
Adaptive Parameterized Consistency?

Amine Balafrej1,2, Christian Bessiere1, Remi Coletta1, El Houssine Bouyakhf2

1CNRS, University of Montpellier, France
2LIMIARF/FSR, University Mohammed V Agdal, Rabat, Morocco
{balafrej,bessiere,coletta}@lirmm.fr, bouyakhf@fsr.ac.ma

Abstract. State-of-the-art constraint solvers uniformly maintain the
same level of local consistency (usually arc consistency) on all the in-
stances. We propose parameterized local consistency, an original approach
to adjust the level of consistency depending on the instance and on which
part of the instance we propagate. We do not use as parameter one of
the features of the instance, as done for instance in portfolios of solvers.
We use as parameter the stability of values, which is a feature based on
the state of the arc consistency algorithm during its execution. Parame-
terized local consistencies choose to enforce arc consistency or a higher
level of local consistency on a value depending on whether the stability of
the value is above or below a given threshold. We also propose a way to
dynamically adapt the parameter, and thus the level of local consistency,
during search. This approach allows us to get a good trade-off between
the number of values pruned and the computational cost. We validate
our approach on various problems from the CSP competition.

1 Introduction

Enforcing constraint propagation by applying local consistency during search is
one of the strengths of constraint programming (CP). It allows the constraint
solver to remove locally inconsistent values. This leads to a reduction of the
search space. Arc consistency is the oldest and most well-known way of propa-
gating constraints [2]. It has the nice feature that it does not modify the structure
of the constraint network. It just prunes infeasible values. Arc consistency is the
standard level of consistency maintained in constraint solvers. Several other lo-
cal consistencies pruning only values and stronger than arc consistency have
been proposed, such as max restricted path consistency or singleton arc consis-
tency [7]. These local consistencies are seldom used in practice because of the
high computational cost of maintaining them during search. However, on some
problems, maintaining arc consistency is not a good choice because of the high
number of ineffective revisions of constraints that penalize the CPU time. For
instance, Stergiou observed that when solving the scen11 radio link frequency
assignment problem (RLFAP) with an algorithm maintaining arc consistency,
only 27 out of the 4103 constraints of the problem were identified as causing a
domain wipe out and 1921 constraints did not prune any value [10].

? This work has been funded by the EU project ICON (FP7-284715).

Choosing the right level of local consistency for solving a problem requires
finding the good trade-off between the ability of this local consistency to remove
inconsistent values, and the cost of the algorithm that enforces it. Stergiou sug-
gests to take advantage of the power of strong consistencies to reduce the search
space while avoiding the high cost of maintaining them in the whole network. His
method results in a heuristic approach based on the monitoring of propagation
events to dynamically adapt the level of local consistency (arc consistency or max
restricted path consistency) to individual constraints. This prunes more values
than arc consistency and less than max restricted path consistency. The level of
propagation obtained is not characterized by a local consistency property. De-
pending on the order of propagation we can converge on different closures. When
dealing with global constraints, some work propose to weaken arc consistency
instead of strengthening it. In [8], Katriel et al. proposed a randomized filtering
scheme for AllDifferent and Global Cardinality Constraint. In [9], Sellmann in-
troduced the concept of approximated consistency for optimization constraints
and provided filtering algorithms for Knapsack Constraints based on bounds
with guaranteed accuracy.

In this paper we define the notion of stability of values. This is an original
notion not based on characteristics of the instance to solve but based on the state
of the arc consistency algorithm during its propagation. Based on this notion,
we propose parameterized consistencies, an original approach to adjust the level
of consistency inside a given instance. The intuition is that if a value is hard to
prove arc consistent (i.e., the value is not stable for arc consistency), this value
will perhaps be pruned by a stronger local consistency. The parameter p specifies
the threshold of stability of a value v below which we will enforce a higher con-
sistency to v. A parameterized consistency p-LC is thus an intermediate level of
consistency between arc consistency and another consistency LC, stronger than
arc consistency. The strength of p-LC depends on the parameter p. This approach
allows us to find a trade-off between the pruning power of the local consistency
and the computational cost of the algorithm that achieves it. We apply p-LC
to the case where LC is max restricted path consistency. We describe the algo-
rithm p-maxRPC3 (based on maxRPC3 [1]) that achieves p-max restricted path
consistency. Then, we propose ap-LC, an adaptive variant of p-LC which adapts
dynamically and locally the level of local consistency during search. Finally, we
experimentally assess the practical relevance of parameterized local consistency.
We show that by making good choices for the parameter p we take advantage of
both arc consistency light computational cost and LC effectiveness of pruning.
In the best cases, a solver using p-LC explores the same number of nodes as
LC with a number of constraint checks lower than LC, resulting in a CPU-time
lower than both arc consistency-based or LC-based solvers.

