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Abstract
Today, with the higher computing power of CPUs and GPUs,

many different neural network architectures have been proposed
for object detection in images. However, these networks are often
not optimized to process color information. In this paper, we pro-
pose a new method based on an SVM network, that efficiently ex-
tracts this color information. We describe different network archi-
tectures and compare them with several color models (CIELAB,
HSV, RGB...).

The results obtained on real data show that our network is
more efficient and robust than a single SVM network, with an av-
erage precision gain ranging from 1.5% to 6% with respect to the
complexity of the test image database. We have optimized the net-
work architecture in order to gain information from color data,
thus increasing the average precision by up to 10%.

Introduction
Object detection in aerial images is a complex task which is

usually dealt with by a machine learning approach where classifi-
cation is based on a single or cascade of SVM [1, 2]. However, it
is hard to concatenate different features in a single vector without
any normalization problem [3].

A way to overcome this difficulty is to distribute the different
features in different inputs of a neural network and to use a clas-
sifier as output node. Many network architectures have recently
been proposed to create deep convolutional neural networks [4, 5].
However, this kind of approach usually requires millions of pa-
rameters and thus a huge database to determine them. To solve
this problem, we can replace each neuron of the network by a
linear SVM which is known to converge faster [6]. Similar to a
neuronal network, each SVM uses an activation function.

Currently most image databases are in color. But, surpris-
ingly, most object detection algorithms use only a single color
channel, which can be obtained by different methods [8], and then
the resulting gray-level image is processing by the network. Color
information from the image is then only very partially used.

In this paper, we first show experimentally that using all the
color information may lead to a significant improvement in accu-

racy1. Then we discuss how to choose the network architecture
in order to use color information in an optimal way. For this, we
give an overview of our SVM network system and describe the
experimental database in section 2. In section 3, we analyze the
performance by using entire color information and studying the
influence of the color space. In section 4, we describe several ar-
chitectures for our network and then find and analyze the optimal
one. Finally, we conclude and present future work.

SVM network and data
Our SVM network

Our object detection procedure classifies images based on
the Histogram of Oriented Gradients descriptor [9]. First we nor-
malize the bounding box of each object image of the training
database to an image of constant size, as in [2]. Then we extract
the HOG features in a sliding window on the normalized image
of the object. Thus, for an object, we obtain a vector composed
of many HOG features. To get a multi-resolution descriptor, we
repeat the extraction step with different sizes of sliding windows,
as in [10].

The classical method [2, 10] is to build a single large vec-
tor by concatenating vectors corresponding to the different sizes
of sliding windows and then use a SVM classifier. But, in our
case, we decided to use the different vectors as inputs of an SVM
network [11]. To get better multi-resolution robustness, each in-
put neuron learns on a single size. In addition, to introduce some
invariance in our SVM network, we also create a set of input neu-
rons which are randomly connected to part of the vector HOG in
different resolutions [12].

Then a hiddin layer is randomly connected to input neurons
to get a better high-level abstraction. To break the linearity an
asymmetric sigmoid function (see equation 1) is apply as an acti-
vation function after each SVM.

f (x) =
1

(1+ e−αx+λ )
(1)

Where α and λ are two parameters computed with a validation
database according to [7].

1We thank L. Deruelle and F. Bibonne (Berger Levrault, Labège,
France) for providing access to image data and for fruitful discussions.



The output neuron is fully-connected to the last hidden layer.
During the classification step, this neuron will return the probabil-
ity for the input window to contain a target object.

Our experimental database
We are interested in the detection of urban objects in high-

definition aerial images. More specifically, we focus on detect-
ing man-hole covers [13] and tombs [14] for geo-localization pur-
poses. In particular, tomb detection appears to be a very challeng-
ing problem as tombs vary substantially in appearance, color and
size in aerial images. Moreover, vegetation, shadows created by
the numerous buildings, people walking or utility vehicles may
create many distortions and occlusions in the images. We thus
selected this application for our tests.

For the training database, we used 19 industrial aerial images
of cemeteries with a resolution of 2.5 cm/pixel, which contained
about 4,500 tombs. For the validation database, we used 3 images
containing about 750 tombs. To evaluate our algorithms, we used
2 cemetery images (about 700 tombs) and manually delineated the
rectangular bounding boxes of tombs which are then considered
as ground truth.

During the learning and test step, we use the High Perfor-
mance Computing resources of HPC-LR2 in order to have a rea-
sonable computational time.

During the evaluation step, detection results are given as a
list of rectangular bounding boxes. To be considered as a correct
detection, the area of overlap, noted A (see equation 2), between
the detected boxes Bd and the ground truth Bg must exceed 58%.

A =
Area(Bd ∩Bg)

Area(Bd ∪Bg)
(2)

Using all the color information
How to integrate information in the network?

