
Public Data Integration with WebSmatch

Remi Coletta(a), Emmanuel Castanier(b), Patrick Valduriez(b),
Christian Frisch(c), DuyHoa Ngo(a), Zohra Bellahsene(a)

(a,b) INRIA and LIRMM, Montpellier, France (c) Data Publica, Paris, France
(a) {FirstName.Lastname}@lirmm.fr (b) {FirstName.Lastname}@inria.fr (c) christian.frisch@data-publica.com

ABSTRACT
Integrating open data sources can yield high value informa-
tion but raises major problems in terms of metadata ex-
traction, data source integration and visualization of inte-
grated data. In this paper, we describe WebSmatch, a flex-
ible environment for Web data integration, based on a real,
end-to-end data integration scenario over public data from
Data Publica1. WebSmatch supports the full process of im-
porting, refining and integrating data sources and uses third
party tools for high quality visualization. We use a typical
scenario of public data integration which involves problems
not solved by currents tools: poorly structured input data
sources (XLS files) and rich visualization of integrated data.

1. INTRODUCTION
Recent open data government initiatives, such as data.

gov, data.gov.uk, data.gouv.fr promote the idea that cer-
tain data produced by public organizations should be freely
available to everyone to use and republish as they wish. As a
result, a lot of open data sources are now available on public
organization’s web sites, in various formats.

Integrating open data sources from different organizations
can yield high value information. For instance, matching gas
emission data with climatic data for a given country or city
can be valuable to better understand pollution. This rich
local and targeted pool of information can also be leveraged
to build new innovative services or, as a new source of busi-
ness intelligence, to put in perspective business information
with data such as weather, traffic, density of economic activ-
ities or touristic information in order to better understand
current market dynamics and adapt product and services.

A large share of the available open data comes from large
institutions (such as Eurostat, World bank, UN....) us-
ing structured data formats such as SDMX for statistical
datasets or RDF for linked open data. However, the major-
ity of the data that can be found on open data portals is

1http://www.data-publica.com

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
WOD ’12, May 25 2012, Nantes, France
Copyright 2012 ACM 978-1-4503-1404-6/12/05. . . $15.00.

available as unstructured data (such as spreadsheets). To
integrate these sources or deliver data that web applications
or mobile services can leverage, raw open data files must
be structured through a processing workflow and delivered
through APIs (Application Programming Interfaces). This
workflow will ultimately transform “human usable informa-
tion”such as spreadsheets into“computer usable data”, dras-
tically increasing the value of the open data published.

Based on this observation, Data Publica, a french com-
pany, provides added value over the public data sources they
crawl, such as visualization of data sources or production of
integrated data. Achieving this goal raises the followings
problems:

Metadata extraction. Although structured formats ex-
ist to share and publish data, most of the public data avail-
able on the Web are Excel spreadsheets, with no difference
between data and metadata. Detecting the metadata in such
data sources is a mandatory step before performing data in-
tegration. To address this problem, we exploit computer
vision techniques to deal with complex tabular representa-
tions of spreadsheets and machine learning techniques that
take advantage of past human effort to automatically detect
metadata in the next spreadsheets.

Data sources integration. In order to produce added
value information over the public data sources, it is neces-
sary to integrate data sources together. For this purpose, we
need to perform schema matching, in order to match meta-
data structures [2]. In the context of open data, schema
matching is harder than in traditional data integration in
distributed database systems [13], mainly because important
metadata which are considered as implicit by document’s au-
thors, are simply missing. In terms of matching capabilities,
we rely on YAM++ [4], a powerful tool for schema matching
and ontology alignment2.

Visualization. To ease users’ access to public data re-
quires visualizing with high quality graphical representa-
tion. In Data Publica, the visualization task is delegated to
Google Data Explorer, a powerful collection of visualization
tools. However, Google Data Explorer imposes strict restric-
tions on input formats, such as separating data and meta-
data into different files and labeling metadata with some
Google predefined concepts. Therefore, using Google Data
Explorer requires metadata extraction and integration as
preliminary steps.

2YAM++ was recently ranked first at the Conference track
of the OAEI competition over 15 participants. See the
results at http://oaei.ontologymatching.org/2011/ for
more details.

