Nonlinear disturbance observer design for robotic manipulators

A. Mohammadi a,*, M. Tavakoli b,**, H.J. Marquez b, F. Hashemzadeh b

a Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
b Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4

ARTICLE INFO

Article history:
Received 12 August 2011
Accepted 27 October 2012
Available online 20 November 2012

Keywords:
Nonlinear disturbance observer (NLDO)
Robotic manipulator
Disturbance rejection
Position control
Force control
Linear matrix inequality (LMI)

ABSTRACT

Robotic manipulators are highly nonlinear and coupled systems that are subject to different types of disturbances such as joint frictions, unknown payloads, varying contact points, and unmodeled dynamics. These disturbances, when unaccounted for, adversely affect the performance of the manipulator. Employing a disturbance observer is a common method to reject such disturbances. In addition to disturbance rejection, disturbance observers can be used in force control applications. Recently, research has been done regarding the design of nonlinear disturbance observers (NLDOs) for robotic manipulators. In spite of good results in terms of disturbance tracking, the previously designed nonlinear disturbance observers can merely be used for planar serial manipulators with revolute joints [Chen, W. H., Ballance, D. J., Gawthrop, P. J., & O'Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47 (August (4)), 932–938; Nikoobin, A., Haghighi, R. (2009). Lyapunov-based nonlinear disturbance observer for serial n-link manipulators. Journal of Intelligent & Robotic Systems, 55 (July (2–3)), 135–153]. In this paper, a general systematic approach is proposed to solve the disturbance observer design problem for robotic manipulators without restrictions on the number of degrees-of-freedom (DOFs), the types of joints, or the manipulator configuration. Moreover, this design method does not need the exact dynamic model of the serial robotic manipulator. This method also unifies the previously proposed linear and nonlinear disturbance observers in a general framework. Simulations are presented for a 4-DOF SCARA manipulator to show the effectiveness of the proposed disturbance observer design method. Experimental results using a PHANToM Omni haptic device further illustrate the effectiveness of the design method.

1. Introduction

Robotic manipulators are subject to different types of disturbances that adversely affect their performance such as positioning accuracy and repeatability; it is, therefore, imperative to employ some form of disturbance suppression or attenuation in order to achieve the desired performance. Adaptive control [Danesh, Sheikholeslam, & Keshmiri, 2005; Kim, Seok, Noh, & Won, 2008], active Kalman filtering [Cortesao, 2007; Ji & Sul, 1995], H∞ control [Khelfi & Abdessameud, 2007; Sato & Tsuruta, 2006], predictive control [Bauchspies, Alfaro, & Dobrzanski, 2001; Cassemeiro, Rosario, & Dumur, 2005] and sliding mode control [Corradini et al., 2012; Parlakci, Jafarov, & Istephanopulos, 2004; Pi & Wang, 2011], are among the disturbance rejection techniques proposed in the literature for robotic applications.

An alternative to these techniques that has emerged in recent years is the use of the so-called “disturbance observers” [Ohnishi, Shibata, & Murakami, 1996]. Fig. 1 shows the block diagram of a typical disturbance observer that is used in a robotic application. Roughly speaking, the idea behind the disturbance observer is to lump all the internal and external unknown torques/forces acting on the manipulator into a single disturbance term and then estimate this unknown term using the disturbance observer. The output of the disturbance observer can be used in feedforward compensation of disturbances. Because of the feedforward nature of this compensation, disturbance observers can provide fast, excellent tracking performance and smooth control actions without the use of large feedback gains [Liu & Peng, 1997]. For instance, a disturbance observer might be used in independent joint control where joint couplings, load variations and dynamic uncertainties are collectively treated as the lumped disturbance term [Choi & Kwak, 2003; Eom, Suh, & Chung, 1997; Hu & Muller, 1996; Komada, Miyakami, Ishida, & Hori, 1996; Park & Lee, 2007; Zhongyi, Fuchun, & Jing, 2008]. Efficient suppression of these disturbances decouples the dynamics of the joints and allows simple controllers to be designed for each DOF. Another application of disturbance observers is in improving manipulator tracking performance through friction estimation.
Disturbance observers have recently been used in time-delayed bilateral teleoperation in order to improve the transparency of telerobotic systems (Natori, Tsuji, & Ohnishi, 2006; Natori, Kubo, & Ohnishi, 2007; (Natori, Tsuji, Ohnishi, Hace, & Jezernek, 2010). In time-delayed teleoperation, the delayed position/force signals are received from the communication channel in the master and the slave sides. The time-delayed position/force signals are then added to the output of the disturbance observer in order to provide the master and the slave robots with estimation of the undelayed versions of the position/force signals and thus improve the teleoperation system transparency (Natori et al., 2010). In Mohammadi, Tavakoli, and Marquez (2011), the authors implemented a pair of nonlinear disturbance observers in a 4-channel bilateral teleoperation architecture to achieve full transparency in the absence of communication time delays in both free and constrained motions. In that work, however, the availability of joint acceleration measurements, which is necessary for achieving full transparency, simplified design of disturbance observers.

Besides disturbance rejection, disturbance observers have found applications in other robotic contexts. In many robotic applications, the robot end-effector comes in contact with a compliant surface and a force control scheme is needed to guarantee good system performance. Therefore, a force sensor is needed to measure these contact forces. Disturbance observers can be employed in these applications when there is no sensor available for measuring torques and forces. For instance, disturbance observers have been employed successfully in sensorless force control (Eom, Suh, Chung, & Oh, 1998; Katsura, Matsumoto, & Ohnishi, 2003; Lee, Chan, & Mital, 1993; Shimada, Ohishi, Kumagai, & Miyazaki, 2010). Another potential application of disturbance observers can be in micro/nano manipulation tasks, e.g., microinjection to introduce foreign materials into biological cells (Tan, Sun, Huang, & Chen, 2008), where there is a lack of small enough force sensors with good precision and signal to noise ratio (Rakotondrabe, Clevy, Rabenosaoo, & Neir, 2010).

Recently, a new system has been developed to teach motion to robots in order to improve their dexterity (Katsura, Matsumoto, & Ohnishi, 2010). The so-called shadow robot system consists of two identical robots. The robots are controlled by bilateral acceleration control schemes based on a disturbance observer. One robot is guided by a human operator in teaching motion mode and the other robot is unconstrained and imitates the motion of the constrained robot with the same position, velocity and acceleration. It is desired that the human operator's pure force is extracted from the constrained robot. In order to find the operator's force, a disturbance observer is employed to estimate the disturbance forces such as friction and gravity in the unconstrained robot. The disturbance forces acting on the constrained and the unconstrained robots are the same. The human operator's force is then estimated by subtracting the disturbance forces acting on the unconstrained robot from the total force in the constrained robot. As a result, the shadow robot system observes the human force in the presence of gravity and friction without a need for force sensors. Lastly, industrial robots employ fault detection systems in order to determine if a fault, such as a collision or an abrupt increase in reaction forces, has occurred in the system. Disturbance observers have been used for fault detection in a number of robotic applications (Chan, 1995; Ohishi & Ohde, 1994; Sneider & Frank, 1996). Table 1 summarizes the most important applications of disturbance observers in robotics.

A considerable part of the existing literature on disturbance observer design for robotic applications uses linearized models or linear system techniques (Bickel & Tomizuka, 1995; Kim & Chung, 2003; Komada, Machii, & Hori, 2000; Liu & Peng, 2000). In order to overcome the linear disturbance observer limitations for the highly nonlinear and coupled dynamics of robotic manipulators, Chen, Ballance, Gawthrop, and O’Reilly (2000) proposed a general nonlinear disturbance observer structure for nonlinear robotic manipulators. Using Chen et al. NDOB, the observer design

Table 1: Disturbance observer applications in robotics.

