Color Image Steganalysis
Based on Steerable Gaussian Filters Bank

Hasan ABDULRAHMAN ¹, Marc CHAUMONT ²,³,⁴, Philippe MONTESINOS ¹, Baptiste MAGNIER ¹
(1) Ecole des Mines d’Alès, France
(2) University of Nîmes, France
(3) University Montpellier, France
(4) CNRS, Montpellier, France

June 7, 2016

ACM workshop on Information Hiding and Multimedia Security,
Vigo, Galicia, Spain, June 20-22, 2016.
Steganography / Steganalysis

Alice → Cover image C → Emb → Stego image S → Ext → Bob

Message M

Stego ≈ Cover

Secret key K

Eve

Steganography is the art and science of hiding messages in such a way that the carrier appears to be innocent. Steganalysis is the study of methods for recovering information that has been hidden in the carrier, which may be a cover image or other carrier.
Color steganalysis

Few dates and references

- 2013, The color steganography / steganalysis could be explored (a real world problem) [14],
- 2014, The CFA traces can be used: [15], CFARM [9],
- 2015, The correlation between color channels can be used: CRM [10], GCRM [2].

15 ”Steganalysis in technicolor” boosting ws detection of stego images from CFA-interpolated covers, ” M. Kirchner and R. Bohme, ICASSP’2014, Florence, Italy, May 2014.

Proposition

In the rich model method, a residual is computed for each pixel:

\[R(x, y) = \hat{I}(x, y)(N(x, y)) - c \cdot I(x, y). \]

Proposition

- Define the residual as a function of a gradient and a tangent,
- \(\rightarrow \) Use more precise filters than those used in SRM.

Remark: The proposition may also be applied to grey-level images.
Why using Steerable Gaussian Filters?

The facts...

- Filters bank allows to better detect image features such as edges,
- The steerable filters are one of the most popular solution,
- Freeman and Adelson [5] have proposed steerable filters directed at specific angles built with a linear combination of Gaussian derivatives.

→ A finer computation of magnitude of the gradient and the tangent!

Definition of the Steerable Gaussian Filters (1)

Let us note the basic derivatives of Gaussian filters $\partial G_\sigma / \partial x$ and $\partial G_\sigma / \partial y$ along the x-axis and y-axis at position (x, y) in the image:

\[
\begin{align*}
\frac{\partial G_\sigma(x, y)}{\partial x} &= -\frac{x}{2\pi \sigma^4} \cdot e^{-\frac{x^2 + y^2}{2\sigma^2}}, \\
\frac{\partial G_\sigma(x, y)}{\partial y} &= -\frac{y}{2\pi \sigma^4} \cdot e^{-\frac{x^2 + y^2}{2\sigma^2}},
\end{align*}
\]

with σ the standard-deviation of the Gaussian filter.
Definition of the Steerable Gaussian Filters (2)

The first order directional Gaussian derivative $G_{\sigma, \theta}$ at an angle θ can be expressed as [5]:

$$G_{\sigma, \theta}(x, y, \sigma) = \cos(\theta) \cdot \frac{\partial G_{\sigma}}{\partial x}(x, y) + \sin(\theta) \cdot \frac{\partial G_{\sigma}}{\partial y}(x, y).$$ \hspace{1cm} (2)

→ Possible to build a filter kernel for a given angle θ
→ ... then to apply a convolution and to find the derivative for that angle.
Illustration (1): A Steerable Gaussian Kernel

A kernel with θ_m its kernel angle.
Illustration (2): Steerable Gaussian Kernels

- $\sigma = 0.7$, filter support size $= 3 \times 3$ pixels,
- Rotation step $= \Delta \theta = 10^\circ$,
- Rotation range $= \theta \in \{0^\circ, \ldots, 180^\circ - \Delta \theta\}$,
- Leads to 18 filters (Dresden and BOSSBase, PPM demosaicking, and cropping)
Definition of the Steerable Gaussian Filters (3)

Given σ and θ, an image derivative $I_{\sigma,\theta}$ is obtained by convolving the original gray-scale image I with the oriented Gaussian kernels $G_{\sigma,\theta}$:

$$I_{\sigma,\theta}(x,y) = (I \ast G_{\sigma,\theta})(x,y).$$ \hspace{1cm} (3)

