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ABSTRACT which assigns to each cover elementwith i 2 f 1;:::;ng,

ASO|[1] is an adaptive embedding scheme that has proved igseiitr?ftiglllj';ig%g {hg nlfg ditzgiigogfﬂﬁ?@thjémngt on the

ef ciency compared to HUGO [2] algorithm. It is based on TheyHUGO alyor'thm 1 used during the BOéSom—

the use of a detectability map that is correlated to the security ... gon [ .]. u unng .

of the embedding process. The detectability map is calcnﬁ?t't'on [5] uses a detectability map, which attributes to each
lated using th&Kodovsk's ensemble classi eff8] as an ora- pixel ofta dci(;ver6|ma_}_ghe a dletelc:?t:ht); ;? st d2 t[o,t 1bi]|’itas ¢
cle, which preserves the distribution of the cover image angudgeste [6]. ¢ caicuiation ot the detectability cos
of the sender's database. In this article, we give the techni> based on the use of h|gh-d|men3|onal features, which are
cal points about ASO. We give the details of the detectabilitycalcmated ff‘?m the cover Image. These features correspond
map computation, then we study the security of the commut-o the conditional probabilities in each pixel of the Itered
nication phase of ASO throughe paradigm of the steganog- Itrr?a?—?o g ge '\rAOé allggrltzm npi);oposedrlnmzerlil [d7] ,t eﬁte&ﬁf
raphy by databaseSince the introduced paradigm allows the € proposa’ by de ning a parametric detectabiiity

. . st ; 2 [0;1 ], which is parametrized by a high number
sender to choose the most secure stego image(s) during tﬁt_parameters. The ASGembedding algorithm that we pro-

transmission of his message, we propose some security me osed in[1], improves the concept of the detectability ma
rics that can help him to distinguish between secure and irf2 » IMp P . y map
troduced by HUGO. It uses a non parametric detectabil-

. . . . . |
secure images. We thus signi cantly increase the security alfy map whereas MOD use a parametric approach. The de-
tectability map = f ; 2 [0;1 [gl; is de ned by using the

ASO.

Index Terms— Steganography, Detectability map, En- functionalities of theKodovsk's ensemble classi e8] as
semble classi ers, Oracle, Steganography by database. an oracle. This preserves not only the cover image distribu-
tion, but also the distribution of the sender's database. Thus,
1. INTRODUCTION ASO introduces a new paradigm in steganography which is

Steganography is the art of secret communication. The go#€ Stéganography by databaset, furthermore, offers to the

is to hide a secret message in an unsuspicious object in sugRnder the possibility to choose the most secure image(s) dur-

a way that no one can detect it. With the Internet spread, se!9 the transmission phase.

eral philosophies of designing steganographic methods were N this paper, we pursue the study about the adaptive

proposed. One of the most used embedding methods for regiéganography by oracle[1]. We give the technical points

digital images is the steganography by minimizing of the emabout the embedding algorithm (ASO), and we discuss about

bedding impadt the security of the ASO's embedding process thanksheo
Letx = (X1;::Xn) be a cover support composedrof — Stéganography b'y database paradigfor this, we propose

elements. The goal of steganography by minimizing the em30Me new security measures that re ect the security level of

bedding impact is to communicate a secret message  the Steégo images.

(ml; n mm) by making small perturbations of cover Object The rest of this paper is Organized as follows. In Section
X to produce a stego objegt = (y1;::yn). For this, we 2.1, werecall some notions about the ASO algorithm. In Sec-

de ne a distortion functiorD (x; y) that we minimize under
(x; y) 2BOSS (Break Our Steganography System) is the rst challenge on Ste-

the constraint of a xed payload. This d's“_)ft'on function is ganalysis. The challenge started the September 9th 2010 and ended the 10th

generally based on the use of a detectability map R of January 2011. The goal of the player was to gure out, which images

contain a hidden message and which images do not. The steganographic al-
1The principle of minimizing the embedding impact was proposed ingorithm was HUGO [2]. http://www.agents.cz/boss/BOSSFinal/.