Friction estimation and compensation	Bona and Indri (2005), Sawut et al. (2001), and Mohammadi, Marquez et al. (2011)	
Force/torque estimation	Sensorless force control	Shimada et al. (2010), Katsura et al. (2003), Eom et al. (1998), and Lee et al. (1993)
Shadow robot system	Fault detection	Katsura et al. (2010)

Fig. 1. Block diagram of a typical disturbance observer in a robotic application.

| Disturbance observer applications in robotics. |

| Force/torque estimation | Sensorless force control | Shimada et al. (2010), Katsura et al. (2003), Eom et al. (1998), and Lee et al. (1993) |
| Shadow robot system | Fault detection | Katsura et al. (2010) |

and compensation (Bona & Indri, 2005; Sawut, Umeda, Park, Hanamoto, & Tsuji, 2001). In Mohammadi, Marquez, and Tavakoli (2011), the authors proposed a nonlinear disturbance observer-based control law that guaranteed asymptotic trajectory and disturbance tracking in the presence of slow-varying disturbances.

One important aspect of disturbance observer-based friction compensation schemes is in that they are not based on any particular friction models (Bona & Indri, 2005). Disturbance observers have recently been used in time-delayed bilateral teleoperation in order to improve the transparency of telerobotic systems (Natori, Tsuji, & Ohnishi, 2006), (Natori, Kubo, & Ohnishi, 2007), (Natori, Tsuji, Ohnishi, Hace, & Jezernek, 2010). In time-delayed teleoperation, the delayed position/force signals are then added to the output of the disturbance observer in order to provide the master and the slave robots with estimation of the undelayed versions of the position/force signals and thus improve the teleoperation system transparency (Natori et al., 2010). In Mohammadi, Tavakoli, and Marquez (2011), the authors implemented a pair of nonlinear disturbance observers in a 4-channel bilateral teleoperation architecture to achieve full transparency in the absence of communication time delays in both free and constrained motions. In that work, however, the availability of joint acceleration measurements, which is necessary for achieving full transparency, simplified design of disturbance observers.
problem reduces to finding an observer gain matrix such that disturbance tracking is achieved. However, Chen et al. could find such a gain matrix for a 2-link planar manipulator with revolute joints. Later, Nikoobin et al. generalized Chen's solution to n-link planar manipulators with revolute joints by exploiting the explicit relation for this particular class of robots (Nikoobin & Haghighi, 2009). In addition to limitations on manipulator configuration, their design could not guarantee exponential disturbance tracking and merely proved asymptotic disturbance tracking. Both Chen et al. (2000) and Nikoobin and Haghighi (2009) used explicit formulae for the inertia matrices of a particular class of manipulators to solve the disturbance observer design problem. Although these disturbance observers show promising results in disturbance estimation, their design is limited to planar, serial manipulators with revolute joints. Industrial robots including 6-DOF articulated robotic arms such as EPSON C3 and PUMA 560 are, however, nonplanar. Moreover, some of the industrial arms such as SCARA manipulators have prismatic joints in addition to revolute joints. This serves as the motivation to look for a general design method.

In this paper, the objective is to solve the NDOB design problem, proposed by Chen et al., for the class of all serial manipulators. The design method removes the existing restrictions on the number of DOFs, joint types, or manipulator configuration by invoking general dynamic properties common in all serial manipulators. Moreover, the design method does not require knowing the full dynamics of the robot. A novel inequality will be derived that can be used to design nonlinear disturbance observers for all serial robotic manipulators. The disturbance observer design problem will be formulated as a linear matrix inequality (LMI), which can be readily solved using LMI software packages such as the MATLAB LMI Control Toolbox (Gahinet, Nemirovsky, & Laub, 1995). In addition to the LMI formulation, an analytical solution to the design problem will be presented.

The organization of this paper is as follows. Section 2 introduces the nonlinear disturbance observer structure and its modified version, which does not need joint acceleration measurements. Section 3 solves the design problem for nonlinear disturbance observers and gives sufficient conditions for global asymptotic and exponential disturbance tracking for the case of slow-varying disturbances, and global uniform ultimate boundedness of the disturbance tracking error for the case of fast-varying disturbances. The observer design problem will also be formulated as a linear matrix inequality. In Section 4, important issues that should be considered in the design of disturbance observers are addressed. This section concludes with an analytical solution to the observer design problem. Section 5 shows the effectiveness of the proposed design method by performing simulations on a SCARA manipulator, a 4-DOF industrial arm, where the designed nonlinear disturbance observer is used to estimate and compensate for the joint friction and external end-effector payloads. Experiments are carried out using a PHANTOM Omni haptic device in Section 6 to show the effectiveness of the designed observer in terms of improving position tracking via a computed-torque control scheme. Both in the simulations and the experiments, we have compared the performance of the proposed approach with some other well-known techniques available in the literature. Lastly, Section 7 includes the concluding remarks.

2. Nonlinear disturbance observer structure

In this section, the dynamic model of serial robotic manipulators and their properties are introduced. Next, a basic disturbance observer that needs acceleration measurements will be introduced. Then, the disturbance observer will be modified in a way that acceleration measurement is no longer needed.

2.1. Dynamic model of serial robotic manipulators

The following equation gives the dynamics of an n-DOF rigid serial manipulator (Spong, Hutchinson, & Vidyasa r, 2005):

\[M(q)\ddot{q} + N(q,\dot{q}) + F(q) = \tau + \tau_{ext}, \]

\[\text{(1)} \]

where

\[N(q,\dot{q}) = C(q,\dot{q})q + G(q), \]

\[\text{(2)} \]

and \(\dot{q} \in R^{n-1} \) is the vector of joint positions, \(M(q) \in R^{n \times n} \) is the inertia matrix, \(F(q) \) is the vector of joint friction torques, \(C(q,\dot{q})q \in R^{n-1} \) is the vector of Coriolis and centrifugal forces, \(G(q) \in R^{n \times 1} \) is the gravity vector, \(\tau \in R^{n-1} \) is the vector of the control torques applied to the joints, and \(\tau_{ext} \in R^{n-1} \) is the vector of the external disturbances exerted to the joints.

It is assumed that the manipulator velocity vector lies in a bounded set, i.e.,

\[q \in D_q = \{ q \in R^n : \| q \| \leq |q|_{max} \}. \]

\[\text{(3)} \]

The set in which the robot joint variables vary (i.e., the robot workspace) is denoted by \(D_q \). It is assumed that \(D_q \) is a bounded set. This assumption ensures that the manipulator’s prismatic joints do not extend to infinity, which is true in all physical manipulators.

Serial robotic manipulators have several inherent dynamic properties, which will be used when designing the disturbance observer later in this paper. These properties are listed below.