The gradient magnitude $\|\nabla I(x,y)\|$ equals to the maximum absolute value response of $G_{\sigma,\theta}$ for the different angles:

$$\|\nabla I(x,y)\| = \max_{\theta \in [0,180]} (|I_{\sigma,\theta}(x,y)|),$$ \hspace{1cm} (4)

$$\theta_m = \arg\max_{\theta \in [0,180]} (|I_{\sigma,\theta}(x,y)|) .$$ \hspace{1cm} (5)

θ_m is the kernel angle.
An interesting complementary measure

A fact...

- The modifications due to embedding will preferentially occur along the curves of constant intensity.

→ Let us also consider the tangent vector
... that is to say the derivative value at angle \((\theta_m + 90^\circ) [180^\circ]\)
For a color image, each channel is considered separately.

A gradient magnitude per channel ($|R_{\sigma,\theta_m}|$ for the red, and so on...)

A tangent derivative per channel ($R_{\sigma,(\theta_m+90)[180^\circ]}(x,y)$...)

Then,

- quantize,
- truncate,
- compute triplets co-occurrence matrices for directions $\in \{\rightarrow, \leftarrow, \uparrow, \downarrow, \nearrow, \swarrow, \nwarrow, \searrow\}$,
- and apply a SPAM merging process.
Features: "Steerable Gaussian - Color Rich Model (SGRM)"

Our SGRM features are made of:

- 18 157 features from CRM [10],
- 2 808 features from gradient magnitude images ($T \in \{2, 3\}$),
- 1 598 features from tangent derivative images ($T \in \{1, 2, 3\}$ and for $T=3$ there is a fusion of matrices),

Feature vector dimension = 22 563.

Experimental Protocol

10,000 color images of size 512×512:

- 3,500 Nikon Raw Color images from Dresden Image Database,
- 1,000 Canon Raw color images from Break Our Steganographic System Database,
- Patterned Pixel Grouping (PPM) demosaicking,
- Randomly cropped images (the left-up pixel has a non interpolated Red value) of size 512×512.

Embedding algorithms:

- S-UNIWARD,
- WOW,
- Synch-HILL,

Payload sizes $\in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5\}$ Bit Per Channel,

Same proportion in each channel.
Performance Evaluation

We use the testing error under equal priors:

\[\bar{P}_E = \min_{P_{FA}} \frac{1}{2} [P_{FA} + P_{MD}(P_{FA})] , \]

with \(P_{FA} \) the false alarm probability, and \(P_{MD} \) the missed detection probability.

- 10 different splits with 10 000 pairs of covers/stegos for the learning and for the test,
- The Ensemble Classifier for learnings/tests,
- \(\bar{P}_E \) is the average testing error over 10 tests.
Results: S-UNIWARD

![Graph showing the probability of error P_E against relative payload (bpc) for different methods including CRM, CFARM, GCRM, and the proposed method.]
Results: WOW

![Graph showing the probability of error P_E vs. relative payload (bpc) for different methods: CRM, CFARM, GCRM, and Proposed method. The graph illustrates how the proposed method performs compared to the others.](image-url)
Results: Synch-HILL
Discussion

- A fine estimation of the gradient magnitude and the derivate for the tangent increases the detection of 2-3% compared to CRM.
- This is the most efficient approach among the modern approaches whose feature vector dimensions $\approx 20\,000$,
- The concatenation of GCRM and SGRM does not significantly improve the results ($<1\%$),
Conclusion

- Steerable Gaussian Filter for a precise estimation of gradients and tangents,
- The feature set is added to the CRM set,
- The best results for color steganalysis on a color database whose RAW images have been demosaicked with PPM.

- Some trivial additional tests (color or not) can be done,
- Open issues for color steganography:
 - embedding with a global optimized approach,
 - a MiPOD-like embedding?
 - synchronization of the selection channel (see [23] CMD-Color),
 - JPEG and color (color space, sampling, quantization,...)
- Open issues for color steganalysis:
 - How to better take into account the correlation between channels?,
 - What are the results with an Adaptive steganalysis (Selection-Channel-Aware steganalysis)?