2007[4]. It is based on the adaptivity of the embedding operation by the 3MOD: Model Optimized Distortion.

use of a detectability map. 4ASO: Adaptive Steganography by Oracle [1].




tion 2.2, we give the technical points about the detectabilityvith w(!) the vector orthogonal to the hyperplane separating

map construction. In Section 2.3, we discuss the paradigm dhe two classes calculated by the classFerf, (" the feature

the steganography by databaaed we propose the security vector that we wish to classify by the classi Br, f, ,

metrics. We give experimental results in Section 3, and wgresp.f, ,,(’( )) the feature vector obtained after the modi-

conclude in Section 4. cation of the i!" pixel by +1 (resp. 1), ands(’ 2 R, the

For the sake of simplicity, we denote Ry= (X1;::;;Xn) 2 normalization factor of th&" classi er F| (see [1]).

X = 10;::;255" andy = (y1;:5yn) 2Y = £0; 1 258" By using the functionalities of thodovsk's ensemble

grayscale cover and stego images witpixels. The use of ¢|5sqj ers[3] and the acquired knowledge of the learning

any other digital media is also possible. phase, ASO [1] manages to preserve not only the distribution
2. ADAPTIVE STEGANOGRAPHY BY model of the current cover image, but also the distribution

ORACLE (ASO) model of the sender's database. It thus improves the security

of the embedding process.
2.1. General scheme

ASO

ASO°[1] is an adaptive embedding scheme that is based
on the principle of minimizing embedding impact[4, 6]. It
strives to hide a given messagein a cover support ; while
minimizing an ad hoc distortion measure that is correlated | |
to the security of the embedding process. The embedding is @ Ceutaionst || Procewat
either simulated [4], or done by using the ST&pproach [6]. e cmperding
These embedding algorithms require to de ne a detectability

map that model the statistical detectability. In ASO an ora-
cle is used to calculate a detectability mag f | 2 Rgl.;
that assigns a detectability coststo each pixek;:

stego image

11 —

— ; . ) . = Calculation of Process of —T
i = min i [ ) 1 e ility [—1 message |
: ! ! ( ) b map cmbcdd’%ng —

stego database
with i(+) (resp. |( )) the detectability cost of changing the

i™ pixel by +1 (resp. 1).

cover image

cover database

Since theKodovsl's FLD ensemble classi ef@] al- Fig. 1. General scheme of the Adaptive Steganography by Oracle

lows to split the features space into cover and stego regiong,\SQ [L1-
ASO[1] uses this separation as an oracle to de ne the de- As shown in Figure 1, the embedding process of ASO[1]
tectability costs i(+> and |( ). consists of two steps. The rst step (labeled | in Figure 1)
aims to produce a rst draft of ASO's stego images. In this
i(+) _ X i(|)(+) ' and I( ) = X i(|)( ). o) step, the com_putation of the,fjetectability maqu.l) is per-
- o formgd by using theK_odovsts ensemble classi effS] th_at
is trained to distinguish between cover and the stego images
where i(')(+) (resp. i(')( )) is the detectability cost provided embedded with HUGO [2]. The second step (labeled Il in Fig-
by thel™™ classi er, andL is the number of the FLD classi- ure 1) is an iterative step that aims to improve the security of
ers. ASO. The detectability map is calculated usingadovsk's
. . ensemble classi e8] that is trained to distinguish between
For each FLD classief, with | 2 f 1;::Lg, that per-  the cover and the ASO's stego images from the previous iter-
formed its learning on a subspacedafy dimension, the de- 4tjon.
tectability cost () is de ned as: At the end of the embedding process, ASO allows to ob-