Property 1. The inertia matrix \(M(q) \) is symmetric and positive definite and its norm\(^1\) is bounded (Spong et al., 2005):

\[M(q) = M(q) > 0, \]

\[\text{(4)} \]

\[q \in D_q, \quad v_1(q) \leq \| M(q) \| \leq v_2(q), \]

\[\text{(5)} \]

where \(v_1(q) \) and \(v_2(q) \) are scalar functions of the joint position vector \(q \). Defining \(v_1 = \inf_{q} d_{q_1} |D(q)| \) and \(v_2 = \sup_{q} d_{q_2} |D(q)| \), it can be seen that

\[v_1 \leq \| M(q) \| \leq v_2, \quad \forall q \in D_q. \]

\[\text{(6)} \]

Property 2. The matrix \(M(q) = 2C(q,q) \) is skew-symmetric (Spong et al., 2005); namely,

\[[M(q) - 2C(q,q)]^T = -[M(q) - 2C(q,q)], \]

\[\text{(7)} \]

Property 3. The Coriolis/centrifugal matrix \(C(q,q) \) has an upper bounded induced 2-norm (Mulero-Martinez, 2007):

\[q \in D_q, \quad \| C(q,q) \| \leq C_{b}(q) \| q \|^2, \]

\[\text{(8)} \]

where \(C_{b}(q) \) is a scalar function of the joint position vector \(q \). Defining \(\delta = \sup_{q} d_{q_1} c_b(q) \) and using (3), from (8) it is observed that

\[\| C(q,q) \| \leq \delta \| q \|^2_{\max}. \]

\[\text{(9)} \]

Also note that (7) and (9) imply

\[\| M(q) \| \leq 2\delta \| q \|^2_{\max}. \]

\[\text{(10)} \]

\(^1\) Throughout the paper, unless otherwise stated, by a vector norm, the vector 2-norm is meant and by a matrix norm, the induced matrix 2-norm is meant:

\[x \in R^n \Rightarrow \| x \| = \sqrt{x^T x}, \]

\[x \in R^{n \times n} \Rightarrow \| x \| = \sqrt{\lambda_{\text{max}}(x^T x)}, \]

where \(\lambda_{\text{max}}(\cdot) \) denotes the maximum eigenvalue of a square matrix.
Remark. If all joints of the manipulator are revolute, the scalar function $C_d(q)$ in (8) will become a constant and $C(q,q)$ is said to be uniformly bounded. In this case, an upper bound of $C_d(q)$ is given as (Mulero-Martinez, 2007)

$$\delta = \frac{3}{\sum_{q_i} \delta_{q_i} \left(\sum_{i=1} \left| \frac{dM(q)}{dq} \right| \right)}.$$

(11)

The above equation can be used efficiently to determine an upper bound of $M(q)$ for articulated robots. □

Now, assume that $\bar{M}(q)$ and $\bar{N}(q,q)$ are the estimates of the actual $M(q)$ and $N(q,q)$, and that ΔM and ΔN are the corresponding additive uncertainties present in the model of the robot:

$$M(q) = \bar{M}(q) + \Delta M,$$

(12)

$$N(q,q) = \bar{N}(q,q) + \Delta N.$$

(13)

The lumped disturbance vector τ_d is defined as

$$\tau_d = \tau_{ext} - \Delta M\dot{q} - \Delta N - F(q).$$

(14)

By this definition, the effect of all dynamic uncertainties, joint frictions and external disturbances is lumped into a single disturbance vector τ_d. From (1), it is seen that

$$\dot{\bar{M}}(q)\ddot{q} + \bar{N}(q,q) = \tau + \tau_d.$$

(15)

Inspired by the inherent dynamic characteristics of serial robotic manipulators, the inertia matrix estimate $\bar{M}(q)$ is chosen to satisfy the following properties:

- $\dot{\bar{M}}(q)$ is symmetric, positive definite and uniformly bounded. That is, the following relations hold:

$$\dot{\bar{M}}(q) = \bar{M}^T(q) > 0,$$

(16)

$$\forall q \in D_q, \quad \sigma_1 I \leq \dot{\bar{M}}(q) \leq \sigma_2 I,$$

(17)

where σ_1 and σ_2 are two positive real constants. Also, I is the identity matrix.

- The 2-norm of $\dot{\bar{M}}(q)$ is bounded. That is to say

$$\forall q \in D_q, \quad ||\dot{\bar{M}}(q)|| \leq \zeta,$$

(18)

where ζ is a positive real constant.

Remark. $\dot{\bar{M}}(q)$ can be any arbitrary matrix satisfying (16)–(18). For instance, $\dot{\bar{M}}(q)$ can be a constant, positive definite and symmetric matrix. As another example, the estimated Denavit–Hartenberg (D–H) parameters of a robot may be used to find the estimate of its inertia matrix. □

2.3. Modified disturbance observer structure

The disadvantage of the disturbance observer (19) is the need for acceleration measurement. Accurate accelerometers are not available in many robotic systems. Unless robust differentiation techniques are employed (Levant, 1998), differentiating the noise-corrupted velocity signals is not a suitable option for deriving acceleration signals. It is possible to modify the disturbance observer, as in Chen et al. (2000), in a way that no acceleration measurement is needed. For this purpose, the auxiliary variable z is defined as

$$z = \ddot{x}_d - p(q,q).$$

(22)

where the vector $p(q,q)$ can be determined from the modified observer gain matrix $L(q,q)$:

$$\frac{d}{dt} p(q,q) = L(q,q)\dot{M}(q)\dot{q}.$$

(23)

With (15), (19) and (23), taking the time derivative of (22) results in

$$\dot{z} = \dot{\ddot{x}}_d - \dot{p}(q,q) = \dot{\ddot{x}}_d - L(q,q)\dot{M}(q)\dot{q}$$

$$\Rightarrow \dot{z} = -L(q,q)[z + p(q,q)] - \ddot{x}_d + L(q,q)[\dot{M}(q)\dot{q} - \tau - p(q,q)].$$

(24)

Therefore, the modified disturbance observer, which does not need acceleration measurement due to cancellation of the term $M(q,q)$, takes the following form:

$$\dot{z} = -L(q,q)[z + L(q,q)[\dot{M}(q)\dot{q} - \tau - p(q,q)]]$$

$$\Rightarrow \dot{z} = -L(q,q)[z + L(q,q)[\dot{M}(q)\dot{q} - \tau - p(q,q)]].$$

(25)

From (25), the error dynamics becomes

$$\Delta \dot{x}_d = \dot{x}_d - z = \frac{d}{dt} p(q,q)$$

$$= \ddot{x}_d + L(q,q)[\ddot{x}_d - p(q,q)] - L(q,q)[\dot{M}(q)\dot{q} + \tau - p(q,q)]$$

$$= \ddot{x}_d + L(q,q)[\ddot{x}_d - p(q,q)] - L(q,q)[\dot{M}(q)\dot{q} + \tau - p(q,q)]$$

$$ \Rightarrow L(q,q)[\dot{M}(q)\dot{q}] = \tau_d - L(q,q)[\ddot{x}_d - \ddot{x}_d].$$

Therefore, it is seen that

$$\Delta \dot{x}_d = \ddot{x}_d - L(q,q)\Delta x_d.$$

(26)

Note that the modified disturbance observer, which does not need acceleration measurement, has a similar error dynamics to the basic disturbance observer error dynamics (21).

In order to complete the disturbance observer design, the vector $p(q,q)$ and the matrix $L(q,q)$ should be determined. Finding such a gain matrix for the class of all serial manipulators is the main contribution of this paper that is the topic of the next section.

3. Nonlinear disturbance observer design

In this section, the main results of this paper will be presented, namely, a systematic method for the disturbance observer gain matrix design and the formulation of disturbance observer design problem in the form of a linear matrix inequality (LMI).

3.1. Disturbance observer design method

Given the disturbance observer (25), $p(q,q)$ and $L(q,q)$ should be determined to complete the disturbance observer design.
The following disturbance observer gain matrix is proposed:

\[\mathbf{L}(\mathbf{q}) = \mathbf{X}^{-1} \mathbf{M}^{-1}(\mathbf{q}). \]

(27)

where \(\mathbf{X} \) is a constant invertible \(n \times n \) matrix to be determined. Note that the estimate of the robot inertia matrix is chosen to be symmetric and positive definite and thus invertible. According to (23), it is seen that

\[\mathbf{p}(\mathbf{q}) = \mathbf{X}^{-1} \mathbf{q}. \]

(28)

In this way, nonlinear disturbance observer is given by (25) with the disturbance observer gain matrix \(\mathbf{L}(\mathbf{q}) \) in (27) and the disturbance observer auxiliary vector \(\mathbf{p}(\mathbf{q}) \) in (28).