2 Background

A constraint network is defined as a set of n variables X = {x1, ..., xn}, a
set of ordered domains D = {D(x1), ..., D(xn)}, and a set of e constraints

C = {c1, ..., ce}. Each constraint ck is defined by a pair (var(ck), sol(ck)), where
var(ck) is an ordered subset of X, and sol(ck) is a set of combinations of values
(tuples) satisfying ck. In the following, we restrict ourselves to binary constraints
because the local consistency (maxRPC) we use here to instantiate our approach
is defined on the binary case only. However, the notions we introduce can be ex-
tended to non-binary constraints, by using maxRPWC for instance [4]. A binary
constraint c between xi and xj will be denoted by cij , and Γ (xi) will denote the
set of variables xj involved in a constraint with xi.

A value vj ∈ D(xj) is called an arc consistent support (AC support) for
vi ∈ D(xi) on cij if (vi, vj) ∈ sol(cij). A value vi ∈ D(xi) is arc consistent (AC)
if and only if for all xj ∈ Γ (xi) vi has an AC support vj ∈ D(xj) on cij . A
domain D(xi) is arc consistent if it is non empty and all values in D(xi) are arc
consistent. A network is arc consistent if all domains in D are arc consistent. If
enforcing arc consistency on a network N leads to a domain wipe out, we say
that N is arc inconsistent.

A tuple (vi, vj) ∈ D(xi)×D(xj) is path consistent (PC) if and only if for any
third variable xk there exists a value vk ∈ D(xk) such that vk is an AC support
for both vi and vj . In such a case, vk is called witness for the path consistency
of (vi, vj).

A value vj ∈ D(xj) is a max restricted path consistent (maxRPC) support for
vi ∈ D(xi) on cij if and only if it is an AC support and the tuple (vi, vj) is path
consistent. A value vi ∈ D(xi) is max restricted path consistent on a constraint
cij if and only if ∃vj ∈ D(xj) maxRPC support for vi on cij . A value vi ∈ D(xi)
is max restricted path consistent iff for all xj ∈ Γ (xi) vi has a maxRPC support
vj ∈ D(xj) on cij . A domain D(xi) is maxRPC if it is non empty and all values
in D(xi) are maxRPC. A network is maxRPC if all domains in D are maxRPC.

We say that a local consistency LC1 is stronger than a local consistency LC2

(LC2 � LC1) if LC2 holds on any constraint network on which LC1 holds.

The problem of deciding whether a constraint network has solutions is called
the constraint satisfaction problem (CSP), and it is NP-complete. Solving a CSP
is done by backtrack search that maintains some level of consistency between
each branching step.

3 Parameterized Consistency

In this section we present an original approach to parameterize a level of consis-
tency LC stronger than arc consistency so that it degenerates to arc consistency
when the parameter equals 0, to LC when the parameters equals 1, and to levels
in between when the parameter is between 0 and 1. The idea behind this is to be
able to adjust the level of consistency to the instance to be solved, hoping that
such an adapted level of consistency will prune significantly more values than
arc consistency while being less time consuming than LC.

Parameterized consistency is based on the concept of stability of values. We
first need to define the ’distance to end’ of a value in a domain. This captures

x1 x2

1

2

3

4

AC support

P

1

2

3

4

Fig. 1. Stability of supports on the example of the constraint x1 ≤ x2 with the domains
D(x1) = D(x2) = {1, 2, 3, 4}. (x1, 4) is not p-stable for AC.

how far a value is from the last in its domain. In the following, rank(v, S) is the
position of value v in the ordered set of values S.

Definition 1 (Distance to end of a value). The distance to end of a value
vi ∈ D(xi) is the ratio

∆(xi, vi) = (|Do(xi)| − rank(vi, Do(xi)))/|Do(xi)|,

where Do(xi) is the initial domain of xi.

We see that the first value in Do(xi) has distance (|Do(xi)|−1)/|Do(xi)| and
the last one has distance 0. Thus, ∀vi ∈ D(xi), 0 ≤ ∆(xi, vi) < 1.