Color information is defined in a color space S and is given
as a set of S channels c (in general S=3). For example, c ∈ S =
{R,G,B} for the RGB color space. In the following, f c

r denotes
the HOG vector computed for a given window for channel c at
a resolution of r ∈ {0,1, ...,N}, with N being the number of ex-
tracted windows of different sizes. Let pc

r denotes the output of a
neuron which takes vector f c

r as input.
The simplest idea consists of directly sending the f c

r vectors
inside the network. This means that each channel is processed
separately and the number of input neurons is N times c. The hid-
den layer allows the network to combine the different channels
and manage the color information. For this purpose, we need to
increase the number of hidden neurons and thus the overall com-
plexity. Figure 1 shows this kind of architecture. We will call this
architecture the separate architecture in the case of a color space
with S = 2 channels

Choice of color space
We test the separate configuration network through five stan-

dard color spaces. The RGB space is the addition of three fun-
damental colors, i.e. red, green and blue to form all the col-
ors. The luminance is a definition of the intensity level (S = 1),

2HPC@LR: High Performance Computing from Languedoc-
Roussillon, https://www.hpc-lr.univ-montp2.fr

Figure 1. The separate architecture.

Y = 0.21R+ 0.71G+ 0.07B according to [15]. CIE − LAB and
CIE − LUV are two color spaces based on human perception.
These models give optimal results in some image processing ap-
plications as in [16]. The HSV (Hue, Saturation and Value) color
space is a cylindrical coordinate representation of the RGB model.
It is very effective for image segmentation, as shown in [17].

Optimal Parameters for SVM Network
The best number of hidden SVN neurons and random neu-

rons in the SVM network is an important parameter. If the num-
ber of random neuron is large enough the precision converges to a
constant asymptote[12]. We thus took 400 random neurons in all
the experiments. In Figure 2 we use a validation database which
allows us to determine the number of hidden neurons. As ex-
pected, this number is directly linked to the size of first layer (in-
put neurons) and thus to the color space used. The best number of
hidden neurons is 300 and 600 for a color space of size S = 1 and
S = 3 respectively.

Figure 2. Average of the precision compute with the validation database for

a recall between 45% and 80% as function of the number of hidden

Experimental results
First, we compare our network based on the separate archi-

tecture with the classical approach where we use an unique SVM
which receives an input vector composed of concatenations of f c

r .
In Figure 3, the experiments show that for any color space,

the SVM network outperforms a single SVM. We even obtain a



Figure 3. Comparison of the performance of our SVM network and a single

SVM approach. For each experiment we present 4 results in blue, orange,

yellow and green bars which respectively correspond to a recall value of 20%,

40%, 60% and 80%.

small average gain in precision of about 1.5% if we only use the
lightness L. In fact, if we look at all the results for the single SVM,
we can see that using a 3-channel space such as RGB or Lab does
not increase the precision compared to the 1-channel space. This
shows that a single SVM does not efficiently process the full color
information.

In the case of SVM networks, we can see that the L channel
gives slightly better results than the Y channel, but the coefficients
used to compute the luminance are maybe not optimal for our
image application. However, unlike the single SVM, there is a
clear advantage to using all color information. Indeed, the average
precision increases from 69.5% for the L channel to 71.1% for the
RGB space. In a similar way, the HSV space gives interesting
good results, and it is very efficient for a recall value of over 80%,
with precision increased by threefold compared to the L channel.
Color spaces based on human perception like Lab, Luv decrease
the average precision by 5%.

In this section, we show that our SVM network is slightly
better than a single SVM when we use only one channel. It be-
comes much more efficient when we use all the color information,
with an average precision increase of about 3%. Note that if we
select a sub-part of the test database where the objects to detect
are considered complex, i.e. when the tombs are randomly ori-
ented or very close to each other, the SVM network appears to be
much more robust than the single SVM, with a marked increment
in precision of about 6%, as we can see in Figure 4.

Nevertheless, the overall performance gain of the SVM net-
work remains quite low (about 1.5%). In the next section, we
present other network architectures which improve efficiency.

A Network Architecture to Optimize Color In-
formation Processing

As shown in the previous section, information from the RGB
and HSV model increases the performance. Nevertheless, com-
pared to the results obtained with one grey level (L or Y ), results

with color are closed. The separate architecture is probably not
well enough designed to integrate the color information. This can
be explained because the separate architecture does not directly
create relationships between neurons with the same resolution. In
this section, to deal with this problem we introduce and test five
other architectures to process 3-channel color information.

Figure 4. Comparison of the performance of our SVM network and a single

SVM approach, using only the L channel, for the most complex test database.

The Fusion architecture
In this approach, we propose to concatenate the different f c

r
for a number of windows N and with the entire c value of the
channel space S.

The advantage of this method is that each input neuron si-
multaneously treats the entire color space, so during the learning
step input neurons will be able to adapt to the database. More-
over, the number of input neurons does not increase, so we do not
increase the size of the hidden layer and the computational time.
We call this the fusion architecture.