First, it will be assumed that the rate of change of the lumped disturbance is negligible in comparison with the disturbance estimation error dynamics, i.e., \(\tau_d \approx 0 \). This assumption is not overly restrictive and is commonly encountered in the robotics literature (see, for example, Chen et al., 2000). Next, the case when the robotic manipulator is experiencing fast-varying disturbances is considered. The following theorem states the sufficient conditions for asymptotic and exponential disturbance tracking when the robotic manipulator is subject to slow-varying disturbances.

Theorem 1. Consider the serial robotic manipulator subject to disturbances described by (15). The disturbance observer is given in (25) with the disturbance observer gain matrix \(\mathbf{L}(\mathbf{q}) \) defined in (27) and the disturbance observer auxiliary vector \(\mathbf{p}(\mathbf{q}) \) defined in (28). The disturbance tracking error \(\Delta \tau_d \) converges exponentially to zero for all \(\Delta \tau_d(0) \in \mathbb{R}^n \) if the following conditions hold:

1. The matrix \(\mathbf{X} \) is invertible.
2. There exists a positive definite and symmetric matrix \(\mathbf{I} \) such that

\[\mathbf{X}^T \mathbf{I} \mathbf{M}(\mathbf{q}) \mathbf{X} \geq \mathbf{I}. \]

(29)

3. \(\tau_d \approx 0 \), i.e., the rate of change of the lumped disturbance acting on the manipulator is negligible in comparison with the estimation error dynamics (26).

Under the above conditions, the minimum rate of exponential convergence is \(\dot{\lambda}_{\text{min}}(\mathbf{I})/2\sigma_2 \| \mathbf{X} \|^2 \), where \(\dot{\lambda}_{\text{min}}(\mathbf{I}) \) denotes the minimum eigenvalue of a matrix and \(\sigma_2 \) is defined in (5). If \(\mathbf{I} = 0 \) in (29), the disturbance tracking error will converge asymptotically to zero. □

Proof. Consider the following candidate Lyapunov function:

\[W(\Delta \tau_d, \mathbf{q}) = \Delta \tau_d^2 \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d. \]

(30)

Since \(\mathbf{M}(\mathbf{q}) \) is symmetric and positive definite and the matrix \(\mathbf{X} \) is invertible, the matrix \(\mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \) is also positive definite. Thus, the scalar function \(W \) is positive definite. Also, \(W \) is radially unbounded. Taking the time-derivative of \(W \) and using (26)–(28) when \(\tau_d \approx 0 \), yields

\[W(\Delta \tau_d, \mathbf{q}) = \Delta \tau_d^2 \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d + \Delta \tau_d^2 \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d + \Delta \tau_d^2 \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d + \Delta \tau_d \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d \]

\[= -\Delta \tau_d \mathbf{M}^{-T}(\mathbf{q}) \mathbf{X}^{-T} \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d \]

\[-\Delta \tau_d \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \mathbf{X}^{-1} \mathbf{M}^{-1}(\mathbf{q}) \Delta \tau_d \]

\[+ \Delta \tau_d \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \Delta \tau_d \]

\[\Rightarrow W(\Delta \tau_d, \mathbf{q}) = -\Delta \tau_d \frac{1}{2} \| \mathbf{X} + \mathbf{X}^T - \mathbf{X}^T \mathbf{M}(\mathbf{q}) \mathbf{X} \| \Delta \tau_d. \]

(31)

According to Condition 2 and (31), \(W \) is negative definite for all \(\Delta \tau_d(0) \in \mathbb{R}^n \). Therefore, the disturbance tracking error asymptotically converges to zero: \(\lim_{t \to \infty} \Delta \tau_d = 0 \) for all \(\Delta \tau_d(0) \in \mathbb{R}^n \).

Next, the case when the robotic manipulator is subject to fast-varying disturbances is considered. The following theorem states the sufficient conditions for asymptotic and exponential disturbance tracking when the robotic manipulator is subject to fast-varying disturbances.

Theorem 2. Consider the robotic manipulator subject to disturbances described by (15). The disturbance observer is given in (25) with the disturbance observer gain matrix \(\mathbf{L}(\mathbf{q}) \) defined in (27) and the disturbance observer auxiliary vector \(\mathbf{p}(\mathbf{q}) \) defined in (28). The disturbance tracking error \(\tau_d \) is globally uniformly ultimately bounded if:

- The first two conditions of the Theorem 1 hold.
- The rate of change of the lumped disturbance is bounded, i.e., \(\exists \kappa > 0 \) such that \(\| \dot{\tau}_d(t) \| \leq \kappa \) for all \(t > 0 \).

Under the above conditions and for all \(\Delta \tau_d(0) \in \mathbb{R}^n \), the tracking error converges with an exponential rate, equal to \((1 - \theta) \dot{\lambda}_{\text{min}}(\mathbf{I})/2\sigma_2 \| \mathbf{X} \|^2 \), to the ball with radius \(2\kappa \| \mathbf{X} \|^2/\theta \dot{\lambda}_{\text{min}}(\mathbf{I}) \) where \(0 < \theta < 1 \). □

Proof. Again, consider the Lyapunov Candidate function in (30). According to (35) and (38), it is seen that

\[\sigma_1 \dot{\lambda}_{\text{min}}(\mathbf{X}) \| \Delta \tau_d \|^2 \leq W \leq \sigma_2 \| \mathbf{X} \|^2 \| \Delta \tau_d \|^2. \]

(40)

Note that \(W \) is a positive definite and radially unbounded function. Taking the time derivative of the Lyapunov function function.
and using (26), it is observed that
\[
W(\Delta \tau_d, \mathbf{q}) = -\Delta \tau_d^T J^T (\mathbf{X} + \mathbf{X}^T \dot{\mathbf{M}}(\mathbf{q}) \mathbf{X}) \Delta \tau_d
+ \tau_d^T \mathbf{X}^T \dot{\mathbf{M}}(\mathbf{q}) \Delta \tau_d + \Delta \tau_d^T \mathbf{X}^T \dot{\mathbf{M}}(\mathbf{q}) \mathbf{X} \tau_d.
\]
(41)

On the other hand, according to Schwartz Inequality and (5) and since \(\|\tau_d(t)\| \leq \kappa\), it is seen that
\[
\tau_d^T \dot{\mathbf{M}}(\mathbf{q}) \mathbf{X} \tau_d \leq \kappa \sigma_2 \|\mathbf{X}\|^2 |\Delta \tau_d|.
\]
(42)

Using the inequality (29) and (41), it can be observed that
\[
W \leq -\lambda_{min}(\mathbf{\Gamma}) |\Delta \tau_d|^2 + 2 \kappa \sigma_2 |\mathbf{X}|^2 |\Delta \tau_d|
= -(1-\theta) \lambda_{min}(\mathbf{\Gamma}) |\Delta \tau_d|^2 - \theta \lambda_{min}(\mathbf{\Gamma}) |\Delta \tau_d|^2
+ 2 \kappa \sigma_2 |\mathbf{X}|^2 |\Delta \tau_d|,
\]
(43)

where \(\theta \in (0, 1)\). Therefore,
\[
W \leq -(1-\theta) \lambda_{min}(\mathbf{\Gamma}) |\Delta \tau_d|^2, \quad \forall |\Delta \tau_d| \geq \frac{2 \kappa \sigma_2 |\mathbf{X}|^2}{\theta \lambda_{min}(\mathbf{\Gamma})}.
\]
(44)