We can now give the definition of what we call the parameterized stability
of a value for arc consistency. The idea is to define stability for values based
on the distance to the end of their AC supports. For instance, consider the
constraint x1 ≤ x2 with the domains D(x1) = D(x2) = {1, 2, 3, 4} (see Figure 1).
∆(x2, 1) = (4 − 1)/4 = 0.75, ∆(x2, 2) = 0.5, ∆(x2, 3) = 0.25 and ∆(x2, 4) = 0.
If p = 0.2, the value (x1, 4) is not p-stable for AC, because the first and only AC
support of (x1, 4) in the ordering used to look for supports, that is (x2, 4), has
a distance to end smaller than the threshold p. Proving that the pair (4, 4) is
inconsistent (by a stronger consistency) could lead to the pruning of (x1, 4). In
other words, applying a stronger consistency on (x1, 4) has more chances to lead
to its removal than applying it on for instance (x1, 1), which had no difficulty to
find its first AC support (distance to en of (x2, 1) is 0.75).

Definition 2 (p-stability for AC). A value vi ∈ D(xi) is p-stable for AC on
cij iff vi has an AC support vj ∈ D(xj) on cij such that ∆(xj , vj) ≥ p. A value
vi ∈ D(xi) is p-stable for AC iff ∀xj ∈ Γ (xi), vi is p-stable for AC on cij.

We are now ready to give the first definition of parameterized local consis-
tency. This first definition can be applied to any local consistency LC for which
the consistency of a value on a constraint is well defined. This is the case for
instance for all triangle-based consistencies [6,2].

Definition 3 (Constraint-based p-LC). Let LC be a local consistency
stronger than AC for which the LC consistency of a value on a constraint is
defined. A value vi ∈ D(xi) is constraint-based p-LC on cij iff it is p-stable for
AC on cij, or it is LC on cij. A value vi ∈ D(xi) is constraint-based p-LC iff
∀cij, vi is constraint-based p-LC on cij. A constraint network is constraint-based
p-LC iff all values in all domains in D are constraint-based p-LC.

Theorem 1. Let LC be a local consistency stronger than AC for which the LC
consistency of a value on a constraint is defined. Let p1 and p2 be two parameters
in [0..1]. If p1 < p2 then AC � constraint-based p1-LC � constraint-based p2-
LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 < p2 ≤
1, and suppose that there exists a p2-LC constraint network N that contains
a p2-LC value (xi, vi) that is p1-LC inconsistent. Let cij be the constraint on
which (xi, vi) is p1-LC inconsistent. Then, @vj ∈ D(xj) that is an AC support
for (xi, vi) on cij such that ∆(xj , vj) ≥ p1. Thus, vi is not p2-stable for AC on
cij . In addition, vi is not LC on cij . Therefore, vi is not p2-LC, and N is not
p2-LC.

Definition 3 can be modified to a more coarse-grained version that is not
dependent on the consistency of values on a constraint. It will have the advantage
to apply to any type of strong local consistency, even those, like singleton arc
consistency, for which the consistency of a value on a constraint is not defined.

Definition 4 (Value-based p-LC). Let LC be a local consistency stronger
than AC. A value vi ∈ D(xi) is value-based p-LC if and only if it is p-stable
for AC or it is LC. A constraint network is value-based p-LC if and only if all
values in all domains in D are value-based p-LC.

Theorem 2. Let LC be a local consistency stronger than AC. Let p1 and p2 be
two parameters in [0..1]. If p1 < p2 then AC � value-based p1-LC � value-based
p2-LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 < p2 ≤
1, and suppose that there exists a p2-LC constraint network N that contains a
p2-LC value (xi, vi) that is p1-LC-inconsistent. vi is p1-LC-inconsistent means
that:

1. vi is not p1-stable for AC: ∃cij on which vi is not p1-stable for AC. Then
@vj ∈ D(xj) that is an AC support for (xi, vi) on cij such that∆(xj , vj) ≥ p1.
Therefore, vi is not p2-stable for AC on cij , then vi is not p2-stable for AC.

2. vi is LC inconsistent

(1) and (2) imply that vi is not p2-LC, and N is not p2-LC.
For both types of definitions of p-LC, we have the following property on the

extreme cases (p = 0, p = 1).