To perform these tasks, Data Publica uses WebSmatch
http://websmatch.gforge.inria.fr/ , an environment for
Web data integration with a service-oriented architecture
with much flexibility for users and developers. Most tools
for metadata integration are implemented as heavy clients
and hard-coded with their own graphical interfaces. They
need to be downloaded and installed, which make them hard
to use with other independent tools (even if sources are pro-
vided) and reduce their dissemination. In contrast, WebS-
match is an open environment to be used as a Rich Internet
Application (RIA).

In this paper, we describe the architecture of WebSmatch
based on a real-life, end-to-end data integration scenario
over public data from Data Publica.

The paper is organized as follows. Section 2 introduces the
motivating example in terms of inputs (poorly structured
files) and outputs (rich visualization of integrated data).
Section 3 describes the data integration process with Web-
Smatch. Section 4 presents WebSmatch metadata detection
and integration services through the motivating example.
Section 5 discusses related work. Section 6 concludes.

2. MOTIVATING EXAMPLE
In this section, we describe a real example by giving the

inputs and outputs of the data integration process with Web-
Smatch.

Data Publica provides more than 12 000 files of pub-
lic data. [1] However, even though data formats become
richer and richer in terms of semantics and expressivity (e.g.
RDF), most data producers do not use them much in prac-
tice, because they require too much upfront work, and keep
using simpler tools like Excel. As an example, Data Publica
has started to crawl public data available from the French
administration, and found only 369 RDF files, compared
with 148.509 .xls files. Unfortunately, no integration tool is
able to deal in an effective way with spreadsheets. As far as
we know, only two recent initiatives, OpenII [16] and Google
Refine 3 deal with Excel files. However, their importers are
very simple and make some strict restrictions over the input
spreadsheets. For instance, they require to have exactly one
table per sheet and all the attributes have to be in columns,
at the first line of the sheet. Unfortunately, people do not
use Excel in such proper way. And these importers proved to
be useless on real spreadsheets from Data Publica. Thus, ex-
tracting metadata from such sources remains an open prob-
lem [6]. To illustrate this problem in the remaining part of
the paper, we use the following spreadsheet files as input.

Input files
For simplicity purposes, the scenario of this example involves
only 2 data sources. To be representative of real-life public
data, we choose two spreadsheet files:
http://www.data-publica.com/publication/1341 is an

Excel file. It contains data from the Climatic Research Unit
(http://www.cru.uea.ac.uk/) about the temperature evo-
lution in the world over the last decades. This file is quite
well formed, it only contains some blank lines and comments.
http://www.data-publica.com/publication/4736 is the

Excel file depicted in Figure 1. It contains data from OECD
(http://www.oecd.org/) about gas emissions in the world.
The file contains the evolution on the last 20 years on several

3http://code.google.com/p/google-refine/

countries and 4 OECD geographic zones4. This spreadsheet
is much more complex: it involves several sheets, with sev-
eral tables per sheet. It contains several blank lines and com-
ments, making it hard to automatically detect the table. In
addition, it involves bi-dimensional tabular structures (Fig-
ure 1) and some column names are missing. For instance,
the author of this file probably has in mind that the line
containing {1995, 2000} should be labelled by ”year”, which
is not obvious in the context of automatic integration.

Figure 1: Excel file crawled from OECD

Expected results

Figure 2: Evolution of gas emission

Charts (Figures 2 and 5), maps (Figure 4) and additional
animations with timelines are visualizations obtained after
extraction of metadata and integration of the inputs de-
scribed above.

Figure 2 shows clearly that the emission of gas grows up
significantly since 2000 in North America. Since then, EU15
countries stabilized their emissions, which corresponds to

4See http://stats.oecd.org/glossary/ for more details
about these zones.

Figure 3: Data Integration process

Figure 4: Geographic visualisation

the Kyoto agreement. Figure 4 is a screenshot of an anima-
tion of the same data on a map.

Figure 5 is a diagram involving both data sources. It
correlates the evolution of temperature in the world with gas
emission. Thus, it requires to integrate both data sources
together. The result shows clearly that the acceleration of
the augmentation of temperature at the world level increases
significantly since 2000 with gas emission.