The Maximum and Product architecture
This method was inspired by the following paper [18]. In-

deed, using the orientation and magnitude of the gradient image,
we do not want to focus on the low variations. Moreover, we pro-
pose to only select signals with the highest variation. The first step
requires building the input neurons as in the separate architecture.
The second step is to connect all input neurons with the same res-
olution r to a specific max neuron. We define a max neuron as
a neuron which relays the highest signal without any activation
function (see equation 3).

pmax
r = max

c∈S
pc

r (3)

The second layer contains all the max neurons and it also has
two advantages. Firstly, it selects only the highest channel inten-
sity independently of r and secondly, only the max neuron outputs
are used by the hidden layer. Schema 5 is an example of this ar-
chitecture with S = 2. We call this the maximum architecture.

Similarly, we can define the product architecture where each
max neuron is replace by a product neuron. By contrast with max
neurons, the product neurons perform a linear quantification as
defined in equation 4. This transformation is effective because the
product neurons returns different scores if few intensity channels



Figure 5. The maximum (and product by replacing pmax by pprod ) architec-

ture.

have stray variations. We call this the product architecture.

ppro
r = ∏

c∈S
pc

r (4)

The PCA architecture

Figure 6. The PCA architecture

To choose the best color subset, the PCA is one classic al-
ternative [8]. We assume that the best color subset is not always
the same for each feature resolution. We thus have to fit a PCA
projection noted pcar for each resolution r, Schema 6.

Like the maximum architecture, this architecture has two de-
sign steps. The first one consists in the building input neurons
similarly to the separate architecture. The second step consists to
connect all input neurons with the same resolution r to a specific
PCA neuron. We then calculate the eigenvalues after the learning
of the input neurons. Each PCA neuron returns only the first prin-
cipal component which is a simple scalar product. To break the
linearity, we add an asymmetric sigmoid activation function as for
SVM neuron. This architecture is called PCA architecture.

The Stack architecture
In the fusion architecture, each input neuron treats all vectors

from S. More generally, we may want to use a set of feature
vectors which do not belong to the same space as for example
SURF and HOG vectors. This requires first to scale each feature
in order than the network can process all of them in a consistent
way.

For this, the fusion architecture is refined by integrating a
sub-layer which takes the features f c

r as separate inputs and com-

putes pc
r . These values allow to compute a new feature vector

f weight
r which is a weighted combination of f c

r for a given resolu-
tion r by:

f weight
r1

= pc1
r1

f c1
r1
, pc2

r1
f c2
r1
, ..., pcS

r1
f cS
r1

(5)

The low level input vectors will be used for the higher neu-
rons [19] with a rescaling in this new architecture called stack
architecture, as in Figure 7.

Figure 7. The stack architecture.

Experimental Results
In Figure 8, the maximum architecture does not enhance the

results. Indeed, in natural images the intensity in the three chan-
nel RGB often fluctuates at the same time. The addition of color
information is then weak compared to luminance. However, the
product architecture is more sensitive to any fluctuations in dif-
ferent color components and thus has about 7% better precision
for a recall range of 55% to 82%. In the same idea, the precision
of the PCA architecture is similar or less than the precision of the
product architecture.

The fusion architecture also increases the performance for
a recall range of 50% to 82%. But this architecture can only be
effective for features of the same type, unlike other proposed ar-
chitectures.

The stack architecture increases the precision by up to 10%
compared to the separate architecture. In fact, this architecture
combines all advantages : it has a minimal number of hidden neu-
rons like the maximum architecture and all of the information
from channels is kept like the separate architecture. Moreover,
there is no requirement to give an explicit formula to transform
the different channels to only one as in the maximum or product
architecture. In addition, the stack architecture can be used to
combine descriptors from different feature spaces.

However, the disadvantage of this method lies in the compu-
tational cost during the learning step and during the testing step.
To deal with the calculation time during the evaluation step the
activation path could be used which reduced the requiring time by
80% [12].

Conlusion and Future Work
In this paper, we first compare a single SVM-based approach

to an SVM network approach. We show that an SVM network



Figure 8. Results obtained with the RGB model and different architec-

tures are represented with a ROC curve (precision as a function of the recall)

where the probability of being a tomb varies.

outperforms the single SVM by an average precision gain rang-
ing from 1.5% to 6%. In addition, we notice that using the three
color components does not significantly increase the single SVM
results. On the contrary, we can see that an SVM network is able
to extract more information from the different color components
and thus increases the final performance.

We then introduce different network architectures in order to
effectively combine the features of each color component. The
best proposed takes into account all the different features and nor-
malizes them using a smart weight. We show that the so-called
stack architecture outperforms other architectures by an average
gain in precision ranging from 4% to 10%.

Future works will deal with the addition of features such as
color components, SURF, SIFT or pixel intensity where the stack
architecture could be used. But more tests are required to validate
the real effectiveness of this design.

Another extension of our work would be to extend the stack
architecture to a deep neural network. Thus the weighted combi-
nation of f c

r will be learned by back propagation.
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