Corollary 1. Let LC1 and LC2 be two local consistencies stronger than AC.
We have: value-based 0-LC2 = AC and value-based 1-LC2 = LC. If the LC1

consistency of a value on a constraint is defined, we also have: constraint-based
0-LC1 = AC and constraint-based 1-LC1 = LC.

4 Parameterized maxRPC: p-maxRPC

To illustrate the benefit of our approach, we apply parameterized consistency to
maxRPC to obtain the p-maxRPC level of consistency that achieves a consis-
tency level between AC and maxRPC.

Definition 5 (p-maxRPC). A value, a network, are p-maxRPC if and only if
they are constraint-based p-maxRPC.

From Theorem 1 and Corollary 1 we derive the following corollary.

Corollary 2. For any two parameters p1, p2, 0 ≤ p1 < p2 ≤ 1, AC � p1-
maxRPC � p2-maxRPC � maxRPC. 0-maxRPC = AC and 1-maxRPC =
maxRPC.

Algorithm 1: Initialization(X,D,C,Q)

1 begin
2 foreach xi ∈ X do
3 foreach vi ∈ D(xi) do
4 foreach xj ∈ Γ (xi) do
5 p-support← false
6 foreach vj ∈ D(xj) do
7 if (vi, vj) ∈ cij then
8 LastACxi,vi,xj← vj
9 if ∆(xj , vj) ≥ p then

10 p-support← true
11 LastPCxi,vi,xj← vj
12 break;

13 if searchPCwit(vi, vj) then
14 p-support← true
15 LastPCxi,vi,xj← vj
16 break;

17 if ¬p-support then
18 remove vi from D(xi)
19 Q← Q ∪ {xi}
20 break;

21 if D(xi) = ∅ then return false

22 return true

We propose an algorithm for p-maxRPC, based on maxRPC3, the best ex-
isting maxRPC algoritm. We do not describe maxRPC3 in full detail as it can
be found in [1]. We only describe procedures where changes to maxRPC3 are

Algorithm 2: checkPCsupLoss(vj , xi)

1 begin
2 if LastACxj ,vj ,xi∈ D(xi) then bi ← max(LastPCxj ,vj ,xi+1,LastACxj ,vj ,xi)
3 else bi ← max(LastPCxj ,vj ,xi+1,LastACxj ,vj ,xi+1)
4 foreach vi ∈ D(xi), vi ≥ bi do
5 if (vj , vi) ∈ cji then
6 if LastACxj ,vj ,xi /∈ D(xi) & LastACxj ,vj ,xi>LastPCxj ,vj ,xi then
7 LastACxj ,vj ,xi← vi

8 if ∆(xi, vi) ≥ p then LastPCxj ,vj ,xi← vi return true
9 if searchPCwit(vj , vi) then LastPCxj ,vj ,xi← vi return true

10 return false

Algorithm 3: checkPCwitLoss(xj , vj , xi)

1 begin
2 foreach xk ∈ Γ (xj) ∩ Γ (xi) do
3 witness← false
4 if vk ←LastPCxj ,vj ,xk∈ D(xk) then
5 if ∆(xk, vk) ≥ p then witness← true
6 else
7 if LastACxj ,vj ,xi∈ D(xi) & LastACxj ,vj ,xi=LastACxk,vk,xi

8 OR LastACxj ,vj ,xi∈ D(xi) & (LastACxj ,vj ,xi , vk) ∈ cik
9 OR LastACxk,vk,xi∈ D(xi) & (LastACxk,vk,xi , vj) ∈ cij

10 then witness← true
11 else
12 if searchACsup(xj , vj , xi) & searchACsup(xk, vk, xi) then
13 foreach vi ∈ D(xi), vi ≥ max(LastACxj ,vj ,xi , LastACxk,vk,xi)

do
14 if (vj , vi) ∈ cji & (vk, vi) ∈ cki then
15 witness← true
16 break;

17 if ¬witness & ¬checkPCsupLoss(vj , xk) then return false

18 return true

necessary to design p-maxRPC3, a coarse grained algorithm that performs p-
maxRPC. We use light grey to emphasize the modified parts of the original
maxRPC3 algorithm.

maxRPC3 uses a propagation list Q where it inserts the variables whose do-
mains have changed. It also uses two other data structures: LastAC and LastPC.
For each value (xi, vi) LastACxi,vi,xj

stores the smallest AC support for (xi, vi)
on cij and LastPCxi,vi,xj

stores the smallest PC support for (xi, vi) on cij (i.e.,

the smallest AC support (xj , vj) for (xi, vi) on cij such that (vi, vj) is PC). This
algorithm consists in two phases: initialization and propagation.