| ) 0 tain a set of a stego images, rather than only one stego image.
wh: £ fy

[
i( ) s ; 3) 2.2. Technical points about detectability map computation
and the detectability cosf')( ) by: The computation of a feature vecthy 2 RY, with vector
dimensiond Ored, IS CPU consuming. In our cadg
| wh: £, , D0 £ O is obtained by rst applying many high-pass lter and then
i( ) = =0 ; (4)  count the m-uplets co-occurrences in the different high-pass

z images. In the ASO algorithm, the computation of the de-
For more details about the ASO embedding algorithm, please refer to [1 o . )(+)
available on: http:/fwww.lirmm.fr/ kouider/Publications.html. ]t%}at)nhty map  requires to compute the valuef  and
6STC: Syndrome Trellis Codes. i for each pixek;, which involves the calculation of the



the parallel OpenMP library on an architecture of 8 proces-
sorsQuad-Core AMD Opeteron(tm) Processor 83842.69
GHz, took less than one day and half. Knowing that on a
monoprocessor, without the trick of the square window (Eq. 3
and Eq. 4), the calculation of one feature vedjotook about
0.013s, the computation time of the detectability magf the
10000 images would tak&#013 2 512 512 10000 =
68157448 (more than two years).

. 2.3. Paradigm of the steganography by database
Fig. 2. Computation of the feature variations on a square window 9 9 grapnhy by

area ofr = 9 width. The residual 1-Dimension Iter used to com- AS mentioned in Section 2.1, ASO introduces the new
pute the features has a size (s = 3). "steganography by databdsparadigm. The embedding
process of ASO takes into account not only the model dis-
two new feature vector x, "™ andf, ) ) resulting  tribution of the current cover image, but also the distribution
from the modi cation+1 or 1 of thei™ pixel (see Eq.3 of the sender's database, thus improving the security of the
and Eq. 4). Since the vectar(") and the normalisation factor embedding process. Moreover, it allows to obtain a set of
s are calculated during the learning phase of the classi erstego images instead of just one stego image, which offers to
we do not need to calculate them again during the computhe sender the opportunity to choose the most secure image(s)
tation of ™ and € ). The computational complexity during the transmission of his secret message.
for the construction of the detectability mapgomes mainly
from the computation of, (' andf, M ). To ad-
dress this problem, instead of calculating separately the fe
ture vectorsf, ,, "™ andf, ,, (" ), we propose to only
calculate, on a reduced area, the variafign , " ,(")

Choosing the most reliable image(s) during the transmis-
sion phase can improve the security of ASO. In order to select
e less detectable stego image(s), we compute for each stego
image a score value that re ects its security level. One pos-
sible powerful method that offers ASO consists to compute

and(fy ) £,®)introduced by the modi catior1 or  for each stego image the number of FLD classi ers that have

1 of each pixek; . classi ed it as cover instead of stego, from tKedovsk's

We thus de ne for each pixe; a square window area €nsemble classi er8]. We thus de ne the security score as:

of r width centred orx;. This window area gives the set of SFLo . R | f 0Ly
pixels responsible of the changes between the veddhs X | SFP (%):
andf, (™ (resp.f, O ) andf, ). The pixels that “ '
are outside of this area do not introduce change betfyedBn where: SFP (x)= L Fi(fx): (5)
andf, ("™ (resp.f, (' ) andf,("). We thus do not =1
consider those pixels during the computation of the featurevith F,(fy) the decision of the classi €f,; (1 for stego and 0
variations. for cover), andy the feature vector of the stego imageThe

The widthr of the square window area depends on inhdligher the scor& P (x) is, the greater is the security of the
sizes of the high-pass 1-Dimension Iter, and the orderof stego image. Note that with that measure, we obtain several

the co-occurrence matrice used to calculate the feature veSied0 images with the same score.

tors [8]. The size of the window area, on which we calculate  For more ner granularity of the score value, we may use
the variationg(fy "™ £,y and(f, ) D), the sparsity measures that are generally used with the One
must be large enough to cover all possible modi cations in-Class Neighbor Machine (OC-NM) steganalyzer[9, 10].
volved by changing the pixet;. Knowing that changing

