Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch

Lionel PIBRE 2,3, Jérôme PASQUET 2,3, Dino IENCO 2,3, Marc CHAUMONT 1,2,3

(1) University of Nîmes, France
(2) University Montpellier, France
(3) CNRS, Montpellier, France

March 3, 2016

Media Watermarking, Security, and Forensics,
IS&T Int. Symp. on Electronic Imaging, SF, California, USA, 14-18 Feb. 2016.
The big promise of CNN...

Superlatives: lots of enthusiasm, fresh ideas, amazing results,...

<table>
<thead>
<tr>
<th></th>
<th>RM+EC</th>
<th>CNN</th>
<th>FNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>24.93%</td>
<td>7.94%</td>
<td>8.92%</td>
</tr>
<tr>
<td>Min</td>
<td>24.21%</td>
<td>7.01%</td>
<td>8.44%</td>
</tr>
<tr>
<td>Variance</td>
<td>0.14</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>Average</td>
<td>24.67%</td>
<td>7.4%</td>
<td>8.66%</td>
</tr>
</tbody>
</table>

Table: Steganalysis results (P_E) with S-UNIWARD, 0.4 bpp, clairvoyant scenario, for RM+EC, CNN, and FNN

But ... experimental setup was artificial...
An example of Convolution Neural Network

Figure: Qian et al. Convolutional Neural Network.

- Inspired from Krizhevsky et al. 2012 Network,
- Detection percentage only 3% to 4% lower than EC + RM.

Convolution Neural Network: Preliminary filter

\[F^{(0)} = \frac{1}{12} \begin{pmatrix} -1 & 2 & -2 & 2 & -1 \\ 2 & -6 & 8 & -6 & 2 \\ -2 & 8 & -12 & 8 & -2 \\ 2 & -6 & 8 & -6 & 2 \\ -1 & 2 & -2 & 2 & -1 \end{pmatrix} \]

CNNs converge much slower without this preliminary high-pass filtering.
Convolution Neural Network: Layers

Figure: Qian et al. Convolutional Neural Network.

Inside one layer; successive steps:

- a convolution step,
- the application of an activation function,
- a pooling step,
- a normalization step.
Convolutional Neural Network: Convolutions

Figure: Qian et al. Convolutional Neural Network.

- **First layer:**
 \[\tilde{I}^{(1)}_k = I^{(0)} \ast F^{(1)}_k. \] (1)

- **Other layers:**
 \[\tilde{I}^{(l)}_k = \sum_{i=1}^{i=K^{(l-1)}} I^{(l-1)}_i \ast F^{(l)}_{k,i}, \] (2)
Convolution Neural Network: Activation

Figure: Qian et al. Convolutional Neural Network.

Possible activation functions:

- absolute function \(f(x) = |x| \),
- sine function \(f(x) = \sinus(x) \),
- Gaussian function as in the Qian et al. network \(f(x) = \frac{e^{-x^2}}{\sigma^2} \),
- ReLU (for Rectified Linear Units): \(f(x) = \max(0, x) \) as in our work,
- Hyperbolic tangent: \(f(x) = \tanh(x) \)
Convolution Neural Network: Pooling

Pooling is a local operation computed on a neighborhood:
- local average (preserve the signal),
- or local maximum (translation invariance).

+ a sub-sampling operation.

For our "artificial" experiments, the pooling was not necessary.

Figure: Qian et al. Convolutional Neural Network.
Case where normalization is done across the maps:

$$\text{norm}(I_k^{(1)}(x, y)) = \frac{I_k^{(1)}(x, y)}{\left(1 + \frac{\alpha}{\text{size}} \sum_{k'=\max(0, k-\lfloor \text{size}/2 \rfloor)}^{\min(K, k-\lfloor \text{size}/2 \rfloor) + \text{size}} (I_{k'}^{(1)}(x, y))^2 \right)^{\beta}}$$
Convolution Neural Network: Fully Connected Network

Figure: Qian et al. Convolutional Neural Network.

- three layers.
- a softmax function normalizes values between \([0, 1]\).
- the network delivers a value for cover (resp. for stego).
Our CNN

Figure: Qian et al. Convolutional Neural Network.

Figure: Our Convolutional Neural Network.
The story of that paper...