Figure 5: Chart of integrated data

To perform visualization, WebSmatch exports the inte-
grated data in Dataset Publishing Language (DSPL) format
https://developers.google.com/public-data/) . DSPL

is used by Google Public Data Explorer and Data Publica’s
own API and visualisation engine. Such format assumes the
input data source to be precisely described. In particular,
data and metadata need be distinguished. The metadata
(source, title, author, header) are described in an XML file
whereas the data are in Comma-Separated Values (CSV)
files. In addition, metadata need to be tagged by some
DSPL predefined concepts (hierarchy including times or ge-
ographical entities). Such format is too strict to be usable
by a large public, and quite difficult to manipulate, even for
computer scientists. Thus, although Google Data Explorer
provides a powerful collection of visualization tools, it re-
quires much upfront work from the user, in particular, with
public spreadsheets like the ones described above.

3. DATA INTEGRATION PROCESS
WebSmatch is a Rich Internet Application (RIA), mean-

ing that Data Publica is able to use it remotely, as a Web
service, without any installation. To use all the WebSmatch
components (integration, matching, clustering and export),
Data Publica simply needs to put some redirection from
their back office. The integration of WebSmatch and Data
Publica is depicted in Figure 3. It involves the following flow:

Crawling. Data Publica has developed a crawler dedicated
to public data sources. It extracts data sources in various
formats (such as Excel spreadsheets, ontologies, and XML
files). Data sources that are already well structured are di-
rectly transformed into DSPL and loaded into Data Pub-
lica’s database. The other sources are sent to Websmatch
(about 64% of the volume)

Metadata extraction. The metadata extraction service
takes as input raw files and extracts metadata to distinguish
data from metadata. In the case of spreadsheets (more than
95 % of public data), since spreadsheet users often put sev-
eral tables per sheet in their document, the first task is to
identify the different tables. This is achieved by a com-
puter vision algorithm. Then the different tables that have
been identified are sent to the metadata classification ser-
vice, which relies on Machine Learning techniques.

Figure 6 depicts the WebSmatch interface for metadata
extraction. In this example, WebSmatch detects several ta-
bles in the same file. Around each table, WebSmatch detects
title (in red) and comments (in light grey) as metadata. This
information improves the matching between documents and
is used for visualization. After detecting the tables, the next
important step is attribute detection. In this example, at-
tributes are located in the first line of each table (a red box

Figure 6: Tables and Attributes detection interface
in WebSmatch

is around the attributes line).

Matching. As soon as the data sources have been cleaned,
and data and metadata distinguished, the data sources are
ready to be matched. This matching task achieves two goals.
First, matching data sources together allows discovering the
overlapping between sources, which can be exploited to gen-
erate integrated data. Second, concepts are identified in
order to generate the appropriate data description based on
shared DSPL concepts defined with Data Publica.

Clustering. To deal with high numbers of data sources, as
in Data Publica, the usual 2-way matching approach (which
makes visualization easy) becomes irrelevant. Instead, we
propose a schema clustering approach to visualize seman-
tic similarities between sources. Furthermore, clustering is
a very intuitive way to perform recommendation to a user,
who is looking for related data sources.

Visualization. Once data is extracted from the source file,
metadata is identified and concepts are matched, the infor-
mation is structured as DSPL and exported. The DSPL
file is then loaded in Data Publica’s database and served
through a generic API. This API supports different output
formats such as XML, CSV or Java Script Object Notation
(JSON) and has filtering capabilities with standard func-
tions (such as equals, greater than, in...) or geographic
filters. This API is currently used by mobile applications
and by Data Publica’s own data visualization tool to dis-
play graphs, maps and compare datasets. Alternatively, the
DSPL file can be visualized in Google Data Public Explorer.