In the initialization phase (algorithm 1) maxRPC3 checks if each value (xi, vi)
has a maxRPC-support (xj , vj) on each constraint cij . If not, it removes vi from
D(xi) and inserts xi in Q. To check if a value (xi, vi) has a maxRPC-support
on a constraint cij , maxRPC3 looks first for an AC-support (xj , vj) for (xi, vi)
on cij , then it checks if (vi, vj) is PC. In this last step, changes were necessary
to obtain p-maxRPC3 (lines 9-12). We check if (vi, vj) is PC (line 13) only if
∆(xj , vj) is smaller than the parameter p (line 9).

The propagation phase of maxRPC3 consists in propagating the effect of
deletions. While Q is non empty, maxRPC3 extracts a variable xi from Q and
checks for each value (xj , vj) of each neighboring variable xj ∈ Γ (xi) if it is
not maxRPC because of deletions of values in D(xi). A value (xj , vj) becomes
maxRPC inconsistent in two cases: if its unique PC-support (xi, vi) on cij has
been deleted, or if we deleted the unique witness (xi, vi) for a pair (vj , vk) such
that (xk, vk) is the unique PC-support for (xj , vj) on cjk. So, to propagate dele-
tions, maxRPC3 checks if the last maxRPC support (last known support) of
(xj , vj) on cij still belongs to the domain of xi, otherwise it looks for the next
support (algorithm 2). If such a support does not exist, it removes the value
vj and adds the variable xj to Q. Then if (xj , vj) has not been removed in the
previous step, maxRPC3 checks (algorithm 3) whether there is still a witness
for each pair (vj , vk) such that (xk, vk) is the PC support for (xj , vj) on cjk. If
not, it looks for the next maxRPC support for (xj , vj) on cjk. If such a support
does not exist, it removes vj from D(xj) and adds the variable xj to Q.

In the propagation phase also, we modified maxRPC3 to check if the values
are still p-maxRPC instead of checking if they are maxRPC. In p-maxRPC3,
the last p-maxRPC support for (xj , vj) on cij is the last AC support if (xj , vj)
is p-stable for AC on cij . If not, it is the last PC support. Thus, p-maxRPC3
checks if the last p-maxRPC support (last known support) of (xj , vj) on cij
still belongs to the domain of xi. If not, it looks (algorithm 2) for the next AC
support (xi, vi) on cij , and checks if (vi, vj) is PC (line 9) only when ∆(xi, vi) < p
(line 8). If no p-maxRPC support exists, p-maxRPC3 removes the value and adds
the variable xj to Q. If the value (xj , vj) has not been removed in the previous
phase, p-maxRPC3 checks (algorithm 3) whether there is still a witness for
each pair (vj , vk) such that (xk, vk) is the p-maxRPC support for vj on cjk and
∆(xk, vk) < p. If not, it looks for the next p-maxRPC support for vj on cjk. If
such a support does not exist, it removes vj from D(xj) and adds the variable
xj to Q.

5 Experimental validation of p-maxRPC

To validate the approach of parameterized local consistency, we made a first basic
experiment. The purpose of this experiment is to see if there exist problems on
which a given level of p-maxRPC, with a p uniform on all the constraint network
and static during the whole search is more efficient than AC or maxRPC, or both.

 0

 0.5

 1

 1.5

C
P
U

(s
)

 0

 0.5

 1

 1.5

C
P
U

(s
)

 0

 0.5

 1

 1.5

C
P
U

(s
)

 0

 0.5

 1

 1.5

C
P
U

(s
)

 0
 1e+06

 1e+07

C
C

K

 0
 1e+06

 1e+07

C
C

K

 0
 1e+06

 1e+07

C
C

K

 0
 1e+06

 1e+07

C
C

K

 0

 200

 400

 600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
O

D
E

 0

 200

 400

 600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
O

D
E

 0

 200

 400

 600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
O

D
E

 0

 200

 400

 600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
O

D
E

p

AC p-maxRPC maxRPC

Fig. 2. Instance where p-maxRPC outper-
forms both AC and maxRPC.

