner security measure such asSoc

f (Eq. 6) may
improve even more the security of the message communica-
tion11.

Some examples of the stego images that have been se-
lected using the security measureSF LD

f criterion are given
in Figure 4. As we can see, the selected stego images that
have been judged as the most secure images correspond to
the noisy and textured images.

4. CONCLUSION

In this paper, we present the technical points about the adap-
tive steganography by oracle (ASO). First, we discuss about
the detectability map computation of ASO that reduce sig-
ni�cantly its computational complexity. Then, we study the
security of ASO thanks to the paradigm ofthe steganography
by database. Since our embedding ASO algorithm allows to
obtain a set of stego images instead of just one stego image,
we offer to the sender the opportunity to choose the most un-
detectable stego image(s) during the transmission of his se-
cret message. To do this, we propose some security metrics
that help him to select the most reliable stego image(s). Ex-
perimental results show that using a simple security metric,
such asSF LD

f (Eq. 5), for choosing the most secure stego
image(s), improves signi�cantly the security of the commu-
nication phase of ASO.
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