To use the DSPL format, WebSmatch makes a .zip file for
each dataset. This .zip file contains an XML file and one or
more CSV files. The XML file describes the metadata such
as the structures of tables and the concepts used in each
table. Each table is declared as the following one (taken
from DSPL documentation):

<table id="country_slice_table">

<column id="country" type="string"/>

<column id="year" type="date" format="yyyy"/>

<column id="population" type="integer"/>

<data>

<file format="csv" encoding="utf-8">

country_slice.csv

</file>

</data>

</table>

In this case, the associated CSV file contains three at-
tributes and associated values. The attributes are divided
in two kinds, dimensions (such as time or geographic en-
tities) and metrics (values), and we use slices to make the
difference. The following XML file shows how we declare
this information:

<slice id="country_slice">

<dimension concept="country"/>

<dimension concept="time:year"/>

<metric concept="population"/>

<table ref="country_slice_table"/>

</slice>

In this XML file, we use two concepts: country and year.
A concept is a specific kind of data that we can declare for
our datasets. These concepts can be canonical concepts that
are used in different datasets.

Here an example of concept in the XML file:

<concept id="country" extends="geo:location">

<info>

<name><value>Country</value></name>

<description>

<value>My list of countries.</value>

</description>

</info>

<type ref="string"/>

<property id="name">

<info>

<name><value>Name</value></name>

<description>

<value>

The official name of the country

</value>

</description>

</info>

<type ref="string" />

</property>

<property concept="geo:continent" isParent="true"/>

<property id="capital" concept="geo:city" />

<table ref="countries_table" />

</concept>

A complete documentation can be found at https://developers.
google.com/public-data/docs/developer_guide

4. RUNNING THE COMPLETE WORKFLOW
We now illustrate the complete workflow of using WebS-

match by Data Publica on the scenario described in Section
2. In order to couple the Data Publica back office and the
WebSmatch application, Data Publica uses WebSmatch ser-
vices via its Crawl application. Using the option ”Publish
(WS)” on its application redirects the crawled document to
WebSmatch and the Data Publica user is also redirected to
the WebSmatch editor main frame.

Metadata Detection
After the Crawl (see Figure 7), the user is redirected to the
WebSmatch RIA. It is important to note that Excel files

Figure 7: Data Publica Crawl application

(such as .xls, for which there is no XML version) are not
structured at all. As can be seen in Figure 1, they can
contain lots of artifacts such as blank lines, blank columns,
titles, comments, and not only a simple table.

To get all the metadata and data, the chosen file is parsed
and then, two processes are applied to it. The first process
relies on a combination of computer vision algorithms.

Using the jexcelapi5 library as a wrapper, the spreadsheet
is first translated into a 0/1 bitmap (0 for void cell / 1 for
non empty cell).

In this bitmap, we run a connected component detection
algorithm. Algorithm 1 takes as input a function indicating
the color of a point in a bitmap (in our case, a datatype
of a cell) and within a one step linear parse of the matrix,
assigns a connected component to each cell.

Algorithm 1: Table Detection with Connected
Components

input : type(i,j): a function returning the datatype of
each cell

output: cc(i,j) : a function returning the connected
component of each cell

foreach 0 < i < n do
foreach 0 < j < m do

if cc(i− 1, j) 6= null then cc(i, j)← cc(i− 1, j)
else cc(i− 1, j − 1) 6= null
cc(i, j)← cc(i− 1, j − 1)
else if cc(i, j − 1) 6= null then
cc(i, j)← cc(i, j − 1)
else if cc(i− 1, j + 1) 6= null then
cc(i, j)← cc(i− 1, j + 1)
else if type(i, j) 6= void then

cc(i, j)← new ConnectedComponent()

Algorithm 1 allows us to partition the spreadsheet into re-
gions. We then use more sophisticated computer vision ap-
proaches, such as morphologic transformation [5] and erode
/ dilate functions [9] to refine the result of the connected
component detection: remove too small connected compo-
nents, merge connected components that have been split due
to a single void line, etc...

In the graphical interface (see Figure 8), the detected ta-
bles are drawn within a frame.