According to (40), (44) and the uniform ultimate boundedness theorems (see, for example, Theorem 5.1 and Corollary 5.1 in Khalil, 1996), it can be seen that the tracking error is globally uniformly ultimately bounded. Similar to (37), it can be observed that
\[
W \leq \frac{(1-\theta) \lambda_{min}(\mathbf{\Gamma})}{\sigma_2 |\mathbf{X}|^2} \exp \left[-\frac{(1-\theta) \lambda_{min}(\mathbf{\Gamma})}{\sigma_2 |\mathbf{X}|^2} t \right],
\]
\[
W(\Delta \tau_d(t)) \leq \frac{W(t_0)}{|\sigma_1(\min(X X^T))|} \exp \left[-\frac{(1-\theta) \lambda_{min}(\mathbf{\Gamma})}{\sigma_2 |\mathbf{X}|^2} t \right],
\]
\[
W(\Delta \tau_d(t)) \leq \frac{2 \kappa \sigma_2 |\mathbf{X}|^2}{\theta \lambda_{min}(\mathbf{\Gamma})},
\]
Therefore,
\[
|\Delta \tau_d| \leq \sqrt{\frac{W(t_0)}{|\sigma_1(\min(X X^T))|}} \exp \left[-\frac{(1-\theta) \lambda_{min}(\mathbf{\Gamma})}{2 \sigma_2 |\mathbf{X}|^2} t \right], \quad \forall t \geq 0.
\]
(47)

Theorem 3. Define the matrix \(\mathbf{Y} = \mathbf{X}^{-1}\) and assume that an upper bound of \(\|\dot{\mathbf{M}}(\mathbf{q})\|\) is \(\zeta\). The inequality (29) holds if the following LMI is satisfied:
\[
\begin{bmatrix}
\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} & -\mathbf{Y}^T \\
-\mathbf{I} & \Gamma^{-1}
\end{bmatrix} \succeq 0.
\]
(50)

Proof. Multiply (29) by \(\mathbf{Y}\) and \(\mathbf{Y}^T\) from right and left, respectively to get
\[
\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} \succeq \dot{\mathbf{M}}(\mathbf{q}).
\]
(51)

Since \(\|\dot{\mathbf{M}}(\mathbf{q})\| \leq \zeta\), it is observed that \(\|\mathbf{I} - \dot{\mathbf{M}}(\mathbf{q})\|\) where \(\mathbf{I}\) is the identity matrix. Therefore, (51) holds if
\[
\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} \succeq \zeta.
\]
(52)

Remark. Conventional linear disturbance observers and nonlinear disturbance observers proposed by Chen et al. (2000) and Nikoobin and Haghighi (2009) are special cases of the disturbance observer in (25), disturbance observer gain matrix (27), and disturbance observer auxiliary vector (28) in the following ways:

- In the conventional linear disturbance observers (Ohnishi et al., 1996) the robot inertia matrix estimate \(\hat{\mathbf{M}}(\mathbf{q})\) is represented by a constant diagonal matrix of the form \(\mathbf{diag}[m_i]\) where \(m_i > 0, i = 1, \ldots, n\) are positive real constants. Also, the vector \(\hat{\mathbf{N}}(\mathbf{q})\) is chosen to be zero and the matrix \(\mathbf{X}\) is taken to be a constant diagonal matrix \(\mathbf{diag}[x_i]\) with \(x_i > 0\).
- In Chen et al. (2000) and Nikoobin and Haghighi (2009), the nonlinear disturbance observer design problem was solved for a serial planar robot with 2 and \(n\) revolute joints, respectively. In both of these, it was assumed that the exact dynamic model of the robotic manipulator is available, i.e., they took \(\hat{\mathbf{M}}(\mathbf{q}) = \mathbf{M}(\mathbf{q})\) and \(\hat{\mathbf{N}}(\mathbf{q}, \mathbf{q}) = \mathbf{N}(\mathbf{q}, \mathbf{q})\). Also, the vector \(\mathbf{p}(\mathbf{q}, \mathbf{q})\) was considered to be
\[
\mathbf{p}(\mathbf{q}) = \begin{bmatrix} \hat{q}_1 & \hat{q}_1 + \hat{q}_2 & \cdots & \hat{q}_1 + \cdots + \hat{q}_n \end{bmatrix}.
\]
(48)

This is clearly a special case of the proposed vector \(\mathbf{p}(\mathbf{q})\) in (28), when \(\mathbf{X}^{-1}\) is chosen to be
\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{bmatrix}.
\]
(49)

Also, note that Nikoobin et al. and Chen et al. had to rely on the special structure of mass matrices of planar serial manipulators in order to determine the constant \(c\). In other words, the constant \(c\) cannot be determined if the manipulator is non-planar using methods proposed in Chen et al. (2000) and Nikoobin and Haghighi (2009).\]

3.2. LMI formulation of the design method

According to Theorems 1 and 2, the disturbance observer design problem reduces to finding a constant invertible matrix \(\mathbf{X}\) such that the inequality (29) is satisfied. The following theorem shows how (29) can be formulated as a linear matrix inequality.

Theorem 4. Define the matrix \(\mathbf{Y} = \mathbf{X}^{-1}\) and assume that an upper bound of \(\|\dot{\mathbf{M}}(\mathbf{q})\|\) is \(\zeta\). The inequality (29) holds if the following LMI is satisfied:
\[
\begin{bmatrix}
\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} & -\mathbf{Y}^T \\
-\mathbf{I} & \Gamma^{-1}
\end{bmatrix} \succeq 0.
\]
(50)

Proof. Multiply (29) by \(\mathbf{Y}\) and \(\mathbf{Y}^T\) from right and left, respectively to get
\[
\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} \succeq \dot{\mathbf{M}}(\mathbf{q}).
\]
(51)

Since \(\|\dot{\mathbf{M}}(\mathbf{q})\| \leq \zeta\), it is observed that \(\|\mathbf{I} - \dot{\mathbf{M}}(\mathbf{q})\|\) where \(\mathbf{I}\) is the identity matrix. Therefore, (51) holds if
\[
\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} \succeq \zeta.
\]
(52)

The above inequality is equivalent to \(\mathbf{Y} + \mathbf{Y}^T - \mathbf{I} - \mathbf{Y}^T \Gamma \succeq 0\). Note that \(\Gamma\) is a positive definite matrix. According to the Schur Complement Inequality (refer to Appendix A), this inequality holds if and only if the LMI (50) holds.

Note that LMI software packages have the ability to solve (50) simultaneously for \(\mathbf{Y}\) and \(\Gamma\) when \(\Gamma\) is not known.

4. Practical considerations in the design of disturbance observers

In this section, practical issues in the design of disturbance observers are addressed. Also, an analytical solution to the observer design problem will be proposed.

4.1. Rate of convergence of the disturbance observer and the sensitivity to measurement noise

As it was seen in Theorems 1 and 2, the rate of convergence of the tracking error is proportional to \(1/\|\mathbf{Y}^{-1}\|^2\), where \(\mathbf{X}^{-1} = \mathbf{Y}\). Also, the radius of the ball that the tracking errors converge to, in
the case of fast-varying disturbances, is proportional to \(||Y^{-1}||^2 \) (see Theorem 2). Since a smaller \(||Y^{-1}|| \) implies a larger disturbance observer gain \(||L|| \) due to (27), a large observer gain is needed in order to increase the rate of convergence and the accuracy of the disturbance observer. On the other hand, large disturbance observer gains will increase the sensitivity of the observer to measurement noise by amplifying this noise. From this perspective, it is desirable to choose the disturbance observer gain \(||L|| \) to be small. Thus, there exists a trade-off between the rate of convergence and the accuracy of the estimations and the noise amplification. According to (27), it can be seen that

\[
\gamma = \frac{2\beta \sigma_2}{y^2},
\]

and, the LMI (50) turns into

\[
\begin{bmatrix}
2y - \zeta & y_l \\
y_l & \frac{y_l^2}{2\beta \sigma_2}
\end{bmatrix} \succeq 0.
\]

According to Schur Complement Inequality, the above LMI is equivalent to

\[
(2y - \zeta - y_l) (y_l) \geq 0 \implies (2y - \zeta - 2\beta \sigma_2) \geq 0 \implies y \geq \frac{1}{2} \zeta + \beta \sigma_2.
\]

The above inequality clearly depicts the trade-off existing between the minimum convergence rate and the noise amplification. Note that \(\zeta \) and \(\sigma_2 \) are constants and depend on the robot dynamic parameters and the maximum joint velocities of the robot. Faster convergence rates and better accuracy require larger values of \(\beta \). This, in turn, means larger values of \(y \) and thus results in more sensitivity to noise. Since it is required to reduce the sensitivity to noise in disturbance rejection applications and at the same time guarantee the minimum convergence rate of tracking error to be equal to \(\beta \), the matrix \(Y \) can be chosen to be

\[
Y_{\text{optimal}} = \frac{1}{2}(\zeta + 2\beta \sigma_2) I.
\]

Then, based on (27) and \(X^{-1} = Y, L \) is found.