2015

- Qian et al. EI’2015

2016

- Draft available on Internet
- Final proceeding Manuscript
- Onsite Final Manuscript

Experimental period
Outline

1. CNN
2. Story
3. Experiences
4. Conclusion
Experiences

- 40 000 images of size 256×256 from BOSSBase,
- S-UNIWARD at 0.4 bits per pixels,
- Same embedding key and use of the simulator,
- learning on 60 000 images,

Why using the same key ?

We did not want to do that...

- Documentation error in the C++ S-UNIWARD software,
- Qian et al. 2015 have also misled.

\Rightarrow We discovered this key problem the 23th of December 2015...
Probabilities for modifying a pixel x_i with $i \in \{1...n\}$ are:

- $p_i^{(-)} = \frac{\exp(-\lambda \rho_i^{(-)})}{Z}$, for a -1 modification,
- $p_i^{(0)} = \frac{\exp(-\lambda \rho_i^{(0)})}{Z}$, for no modification,
- $p_i^{(+)} = \frac{\exp(-\lambda \rho_i^{(+)})}{Z}$, for a $+1$ modification,

where

- $\{\rho_i^{(-)}\}$, $\{\rho_i^{(0)}\}$, and $\{\rho_i^{(+)}\}$ are the changing costs,
- λ is obtained in order to respect the payload constraint,
- $Z = \exp(-\lambda \rho_i^{(-)}) + \exp(-\lambda \rho_i^{(0)}) + \exp(-\lambda \rho_i^{(+)}).$
Using the same key...

\[
\begin{align*}
 p_i^{(-)} &= \frac{\exp(-\lambda \rho_i^{(-)})}{Z}, \\
 p_i^{(0)} &= \frac{\exp(-\lambda \rho_i^{(0)})}{Z}, \text{ and } \\
 p_i^{(+)} &= \frac{\exp(-\lambda \rho_i^{(+)})}{Z}.
\end{align*}
\]

What happen when using the same key...

- The embedding key initialize the Pseudo-Random-Number-Sequence Generator,
- Whatever the image, the Pseudo Random Number Sequence \(\in [0, 1]^n \) is the same,
- The sequence is used to sample the distribution (see probabilities),
- Whatever the image, some position \(i \) will be most of the time always modified, and always with the same "polarity" (-1 or +1)...

This situation is artificial !!!
Illustration on the cropped BOSSBase database.

Figure: Probability of change. In white the most probable sites and in black the less probable ones.
Our best CNN in that ”artificial scenario”

- 40 000 images of size 256×256 from BOSSBase,
- S-UNIWARD at 0.4 bits,
- Same embedding key and use of the simulator,
- learning on 60 000 images,

<table>
<thead>
<tr>
<th></th>
<th>RM+EC</th>
<th>CNN</th>
<th>FNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>24.93%</td>
<td>7.94%</td>
<td>8.92%</td>
</tr>
<tr>
<td>Min</td>
<td>24.21%</td>
<td>7.01%</td>
<td>8.44%</td>
</tr>
<tr>
<td>Variance</td>
<td>0.14</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>Average</td>
<td>24.67%</td>
<td>7.4%</td>
<td>8.66%</td>
</tr>
</tbody>
</table>

Table: Steganalysis results (P_E) with S-UNIWARD, 0.4 bpp, clairvoyant scenario, for RM+EC, CNN, and FNN

But ... experimental setup was artificial...

Note that with different embedding keys, the same CNN structure in 2 layers, and with more neurons, the probability of error is 38.1%... There is still hope!
Conclusion on that story

- Be careful to the software’s implementations!
- Be careful to use different keys for embedding!
- Be careful: the simulator only does a simulation (different from STC),
- Rich Models are under-efficient to detect the spatial phenomenons,

You will also find in the paper:

- Explanation/discussion on CNN, behavior of a CNN,
- A discussion on embedding keys,
- The presentation of the LIRMMBase.
End of talk

CNN is not dead...
... there is still things to do...
About LIRMMBase

"LIRMMBase: A database built from a mix of Columbia, Dresden, Photex, and Raise databases, and whose images do not come from the same cameras as the BOSSBase database. ",
L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont,
LIRMM Laboratory, Montpellier, France, June 2015,
Website: www.lirmm.fr/ chaumont/LIRMMBase.html.