To decide whether data are line- or column-oriented, we
exploit the following idea: if data are presented in lines, the

5http://jexcelapi.sourceforge.net/

Figure 8: Table detection in an Excel file

datatypes of cells for each line are homogeneous, but the
datatypes of cells for each column may be heterogeneous.
We then compute the discrepancy in terms of cell datatypes
for each line (1) and for each column (2). If (1) > (2), then
the metadata are probably on the first lines, or on the first
columns otherwise.∑

0<i<n

(max
t∈{string,int,...}

(
∑

0<j<m

(type[i,j] = t))) (1)

∑
0<j<m

(max
t∈{string,int,...}

(
∑

0<i<n

(type[i,j] = t))) (2)

The end of the process relies on machine learning [10].
Using past experience and based on several criterions: the
discrepancy measures, the datatype of a cell, the data type
of the neighborhood of a cell, WebSmatch detects each im-
portant component in the spreadsheet file such as: titles,
comments, table data, table header (see Figure 8). Machine
learning is able to capture several spreadsheet users habits,
such as: “cells on the very first line of a connected compo-
nent, having the string datatype and bellow cells having a
numeric datatype are often metadata” or “cells having the
string datatype and void neighborhood and behind a table
often are a title”. The important feature is that such rules
have not been designed by the user, but observed on several
documents. They can be updated when new spreadsheets
are performed by the user.

Matching
WebSmatch relies on YAM++ [4] to perform the matching
task. YAM++ combines 14 different matching techniques,
divided in 3 main groups: string matchers, dictionary and
thesaurus matchers based on Wordnet6 and instance-based
matchers. Instance-based matcher is the generic name for
matchers, which deals both with metadata and data. Such
matchers are very useful when the column names are not
informational enough, which is often the case in public data.
The instance-based matcher implemented in YAM++ is very
powerful and one of the main reasons for YAM++ excellent
results at the 2011 competition of the Ontology Alignment
Evaluation Initiative (http://oaei.ontologymatching.org:
first position at the Conference track and second position at
the Benchmark track [11].

Figure 10 is a zoom of Figure 8 on the cell “année” (i.e.
year in french), which has been previously detected as meta-
data. This cell is detected as ”time:year” concept by apply-
ing the instance-based matcher on its data collection {1990,
1991, . . .}. Figure 9 depicts all the discovered matches over
the two files of the scenario and the DSPL concepts we pre-
viously imported into the tool.

Notice that the line of the second spreadsheet (Figure 1)
contains a line within a collection of years but with a void

6http://wordnet.princeton.edu/

Figure 9: Result of integration

Figure 10: Matching sources with DSPL concepts

cell as first column. Despite it is void, this cell is detected
by WebSmatch to be a metadata. Indeed, it is at the first
line and first column of the detected table and our machine
learning algorithm detects the metadata to be placed in the
first column. By applying the instance-based matcher, Web-
Smatch suggests this cell to be labelled with the ”time:year”
concept.

Clustering
Based on the semantic links discovered by the matchers be-
tween documents, WebSmatch automatically clusters the set
of documents. It first computes a distance between each pair
of documents.

Algorithm 2 computes the proximity between two docu-
ments. Since documents consist of several concepts, the ba-
sis of the proximity measure relies on the matching score be-
tween attributes (Line 3). For each pair of attributes (a1, a2)
of documents 1 and 2 (Lines 1-2), we sum the score of the
matching algorithm over (a1, a2). Some generic attributes
(e.g. geographical and temporal concepts) appear in many
documents. Therefore, sharing such attributes between two
documents is less relevant than sharing a less frequent one.
Thus, the matching score between attributes is divided by
its number of occurrences in the whole set of data sources.
To avoid that large documents (involving many attributes)
get an (artificially) high score, we normalize by the number
of attributes in each document (Line 4).

More formally, we build a bipartite graph, where nodes are
attributes from the documents and edges are the matches
discovered by the matching services, the weights over edges
are labelled by the confidence value of the discovered matches.
From this weighted bipartite graph, we compute the maxi-
mum matching and normalize it by dividing it by the mini-
mum numbers of attributes between the two documents.

From these distances between documents, we propose a
minimum energy graph model (adapted from [12]), which
represents the cluster structure based on repulsion between
documents. Figure 11 illustrates the result of the clustering
service after adding a given number of documents: each clus-
ter is drawn in a different color, documents are in the same
cluster if and only if they share some semantics links. Doc-
uments have different diameters: the larger is the diameter,
the more representative of the cluster is the document.