' ] > Let us assume that we haie cover images from which
a given pixelx; by +1 or 1 may affect (non pathologi-

, we computeK d-dimensional features. By taking the set of
cal case) the m'UF"etS(Ha_iXH( a+1) » -+ Xi( a+m))g with  cover images as a training base, the OC-NM computes for
a2 fb 5c¢uibzec  mg, in all directions, choosing = gach samples a sparsity measurg®®(x) that characterizes
s+2(m 1) guarantees a valid result for the computation ofie closeness of to the cover images. The OC-NM stegana-
the feature variationéf, " £,") and(f, ,, " lyzer strives to identify the best thresholdo that all samples

f, (). x with SP°(x) >  are classi ed as stego.

To take an example, for a residual 1-Dimension Iter with ~ Several types of sparsity measures are proposed in the
s = 3 size andm = 4 (Figure 2), the involved variations original publication on OC-NM[9]. One of the most used

(fx PP £0yand(f ) £,0)) are calculated measure that can be adopted as a security score, is the so-
on a square window area of width= 9. called Hilbert kernel density estimator:
Our implementation of ASO, fod = 5330, L = 30, sc: R | R

dreg = 250, andN = 10000 images of512 512 using X 1 SP(X);



where: (Eq. 5 and Eqg. 6) are more secure than those selected ran-
| domly by the sender. In other words, we want to prove the
1 ' importance of choosing the most reliable image(s) during the
— g (6)  secret communication phase( prove the additional security
1= kfx  fick3 feature ofthe steganography by databasaradigm).

Sfé(x)=log P
k=1

with fy the feature vector of the stego imagefy the feature ool 1450 randon (@)
vector of thek™ cover image of the training sé¢,: k, the L, I 720 cecure ()
norm, d the feature vectors dimension, anc parameter of o T |
smoothness. 7ok _ ]

Intuitively, since the sparsity measures re ect the close-
ness of a given image to the covers, using these measures ¢
a security score allows us to evaluate the detectability of the
used stego image(s). The smaller is the spa3ffyx) of a
given stego image, the greater is its security.

60 —

50 —

40 B

Detection Recall (%)

30 q

3. EXPERIMENTAL RESULTS 20} .

Our experiments were conducted using the BossBase v1.0( .
cover databagecontaining 1000612 512grayscale cover . ‘ ‘ ‘ ‘
images in the pgm format, and the same 10000 images em o * relative mayload (bpp) o8
bedded with AS®Gfor each payload from 0.1 bpp to 0.5 bpp.

Fig. 3. Detection RecallR) of B(1 ) anng ) for ve relative pay-

Each image is represented by a feature vectdro6330 loads.
MINMAX features. The set of features comes from the 1458 o
dimensional MINMAX vector with the truncation threshold ~ From the results shown in Figure 3, for the ve rela-
T = 4, and the 3872 dimensional SUM3 vector from thetiveé payloads from 0.1 bpp to 0.5 bpp the security of the
HOLMES features [8]. stego databas&é ) built using the security measure criterion

FID :
To evaluate the necessity and the importance of the intro>  + IS better than the security of the randomly selected

duced paradigm ofhe steganography by databasﬂe have Stego databasB& ) For all relative payloads the detection
built for each payload from 0.1 bpp to 0.5 bpp two testing recalt® R of the OC-SVM steganalyzer cBé ) is lower than

databases of 500 ASQO's stego images. The t&&sé con- that on B(l ). For instance, for = 0:5 bpp, the detection
sists of 500 ASO's stego images that have been randomly sgscall R on Bg ) is 78%, whereas it is only 56% oB% )
lected from the BossBase v1.00 ASO's stego images. Thgimilarly, the detection recalR on Bg ) at 0.4 bpp is less
baseBg )is composed of the most secure 500 ASO's steg