5. Simulation study

SCARA (selective compliance assembly robot arm) is an industrial 4-DOF robotic arm, which is widely used in the assembly of electronic circuits and devices. The first two joints of the arm, which are used to generate motion in a horizontal plane, are revolute and have parallel axes of rotation. The third joint of the

Note that the matrix \(Y \) is a diagonal matrix with equal elements on its diagonal. The units of these diagonal elements are not necessarily the same. In fact, if the \(i \)-th joint of the robot is revolute (prismatic) the unit of the \(i \)-th element will be rad/s (m/s).
arm is a prismatic joint, which controls the vertical motion (z-axis) of the end-effector. Finally, the last joint is revolute and is used to orient the gripper about the z-axis. Do not confuse this with the auxiliary vector of the disturbance observer given in (25). Fig. 2 depicts a schematic diagram of this manipulator. The dynamics of the SCARA manipulator is (Voglewede, Smith, & Monti, 2009)

\[
M(q) = \begin{bmatrix}
p_1 + p_2c_2 & p_3 + 0.5p_2c_2 & 0 & -p_5 \\
p_3 + 0.5pc_2 & p_3 & 0 & -p_5 \\
0 & 0 & p_4 & 0 \\
-p_5 & -p_5 & p_5 & 0
\end{bmatrix}.
\]

\[
C(q,q) = \begin{bmatrix}
-p_2s_2q_2 & -0.5ps_2q_2 & 0 & 0 \\
0.5ps_2q_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

\[
G(q) = \begin{bmatrix}
0 \\
0 \\
-pv \\
0
\end{bmatrix}.
\]

The SCARA arm parameters are defined as

\[
p_1 = \sum_{i=1}^{4} l_i + m_2x_2^2 + m_2(x_2^2 + a_1^2) + (m_3 + m_4)(a_2^2 + a_2^2),
\]

\[
p_2 = 2a_1(x_2m_2 + a_2(m_3 + m_4)),
\]

\[
p_3 = \sum_{i=2}^{4} l_i + 2m_2x_2^2 + a_2^2(m_3 + m_4),
\]

\[
p_4 = m_3 + m_4,
\]

\[
p_5 = l_4,
\]

where \(l_i \) is the moment of inertia around the centroid, \(m_i \) is the mass, \(x_i \) is the mass center, and \(a_i \) is the length for link \(i \). The Jacobian of the SCARA manipulator, with respect to the robot base frame, is (Liu, Wei, & Wang, 2009)

\[
J(q) = \begin{bmatrix}
-a_1s_1 - a_2s_12 & -a_2s_12 & 0 & 0 \\
a_1c_1 + a_2c_12 & a_2c_12 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 1 & 0 & 1
\end{bmatrix}.
\]

In the above, \(s_2 = \sin(q_2), \ c_2 = \cos(q_2), \ s_12 = \sin(q_1 + q_2), \ c_12 = \cos(q_1 + q_2) \).

Two types of disturbances are exerted to the robot, namely friction and external payload. Computed-torque scheme is adopted for position control (Spong et al., 2005):

\[
\tau = M(q)(\dot{q}_{\text{ref}} - \dot{q}) + C(q, \ddot{q}, q) + G(q).
\]

Fig. 3 depicts the computed-torque controller and the disturbance observer that is used for disturbance rejection. The vector \(\tau_d \) represents the lumped disturbance, which deteriorates the tracking performance of the robot control system. The disturbance observer role is to estimate this disturbance as closely as possible. The estimated disturbance \(\hat{\tau} \) is then subtracted from the control signal \(\tau \) to cancel out or minimize the effect of the disturbance.

Note that \(q_{\text{ref}} \) is the vector of desired joint positions as a function of time. The external end-effector payload is chosen to be a weight exerted to the robot end-effector in the z direction. This weight is equal to 2N. The friction torques acting on the joints of the robots are generated based on the model in Kermani, Patel, and Moallem (2007) and Armstrong-Hélouvry, Dupont, and Canudas de Wit (1994). For the \(i \)-th joint of the robot, \(i=1, 2, 3, 4, \ldots \),

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1)</td>
<td>15 kg</td>
<td>(m_2)</td>
<td>12 kg</td>
</tr>
<tr>
<td>(m_3)</td>
<td>3 kg</td>
<td>(m_4)</td>
<td>3 kg</td>
</tr>
<tr>
<td>(l_1)</td>
<td>0.02087 kg m^2</td>
<td>(l_2)</td>
<td>0.008 m kg m^2</td>
</tr>
<tr>
<td>(l_3)</td>
<td>0.05 kg m^2</td>
<td>(l_4)</td>
<td>0.02 m/kg m^2</td>
</tr>
<tr>
<td>(a_1)</td>
<td>0.5 m</td>
<td>(a_2)</td>
<td>0.4 m</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0.25 m</td>
<td>(x_2)</td>
<td>0.2 m</td>
</tr>
<tr>
<td>(F_{c1})</td>
<td>0.49 N m</td>
<td>(F_{c2})</td>
<td>0.31 N m</td>
</tr>
<tr>
<td>(F_{c3})</td>
<td>0.1 N</td>
<td>(F_{c4})</td>
<td>0.1 N</td>
</tr>
<tr>
<td>(F_{e1})</td>
<td>3.5 N</td>
<td>(F_{e2})</td>
<td>2.8 N</td>
</tr>
<tr>
<td>(F_{e3})</td>
<td>1.65 N</td>
<td>(F_{e4})</td>
<td>0.7 N</td>
</tr>
<tr>
<td>(F_{c1})</td>
<td>0.08 kg/m/s</td>
<td>(F_{c2})</td>
<td>0.03 kg/m/s</td>
</tr>
<tr>
<td>(F_{c3})</td>
<td>0.19 rad/s</td>
<td>(F_{c4})</td>
<td>0.15 rad/s</td>
</tr>
<tr>
<td>(F_{e1})</td>
<td>0.12 m/s</td>
<td>(F_{e4})</td>
<td>0.03 rad/s</td>
</tr>
<tr>
<td>(K_c)</td>
<td>1.51</td>
<td>(K_r)</td>
<td>21</td>
</tr>
<tr>
<td>(Y = X^{-1})</td>
<td>95.81</td>
<td>(g)</td>
<td>9.8 N/kg</td>
</tr>
</tbody>
</table>

Fig. 3. Disturbance observer used for disturbance rejection.
the friction is modelled as

$$
\tau_{\text{friction}} = F_{ci} \text{sgn}(\dot{q}_i) \left[1 - \exp \left(-\frac{\dot{q}_i^2}{v_{si}^2} \right) \right] + F_{si} \text{sgn}(\dot{q}_i) \exp \left(-\frac{\dot{q}_i^2}{v_{si}^2} \right) + F_{vi} \dot{q}_i,
$$

(63)

where F_{ci}, F_{si}, F_{vi} are the Coulomb, static, and viscous friction coefficients, respectively. The parameter v_{si} is the Stribeck parameter. Table 2 gives the simulation parameters.