Algorithm 2: Compute proximity between docu-
ments
input : doc1, doc2: two documents
output: Prox(doc1, doc2) : a function returning the

proximity between two documents
1 Attr1 ← attributs of(doc1)
2 Attr2 ← attributs of(doc2)
3

p←
∑

a1∈Attr1,a2∈Attr2

match(a1, a2)

nbOcc(a1)× nbOcc(a2)

4 Prox(doc1, doc2)← 1
max(|Attr1|,|Attr2|)

× p

The clustering service provides an automatic way to clas-
sify documents in several categories. This is a very inter-
esting feature in the Data Publica application, where the
number of sources is huge (> 12.000). Finally, it is able to
perform some recommendation, by suggesting to the user
documents related to those she is currently interested in.

Aggregate data sources
Through its matching and clustering capabilities, WebS-
match automatically suggests to the user other documents,

Figure 11: The cluster

Figure 12: Suggestion of correlated documents

which are correlated to the current one. This facility is very
useful in the context of open public data, since the number
of sources is huge, as it avoids the user to rely on manual
searching.

Matching detects common attributes between documents,
and the proximity measure used to perform clustering (see
Algorithm 2) discards some useless suggestions. First, it
decreases the weight of concepts that are too generic (such
as year or country). Second, it suggest only documents of
the same cluster, thus avoiding too many suggestions.

Figure 12 is an illustration of the suggestion feature. In
this figure, the user is dealing with a document about un-
employment rates for young people. There is an attribute
called ”Taux de chômage” (”unemployment rate” in french)
and clicking on ”join” proposes different documents related
to unemployment. Each of these documents contains an at-
tribute related to the unemployment rate. The user can see
these documents and choose to aggregate the information
with the previous one. The results can be used directly in

the visualization.

Visualization
By detecting the blank cell, we are able to convert the bi-
dimensional table from the initial spreadsheet (Figure 1)
into a classical (SQL-like) flat table (Figure 9). Thanks to
the matching process, we are also able to identify concepts
(from DSPL) over the data sources and to detect common
attributes in order to produce integrated data.

At this step, we have distinguished data and metadata
from the initial Excel files, and flatted bi-dimensional tables.
We can easily generate an XML file describing the metadata
(title, header, concepts) and the .csv files containing the
data to fit the strict DSPL input format. As a result, we can
take advantage of the powerful capabilities of Google Data
Explorer in terms of visualization or load the structured data
into Data Publica’s database as shown in Section 2.

5. RELATED WORK
In terms of metadata extraction, the problem of iden-

tifying charts in documents using machine learning tech-
niques has been widely studied over the last decade. In
[7], the authors propose a method to automatically detect
bar-charts and pie-charts, using computer vision techniques
and instance-based learning. The approach developed in [14]
relies on a multiclass Support Vector Machine, as machine
learning classifier. It is able to identify more kinds of charts,
namely bar-charts, curve-plots, pie-charts, scatter-plots and
surface-plots. More generally, [3] presents a survey of extrac-
tion techniques of diagrams in complex documents, such as
scanned documents.

All these techniques allow recognition of charts, thus much
complex shapes than tables. But, in our case our problem
is not only to decide whether a table is present or not in the
document, but to provide precise coordinates of all tables in
the document.

Google Refine (code.google.com/p/google-refine/) is

a powerful tool to perform data cleaning. It helps the user
to deal with messy data, by discovering inconsistencies. For
instance, it allows string transformation to avoid the same
entity, spelled in two different ways to be considered as two
different entities. Google Refine also allows data augmen-
tation using external web services or named-entity recogni-
tion based on the FreeBase social database (http://www.
freebase.com). Using the “Add column based on a URL
fetched on column”, the user can add extra columns to her
document. Nevertheless, she needs to know precisely which
service to call and its complete syntax.

The major drawback of Google Refine when dealing with
Excel files is the strict assumptions made over the input
spreadsheet. Excel files need to have exactly one table per
sheet and all attributes have to be in column and at the
first line of the sheet (or the number of header lines have
to be explicitly mentioned). WebSmatch’s metadata extrac-
tion service is thus a mandatory step to use Google Refine
on documents such as those published by french administra-
tions and crawled by DataPublica.

Another cooperation between WebSmatch and Google Re-
fine deals with data augmentation. Thanks to its match-
ing capabilities, WebSmatch is able to tag the first col-
umn of a document (Figure 1) with DSPL concepts (namely
geo:location). Geo-encoding such column may then be done
automatically, without any involvement of the user.

