MANHOLE COVER LOCALIZATION IN AERIAL IMAGES WITH A DEEP LEARNING APPROACH

CONTEXT MATERIALS AND METHODS
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RESULTS

Urban expansion leads to more buried wastewater net-
works, often poorly documented.

Very high reolution areal images may be used to identify
and pinpoint the aerial elements of these networks
Deep Learning, Convolutional Neural Network
Challenge: detect small objects i.e manhole covers
(80 cm); in low contrast settings and cluttered back-
grounds

Data:

2 RGB Images, 5cm /pixel:

- Training dataset: 605 manhole covers from Prades Le Lez

- Validation dataset: 101 manhole covers from Gigean

The thumbnails are 40*40 pixels size (Figure 2)

Classification into 2 categories: "Manhole covers" and "others"
Data augmentation with the Keras library [1]

Objective: An automatic recognition and localization method
for manhole covers.

Method:

Convolutionnal Neural Network
Customized Alexnet [2] (Figure 3)
Extract thumbnails from images using a sliding window:
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Boosting the network:
After application on Prades-Le-Lez:
Add all false positives to the other objects’ category and train
the network again. [3]

Figure 1: Extract of the 5cm resolution image used for validation. Cleaning the database:

Remove all the thumbnails that have a dominant feature that
is not related to manhole covers from training database.
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B, = Bounding box detected by the network
B, = Ground truth bounding box
True detection if ag > 50%
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Four networks tested:
1. Original Alexnet network
2. Fifth iteration boosted network
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3. Fifth iteration boosted network with cleaned database
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4. Customized network with cleaned database

The method is developed and applied on two towns located in the south of France: Gigean and Prades-Le-Lez.
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Figure 2: Example of thumbnails: up, manhole covers, down, others.
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Figure 4: Sample of the results obtained with the customized net-

l work and the cleaned database.
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256 (5x5), s=1, p=0 Re"U — Norm (3x3), s=1, p=0 Green square: correctly detected manhole covers
Red square: false detection
l Blue square: undetected manhole covers
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CONCLUSION AND PERSPECTIVES

An automated procedure was put forward to identify and
localize manhole covers using aerial RGB images.
Preliminary results: recall is higher than 50% for an average
precision of 60%.

[Manhole] [ Other ]

Figure 3: Customized AlexNet architecture

The results are assessed in terms of precision and recall: Perspectives:
TP TP e Combine a circular filter [5] and convolutionnal neural
Precision = TP + Fp’ Recall = TP + FN network to reduce false positives.

e Add a third category - inlet gates - to the classification
in order to optimize the learning phase and extract more
precise features.

TP = Number of correctly classitied manhole covers
FP = Number of thumbnails wrongly classified
FN = Number of undetected manhole covers