![Fig. 4. Simulation study: position of the joints of the SCARA robot.](image)

![Fig. 5. Simulation study: position tracking error time profiles.](image)

Table 3
Simulation study: joint tracking error RMS values.

<table>
<thead>
<tr>
<th>Joint</th>
<th>No DOB</th>
<th>Liu and Peng (2000) DOB</th>
<th>Proposed DOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.11×10^{-2}</td>
<td>3.70×10^{-2}</td>
<td>3.39×10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>2.38×10^{-1}</td>
<td>3.06×10^{-2}</td>
<td>2.14×10^{-2}</td>
</tr>
<tr>
<td>3</td>
<td>5.92×10^{-2}</td>
<td>4.91×10^{-3}</td>
<td>3.89×10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>3.29×10^{-1}</td>
<td>3.51×10^{-2}</td>
<td>2.87×10^{-2}</td>
</tr>
</tbody>
</table>
The total disturbance vector acting on the joints of the robot can be computed by

\[\tau_d = \tau_{\text{friction}} + J^T F_{\text{payload}}. \]

(64)

Now, simulations are performed for a generic pick-and-place maneuver.\(^4\) In this class of maneuvers the robotic arm starts from rest, accelerates slowly and eventually decelerates to stop (Damaren & Sharf, 1995). The reference trajectory provided for the joints of the robot is parametrized by

\[\theta_n(t) = \theta_{dn} \left(t - \frac{1}{2\pi} \sin \left(\frac{2\pi t}{T} \right) \right), \quad 0 \leq t \leq T, \quad 1 \leq n \leq 4, \]

(65)

where \(T \) is the duration time of the maneuver. In the simulations, the final joint positions are \(\theta_{d1} = \pi/5 \) rad, \(\theta_{d2} = \pi/8 \) rad, \(\theta_{d3} = 1 \) cm, \(\theta_{d4} = \pi/6 \) rad, and \(T = 10 \) s. In the first case, no disturbance observer is used with the computed torque controller. In the second and the third cases, the disturbance observer proposed by Liu and Peng (2000) and the disturbance observer proposed by the authors are used to estimate and suppress the joint frictions and the external payload together with computed torque law, respectively. In the disturbance observer proposed by Liu and

\(^4\) It is expected that the Stribeck effect to be dominant in the beginning and the end of the pick-and-place maneuver; because, the robot accelerates from rest in the beginning of the maneuver and decelerates to stop in the end of the maneuver.
Peng, the observer gain is chosen to be $K = \text{diag}(11.60, 38.17, 23.95, 159.67)$. The designed observer by the authors has a structure given by (25), (27) and (28). The matrix $Y = X^{-1} = yI$ is chosen for designing the disturbance observer. Based on the parameters provided in Table 2, it is seen that

$$\|M(q)\| \leq 15.$$ \hfill (66)

By (17), the relation $\sigma_2 = 15$ holds. Eigenvalues of the matrix $M(q)$ are 0, 0, $\frac{1}{\beta}(1 - \sqrt{2})p_2 q_2 \sin(q_2)$ and $\frac{1}{\beta}(1 + \sqrt{2})p_2 q_2 \sin(q_2)$, respectively. It can be seen that

$$\|M(q)\| \leq \frac{1}{\beta}(1 + \sqrt{2})p_2 q_2 \max = 5.8q_2 \max.$$ \hfill (67)

By Theorem 3, the parameter ζ is chosen to be $5.8q_2 \max$. Assuming the maximum velocity of the second joint to be $q_2 \max = 2$ rad/s and the minimum convergence rate to be $\beta = 6$ and according to (58), it is seen that

$$Y_{\text{optimal}} = \frac{1}{\beta}(5.8q_2 \max + 2\beta \sigma_2) \Rightarrow Y_{\text{optimal}} = 95.8I.$$ \hfill (68)

Figs. 4 and 5 illustrate the time profiles of the positions of the joints and position tracking errors of the robot, respectively. Table 3 contains the RMS values of joint tracking errors. As it can be observed, the computed-torque control law fails to track the position commands accurately when no disturbance observer is used. On the other hand, the position tracking errors are decreased when disturbance observers are used. Figs. 6 and 7 depict the actual and estimated disturbances and disturbance tracking errors, respectively. Table 4 contains the RMS values of disturbance tracking errors. The disturbance and position tracking performance of the proposed disturbance observer excels the performance of that of proposed by Liu and Peng (2000).

6. Experiments

The PHANToM Omni™ (SensAble Technologies Inc., MA, USA) is a haptic device that can be used for a variety of purposes including virtual reality and teleoperation applications. The PHANToM Omni has three actuated revolute joints which provide the user with force feedback information. In addition to the actuated joints, the PHANToM robot has three wrist joints that are passive. The first and the third actuated joints of the PHANToM robot in experiments will be used while the second actuated joint is locked at 0°. Note that this mechanism is not confined to a constant 2-D plane and moves in 3-D space. Therefore, the nonlinear disturbance observer gain proposed by Chen et al. (2000) or Nikoobin and Haghighi (2009) cannot be employed here. Fig. 8 shows the PHANToM Omni setup that is used in the experiments. The PHANToM Omni is connected to the computer through an IEEE 1394 port. The PHANToM Omni end-effector position and orientation data are collected at a frequency of 1000 Hz. The disturbance observer is used to estimate and compensate for the joint frictions and external payload. The payload is a metal cube which is attached to the gimbal of the robot. Note that $c_1 = \cos(q_1)$, $s_1 = \sin(q_1)$, $c_2 = \cos(2q_1)$, and $s_2 = \sin(2q_1)$. The inertia matrix of the PHANToM robot, assuming $q_2 = 0$, is (Naerum, Cornella, & Elle, 2008)

$$M(q) = \begin{bmatrix} 2 & 2 & 2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$ \hfill (69)

and defining

$$V(q, \dot{q}) = [V_1, V_2]^T = C(q, \dot{q})\dot{q} + G(q),$$ \hfill (70)

![Fig. 8. Experimental study: the PHANToM Omni haptic device.](image)

Table 4: Simulation study: disturbance tracking error RMS values.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint 1</td>
<td>2.85×10^{-1}</td>
<td>2.68×10^{-1}</td>
</tr>
<tr>
<td>Joint 2</td>
<td>1.61×10^{-1}</td>
<td>1.08×10^{-1}</td>
</tr>
<tr>
<td>Joint 3</td>
<td>9.74×10^{-2}</td>
<td>9.63×10^{-2}</td>
</tr>
<tr>
<td>Joint 4</td>
<td>1.31×10^{-2}</td>
<td>4.61×10^{-3}</td>
</tr>
</tbody>
</table>

![Fig. 9. Experimental study: time profile of position of the first joint of the PHANToM robot.](image)

Table 5: PHANToM Omni identified parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>$6.11 \times 10^{-3} \pm 0.9 \times 10^{-3}$</td>
<td>γ_2</td>
<td>$-2.89 \times 10^{-3} \pm 0.43 \times 10^{-3}$</td>
</tr>
<tr>
<td>γ_3</td>
<td>$-4.24 \times 10^{-3} \pm 1.01 \times 10^{-3}$</td>
<td>γ_4</td>
<td>$3.01 \times 10^{-3} \pm 0.52 \times 10^{-3}$</td>
</tr>
<tr>
<td>γ_5</td>
<td>$2.05 \times 10^{-3} \pm 0.15 \times 10^{-3}$</td>
<td>γ_6</td>
<td>$1.92 \times 10^{-3} \pm 0.23 \times 10^{-3}$</td>
</tr>
<tr>
<td>γ_7</td>
<td>$1.60 \times 10^{-3} \pm 0.05 \times 10^{-3}$</td>
<td>γ_8</td>
<td>$-8.32 \times 10^{-3} \pm 2.78 \times 10^{-3}$</td>
</tr>
</tbody>
</table>
Appendix B. Table 5 gives the PHANToM Omni identified para-