 0

 50

 100

 300

C
P
U

(s
)

 0

 50

 100

 300

C
P
U

(s
)

 0

 50

 100

 300

C
P
U

(s
)

 0

 50

 100

 300

C
P
U

(s
)

 0
 1e+08

 1e+09

C
C

K

 0
 1e+08

 1e+09

C
C

K

 0
 1e+08

 1e+09

C
C

K

 0
 1e+08

 1e+09

C
C

K
 0

 35000

 70000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N

O
D

E
 0

 35000

 70000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N

O
D

E
 0

 35000

 70000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N

O
D

E
 0

 35000

 70000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
N

O
D

E

p

AC p-maxRPC maxRPC

Fig. 3. Instance where AC outperforms p-
maxRPC.

We have implemented the algorithms that achieve p-maxRPC as described in
the previous section in our own binary constraint solver, in addition to maxRPC
(maxRPC3 version [1]) and AC (AC2001 version [3]). All these algorithms are
maintained during search. We tested these algorithms on several classes of prob-
lems of the International Constraint Solver Competition 091. We have only se-
lected problems involving binary constraints. To isolate the effect of propagation,
we used the lexicographic ordering for variables and values. We set the CPU time-
out to one hour. Our experiments were conducted on a 12-core Genuine Intel
machine with 16Gb of RAM running at 2.92GHz.

On each instance of our experiment, we ran AC, max-RPC, and p-maxRPC
for all values of p in {0.1, 0.2, . . . , 0.9}. Performance has been measured in terms
of CPU time in seconds, the number of visited nodes (NODE) and the number
of constraint checks (CCK). Results are presented as ”CPU time (p)”, where p
is the parameter for which p-maxRPC gives the best result.

Table 1 reports the performance of AC, maxRPC, and p-maxRPC for the
value of p producing the best CPU time, on Radio Link Frequency Assignment
Problems (RLFAPs), Geom problems, and queens knights problems. The CPU
time of the best algorithm is highlighted with bold. On RLFAP and Geom, we
observe the existence of a parameter p where p-maxRPC is faster than both AC
and maxRPC for most instances of these two classes of problems. On the queens-
knight problem, however, AC is always the best algorithm. In Figures 2 and 3, we

1 http://cpai.ucc.ie/09/

Table 1. Performance (CPU time, nodes and constraint checks) of AC, p-maxRPC,
and maxRPC on various instances.

AC p-maxRPC maxRPC

scen1-f8 CPU(s) Time-out 1.39 (0.2) 6.10
#nodes – 927 917
#ccks – 1,397,440 26,932,990

scen2-f24 CPU(s) Time-out 0.13 (0.3) 0.65
#nodes – 201 201
#ccks – 296,974 3,462,070

scen3-f10 CPU(s) Time-out 0.89 (0.5) 2.80
#nodes – 469 408
#ccks – 874,930 13,311,797

geo50-20-d4-75-26 CPU(s) 111.48 17.80 (1.0) 15.07
#nodes 477,696 3,768 3,768
#ccks 96,192,822 40,784,017 40,784,017

geo50-20-d4-75-43 CPU(s) 1,671.35 1,264.36 (0.5) 1,530.02
#nodes 4,118,134 555,259 279,130
#ccks 1,160,664,461 1,801,402,535 3,898,964,831

geo50-20-d4-75-46 CPU(s) 1,732.22 371.30 (0.6) 517.35
#nodes 3,682,394 125,151 64,138
#ccks 1,516,856,615 584,743,023 1,287,674,430

geo50-20-d4-75-84 CPU(s) 404.63 0.44 (0.6) 0.56
#nodes 2,581,794 513 333
#ccks 293,092,144 800,657 1,606,047

queensKnights10-5-add CPU(s) 27.14 30.79 (0.2) 98.44
#nodes 82,208 81,033 78,498
#ccks 131,098,933 148,919,686 954,982,880

queensKnights10-5-mul CPU(s) 43.89 83.27 (0.1) 300.74
#nodes 74,968 74,414 70,474
#ccks 104,376,698 140,309,576 1,128,564,278