Google has also developed another tool, in addition to
Refine, called Google Fusion Tables [15, 8]. This tool can
import CSV or XLS files to make larger datasets. It can
be used after cleaning the data in Refine. Fusion Tables is
also able to produce charts if given a clean input. Another
feature for Fusion Tables is that one can query over the
datasets via the user interface or an API. One can also find
related sets or merge multiple datasets.

Even though Fusion Tables offers some functionality sim-
ilar to WebSmatch (e.g. document aggregation or visual-
ization with geographic entities), it has some limitations.
When using Fusion tables, one has to provide clean spread-
sheets without any comments or titles. Fusion Tables can
only use clean spreadsheets. Another limitation is that it
does not use any matcher to find the same instances of two
attributes. For instance, to merge two documents with coun-
tries in them, one has to be careful with the names of each
country. They have to be strictly equal and written using
the same case. These limitations require the data to be pre-
processed before using the tool.

6. CONCLUSION
In this paper, we described WebSmatch, a flexible environ-

ment for Web data integration, based on a real data integra-
tion scenario over public data from Data Publica. We chose
a typical scenario that involves problems not solved by cur-
rents tools: poorly structured input data sources (XLS files)
and rich visualization of integrated data. WebSmatch sup-
ports the full process of importing, refining and integrating
data sources and uses third party tools for high quality visu-
alization and data delivery. A video playing the whole mo-
tivation example is available at http://websmatch.gforge.
inria.fr. Furthermore, it can be played with a test account
at the same url.

7. REFERENCES
[1] F. Bancilhon and B. Gans. Size and structure of the

french public sector information. In gov.opendata.at,
2011.

[2] Z. Bellahsene, A. Bonifati, and E. Rahm, editors.
Schema Matching and Mapping. Springer, 2011.

[3] D. Blostein, E. Lank, and R. Zanibbi. Treatment of
diagrams in document image analysis. In Int.
Conference on Theory and Application of Diagrams,
pages 330–344, 2000.

[4] N. Duyhoa, Z. Bellahsene, and R. Coletta. A generic
and flexible approach ontology alignment task. In Int.
Conf. Ontologies, DataBases, and Applications of
Semantics, pages 800–807, 2011.

[5] R. M. Haralick and L. G. Shapiro. Computer and
Robot Vision. Addison-Wesley, 1992.

[6] F. Hermans, M. Pinzger, and A. van Deursen.
Automatically extracting class diagrams from
spreadsheets. In European Conference on
Object-Oriented Programming, pages 52–75, 2010.

[7] W. Huang, S. Zong, and C. L. Tan. Chart image
classification using multiple-instance learning. In
IEEE Workshop on Applications of Computer Vision,
pages 27–, 2007.

[8] J. Kidon, M. I. of Technology. Dept. of
Electrical Engineering, and C. Science. Fusion Tables:
New Ways to Collaborate on Structured Data.
Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 2010.

[9] T. Y. Kong and A. Rosenfeld, editors. Topological
Algorithms for Digital Image Processing. Elsevier,
1996.

[10] T. M. Mitchell. Machine Learning. McGraw-Hill Series
in Computer Science. WCB/McGraw-Hill, 1997.

[11] D. Ngo, Z. Bellahsene, and R. Coletta. YAM++
results for OAEI 2011. In International Workshop on
Ontology Matching, 2011.

[12] A. Noack. Energy models for graph clustering. J.
Graph Algorithms Appl., 11(2):453–480, 2007.

[13] T. M. Özsu and P. Valduriez. Principles of Distributed
Database Systems, third edition. Springer, 2011.

[14] V. Prasad, B. Siddiquie, J. Golbeck, and L. Davis.
Classifying computer generated charts. In
Content-Based Multimedia Indexing Workshop, pages
85–92, 2007.

[15] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy,
H. Lee, F. Wu, R. Xin, and C. Yu. Finding related
tables. In SIGMOD, 2012.

[16] L. Seligman and al. OpenII: an open source
information integration toolkit. In Int. SIGMOD
Conference, pages 1057–1060, 2010.