{
\begin{align*}
V_1 &= -2x_2q_1q_3 \sin(2q_3) + 2x_3q_1q_3 \cos(2q_3) \\
&\quad + x_4q_1q_3 \cos(q_3) - x_4q_1q_3 \sin(q_3), \\
V_2 &= 2x_2q_1^2 \cos(q_3) \sin(q_3) - 2x_4q_1^2 \cos(2q_3) \\
&\quad - \frac{1}{2} x_4q_1^2 \cos(q_3) + 2x_2q_1^2 \sin(q_3) + 2x_7 \sin(q_3) + 2x_8 \cos(q_3).
\end{align*}

The Jacobian of the PHANToM, considering

J(q) = \begin{bmatrix}
I_1 + l_s(q_1) & 0 \\
0 & I_2s(q_2)
\end{bmatrix},

where \(l_1 = l_2 = 135 \text{ mm}\) are the lengths of the first and the second link of the robot. Therefore, the disturbance due to the external payload which is being exerted to the first and the third joints of the robot is

\[\tau_{\text{payload}} = J(q)F = J \begin{bmatrix} 0 \\ mg \end{bmatrix} = \begin{bmatrix} 0 \\ mgl_1s(q_1) \end{bmatrix}. \]

First, the PHANToM parameters were identified (refer to Appendix B). Table 5 gives the PHANToM Omni identified parameters. Based on the provided parameters and assuming \(q_{\text{max}} = 1 \text{ rad/s}\), it is seen that

\[\|M(q)\| \leq 0.0132 \]

and

\[\|\dot{M}(q)\| \leq 0.0138. \]

By (17), the parameter \(\sigma_2\) is chosen to be 0.0132. By Theorem 3, the relation \(\zeta = 0.0138l_{\text{max}}\) holds. Assuming a minimum convergence rate of \(\beta = 1\) and according to (58), it is observed that

\[Y_{\text{optimal}} = \frac{1}{2} (0.0138 + 2 \times 0.0132 \times \beta) = 0.021. \]

Sinusoidal commands are supplied as the reference trajectory for the first and the third joints of the robot in the presence of the computed-torque control (62). The experiments are performed in three different cases: namely, with no DOB, with the DOB proposed by Liu and Peng (2000), and with the DOB proposed in the paper. The proportional and derivative gains are chosen to be equal to 1.4I and 0.5I, respectively. The DOB gain matrix of Liu and Peng observer has been chosen to be \(I\). In addition, the disturbance tracking performance of the proposed DOB is compared in the paper with that of employed by Katsura et al. (2000) and Liu and Peng (2000). The parameters of DOB of Katsura et al. have been chosen to be \(g_{\text{red}} = 100\) and \(\beta_m = 1\). Figs. 9, 10, 11, 12 illustrate the time profiles of positions and tracking errors of joints 1 and 3, respectively. Table 6 contains the RMS values of joint tracking errors. Figs. 13 and 14 illustrate the time profiles of disturbances and disturbance tracking errors of joints 1 and 3, respectively. Table 7 contains the RMS values of disturbance tracking errors. Note that the identification of the dynamic model of the robot was not perfect. Therefore, dynamic uncertainties exist in the model of the robot. According to Theorem 2, the tracking error is guaranteed to be bounded and to converge to its ultimate bound region with an exponential rate. The disturbance and position tracking performance of the proposed disturbance observer excels the performance of that of proposed by Liu and Peng (2000) and Katsura et al. (2003).

Table 6

<table>
<thead>
<tr>
<th></th>
<th>RMS error</th>
<th>No DOB</th>
<th>Liu and Peng (2000) DOB</th>
<th>Proposed DOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>joint 1</td>
<td>2.02 \times 10^{-2}</td>
<td>1.19 \times 10^{-2}</td>
<td>9.98 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>joint 3</td>
<td>1.23 \times 10^{-1}</td>
<td>7.69 \times 10^{-2}</td>
<td>3.31 \times 10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>

5 This is the conventional linear disturbance observer that has been employed in numerous robotic applications. See, for example, Natori et al. (2006, 2010) and Katsura et al. (2010).
7. Conclusion

A general systematic disturbance observer design method for serial robotic manipulators has been proposed in this paper. The previously proposed linear and nonlinear disturbance observers can be unified in this general framework. Moreover, the proposed design method removes the previous restrictions on the number of degrees-of-freedom, the types of joints, and the manipulator configuration in the design of nonlinear disturbance observers. The observer design problem has been formulated as a linear matrix inequality (LMI). The proposed design method guarantees convergence of the observer tracking error to the origin with an exponential rate in the case of slow-varying disturbances. In the case of fast-varying disturbances, the tracking error is shown to be globally uniformly ultimately bounded. The trade-off between the rate of convergence of the tracking error and the sensitivity to measurement noise has been discussed. In addition to the LMI formulation of the design problem, an analytical solution has been proposed. Simulations using an industrial manipulator and experiments involving a haptics-capable robot were presented to verify the effectiveness of the proposed approach.

Acknowledgment

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Appendix A. Schur Complement Inequality

Schur Complement Inequality. Assume that C is a positive definite matrix. The following relation holds (Gahinet et al., 1995):

$$A - BC^{-1}B^T \geq 0 \iff \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \geq 0.$$ (A.1)
Appendix B. PHANToM Omni Parameter Identification

The PHANToM parameters are identified without any external payloads using the method proposed in Taati, Tahmasebi, and Hashtrudi-Zaad (2008). In order to identify the PHANToM parameters, the dynamic equation in (15) is linearly parametrized into the following form:

\[
Y(q,q,\dot{q},\ddot{q}) = \tau.
\]

(2.1)

where \(Y \in \mathbb{R}^{8 \times 8}\) is called the regressor matrix and \(z = \{z_1, \ldots, z_4\}^T \in \mathbb{R}^{8 \times 1}\) is the vector of robot parameters to be identified. It is seen that

\[
\begin{aligned}
\dot{q}_1 &= 0 \\
\dot{q}_2 &= 2q_1q_3 + 2q_1^2q_3 - q_2q_3 \\
\dot{q}_3 &= q_1^2 + q_1q_3 - \frac{1}{2}q_2^2q_3 \\
\dot{q}_4 &= 0 \\
\dot{q}_5 &= 0 \\
\dot{q}_6 &= 0 \\
\dot{q}_7 &= 0 \\
\dot{q}_8 &= 0
\end{aligned}
\]

(2.2)

where \(Y_i\) is the filtered regressor matrix and \(\tau_i\) is the filtered torque. A sum of eight sinusoids, four sinusoids for each of the joints 1 and 3, with frequencies ranging from 0.2 Hz to 1 Hz were applied to the PHANToM to identify the eight unknown parameters. Note that the sum of \(n\) sinusoids is persistent excitation of an order no less than \(2n - 2\) (Soderstrom & Stoica, 1989). The first and the third joints of the PHANToM were under PD (proportional-derivative) control and the second joint was locked at 0°. The recursive least squares algorithm is employed to find the parameters of the PHANToM (Astrom & Wittenmark, 1995).

References

Cassemiro, E. R., Rosario, J. M., & Dumur, D. (2005). Robot axis dynamics control and the third joints of the PHANToM were under PD (proportional-derivative) control and the second joint was locked at 0°. The recursive least squares algorithm is employed to find the parameters of the PHANToM (Astrom & Wittenmark, 1995).