try to understand more closely what makes p-maxRPC better or worse than AC
and maxRPC. Figures 2 and 3 plot the performance (CPU, NODE and CCK)
of p-maxRPC for all values of p from 0 to 1 by steps of 0.1 against performance
of AC and maxRPC. Figure 2 shows an instance where p-maxRPC solves the
problem faster than AC and maxRPC for values of p in the range [0.3..0.8]. We
observe that p-maxRPC is faster than AC and maxRPC when it reduces the size
of the search space as much as maxRPC (same number of nodes visited) with a
number of CCK closer to the number of CCK produced by AC. Figure 3 shows
an instance where the CPU time for p-maxRPC is never better than both AC
and maxRPC. We see that if the CPU time for p-maxRPC is two to three times
better than maxRPC, it fails to improve AC because the number of constraint
checks performed by p-maxRPC is much higher than the number of constraint
checks performed by AC, whereas the number of nodes visited by p-maxRPC is
not significantly reduced compared to the number of nodes visited by AC. From

these observations, it thus seems that p-maxRPC outperforms AC and maxRPC
when it finds a compromise between the number of nodes visited (the power of
maxRPC) and the number of CCK needed to maintain (the light cost of AC).

In Figures 2 and 3 we can see that the CPU time for 1-maxRPC (respec-
tively 0-maxRPC) is greater than the CPU time for maxRPC (respectively AC)
although the two consistencies are equivalent. The reason is that p-maxRPC
performs tests on the distances. For p = 0, we also explain this difference by the
fact that p-maxRPC maintains data structures that AC does not use.

6 Adaptative Parameterized Consistency: ap-maxRPC

In the previous section, we have defined p-maxRPC, a version of parameterized
consistency where the strong local consistency is maxRPC. We have performed
some initial experiments where p has the same value during the whole search and
everywhere in the constraint network. However, the algorithm we proposed to
enforce p-maxRPC does not specify how p is chosen. In this section, we propose
two possible ways to dynamically and locally adapt the parameter p in order to
solve the problem faster than both AC and maxRPC. Instead of using a single
parameter p during the whole search and for the whole constraint network, we
propose to use several local parameters and to adapt the level of local consis-
tency by dynamically adjusting the value of the different local parameters during
search. The idea is to concentrate the effort of propagation by increasing the level
of consistency in the most difficult parts of the instance. We can determine these
difficult parts using heuristics based on conflicts in the same vein as the weight
of a constraint or the weighted degree of a variable in [5].

6.1 Constraint-Based ap-maxRPC : apc-maxRPC

The first technique we propose, called constraint-based ap-maxRPC, assigns a
parameter p(ck) to each constraint ck in C. We define this parameter to be
correlated to the weight of the constraint. The idea is to apply a higher level of
consistency in parts of the problem where the constraints are the most active.

Definition 6 (The weight of a constraint [5]). The weight w(ck) of a con-
straint ck ∈ C is an integer that is incremented every time a domain wipe out
occurs while performing propagation on this constraint.

We define the adaptive parameter p(ck) local to constraint ck in such a way that
it is greater when the weight w(ck) is higher wrt to other constraints.

∀ck ∈ C, p(ck) =
w(ck)−minc∈C(w(c))

maxc∈C(w(c))−minc∈C(w(c))
(1)

Equation 1 is normalized so that we are guaranteed that 0 ≤ p(ck) ≤ 1 for
all ck ∈ C and that there exists ck1 with p(ck1) = 0 (the constraint with lowest
weight) and ck2

with p(ck2
) = 1 (the constraint with highest weight).

We are ready to define adaptive parameterized consistency based on con-
straints.

Definition 7 (constraint-based ap-maxRPC). A value vi ∈ D(xi) is
constraint-based ap-maxRPC (or apc-maxRPC) on a constraint cij if and only
if it is constraint-based p(cij)-maxRPC. A value vi ∈ D(xi) is apc-maxRPC
iff ∀cij, vi is apc-maxRPC on cij. A constraint network is apc-maxRPC iff all
values in all domains in D are apc-maxRPC.

6.2 Variable-Based ap-maxRPC: apx-maxRPC

The technique proposed in Section 6.1 can only be used on consistencies where
the consistency of a value on a constraint is defined. We give a second technique
which can be used on constraint-based or variable-based local consistencies in-
differently. We instantiate our definitions to maxRPC but the extension to other
consistencies is direct. We call this new technique variable-based ap-maxRPC.
We need to define the weighted degree of a variable as the aggregation of the
weights of all constraints involving it.

Definition 8 (The weighted degree of a variable [5]). The weighted degree
wdeg(xi) of a variable xi is the sum of the weights of the constraints involving
xi and one other uninstantiated variable.