%han that onB{ ?; 55% compared to 66%. In brief , the
images selected from the BossBase v1.00 ASO's stego im- a Lo o compar o- In bret,

ages using the security measBB'® (see Eq. 5). Once detection recalR on B; ’ for all relative payloads is close

calculated, for each payload, the two testing databases alR 50'550/?' Thg OC'SVM steganalyzer classi es ingorrectl;l/
then steganalyzed using the One-Class Support Vector m&ne out of two tw(ne)zs a given stego image as cover |mage. n
chine (OC-SVM) of LIBSVM. The OC-SVM was trained on  Other words, orB; °, the OC-SVM has a random behaviour,
the BossBase v1.00 cover database using the Gaussian k&f2ce it can not distinguish between the cover and stego im-
nelk(x;y) = exp( kx yk® with = 0:181526and ages. This conrms that the stego databﬁle) is more

= 0:01which is the desired false positive rate. The trainingsecure than the stego bdssp)
data were scaled before, so that all features were in the range

[ 1;+1] (the scaling parameters were derived from cover im- Note that the detection recaR of B(Z ) at 0.1 bpp is
age’s only) ap higher than that at 0.2 bpp. Itis 53.6% at 0.1 bpp, whereas

k . it is 50.2% at 0.2 bpp. Indeed, for payloads under 0.2 bpp,
By using the OC)'SVM f(or) the steganalyslls of the tWothe ASO embedding algorithm does not perform as well as
testing databases{ ’ and B} ’) for each relative payload at higher payloads, since the oracle used for computing the

from 0.1 bpp to 0.5 bpp, we seek to test if the stego imagegetectability map (Section 2.1) can not manage to distinguish
that have been selected using the security measure criterigtween secure and insecure areas [1].

"BossBase v1.00: A database of 10000 images available on The obtained results show that the Eét) of the stego

http://agents.cz/boss/BOSSFinall. images selected using the security meaSfre® are more
8The embedding process of ASO was done uding: 30 classi ers, ()

d=5330, anddreq = 250 [1]. secure than those &; ’ that have been randomly selected.
SLIBSVM: A Library for Support Vector Machines, available on ) )

http://www.csie.ntu.edu.tw/ cjlin/libsvm/. 10The getection recalk = NUMber of stego images correctly classi ed

total number of stego images



sfFLD(x) =30 sfLD(x) =29

By using a simple security metrics, such3{s-° , we obtain

a strong security. The used steganalyzer can not distinguish
between cover and stego images. This con rms the relevance
of choosing the most reliable image(s) during the transmis-[3] Jan Kodovsk and Jessica J. Fridrich, “Steganalysis in High
sion phase of the secret message. Moreover, we believe that

using a more ner security measure suchSgs (Eq. 6) may

improve even more the security of the message communica-

tiont®,

Some examples of the stego images that have been sd?!

lected using the security measu8gP criterion are given

in Figure 4. As we can see, the selected stego images that
have been judged as the most secure images correspond to

the noisy and textured images.
4. CONCLUSION

(5]

In this paper, we present the technical points about the adap-
tive steganography by oracle (ASO). First, we discuss about

the detectability map computation of ASO that reduce sig-

ni cantly its computational complexity. Then, we study the [6]
security of ASO thanks to the paradigmth& steganography

by database Since our embedding ASO algorithm allows to

obtain a set of stego images instead of just one stego image,
we offer to the sender the opportunity to choose the most un-
detectable stego image(s) during the transmission of his sef7] Tomas Filler and Jessica J. Fridrich, “Design of Adaptive
cret message. To do this, we propose some security metrics
that help him to select the most reliable stego image(s). Ex-
perimental results show that using a simple security metric,

such asSf'® (Eq. 5), for choosing the most secure stego

sfLD(x) = 28 SfFLD(x) = 27

Fig. 4. Some exemples of the selected stego images using the security m@gSureriterion ( = 0:5 bpp, and. = 30).
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