We associate each variable with an adaptive local parameter based on its
weighted degree.

∀xi ∈ X, p(xi) =
wdeg(xi)−minx∈X(wdeg(x))

maxx∈X(wdeg(x))−minx∈X(wdeg(x))
(2)

As in Equation 1, we see that the local parameter is normalized so that we are
guaranteed that 0 ≤ p(xi) ≤ 1 for all xi ∈ X and that there exists xk1

with
p(xk1

) = 0 (the variable with lowest weighted degree) and xk2
with p(xk2

) = 1
(the variable with highest weighted degree).

Definition 9 (variable-based ap-maxRPC). A value vi ∈ D(xi) is variable-
based ap-maxRPC (or apx-maxRPC) if and only if it is value-based p(xi)-
maxRPC. A constraint network is apx-maxRPC iff all values in all domains
in D are apx-maxRPC.

7 Experimental Evaluation of ap-maxRPC

In Section 5 we have shown that maintaining a static form of p-maxRPC during
the whole search can lead to a promising trade-off between computational effort
and pruning when all algorithms follow the same static variable ordering. In this
section, we want to put our contributions in the real context of a solver using
the best known variable ordering heuristic, dom/wdeg, though it is known that
this heuristic is so good that it reduces a lot the differences in performance that
other features of the solver could provide. We have compared the two variants of
adaptive parameterized consistency introduced in Section 6 to AC and maxRPC.

We ran the four algorithms on radio link frequency assignment problems, geom
problems, and queens knights problems.

Table 2 reports some representative results. A first observation is that, thanks
to the dom/wdeg heuristic, we were able to solve more instances before the cutoff
of one hour, especially the scen11 variants of RLFAP. A second observation is
that apc-maxRPC and apx-maxRPC are both faster than at least one of the
two extreme consistencies (AC and maxRPC) on all instances except scen7-
w1-f4 and geo50-20-d4-75-30. Third, when apx-maxRPC and/or apc-maxRPC
are faster than both AC and maxRPC (scen1-f9, scen2-f25, scen11-f9, scen11-
f10 and scen11-f11), we observe that the gap in performance in terms of nodes
and CCKs between AC and maxRPC is significant. Except for scen7-w1-f4, the
number of nodes visited by AC is three to five times greater than the number
of nodes visited by maxRPC and the number of constraint checks performed by
maxRPC is twelve to sixteen times greater than the number of constraint checks
performed by AC. For the Geom instances the CPU time of the ap-maxRPC
algorithms is between AC and maxRPC, and it is never lower than the CPU
time of AC. This probably means that when solving these instances with the
dom/wdeg heuristic, there is no need for sophisticated local consistencies. In
general we see that the ap-maxRPC algorithms fail to improve both the two
extreme consistencies simultaneously for the instances where the performance
gap between AC and maxRPC is low.

If we compare apx-maxRPC to apc-maxRPC, we observe that although apx-
maxRPC is coarser in its design than apc-maxRPC, apx-maxRPC is often faster
than apc-maxRPC. We can explain this by the fact that the constraints initially
all have the same weight equal to 1. Hence, all local parameters ap(ck) initially
have the same value 0, so that apc-maxRPC starts resolution by applying AC
everywhere. It will start enforcing some amount of maxRPC only after the first
wipe-out occurred. On the contrary, in apx-maxRPC, when constraints all have
the same weight, the local parameter p(xi) is correlated to the degree of the vari-
able xi. As a result, apx-maxRPC benefits from the filtering power of maxRPC
even before the first wipe-out.

In Table 2, we reported only the results on a few representative instances.
Table 3 summarizes the whole set of experiments. It shows the average CPU time
for each algorithm on all instances of the different classes of problems tested. We
considered only the instances solved before the cutoff of one hour by at least one
of the four algorithms. To compute the average CPU time of an algorithm on
a class of problems, we add the CPU time needed to solve each instance solved
before the cutoff of one hour, and for the instances not solved before the cutoff,
we add one hour. We observe that the adaptive approach is, on average, faster
than the two extreme consistencies AC and maxRPC, except on the Geom class.

In apx-maxRPC and apc-maxRPC, we update the local parameters p(xi) or
p(ck) at each node in the search tree. We could wonder if such a frequent update
does not produce too much overhead. To answer this question we performed a
simple experiment in which we update the local parameters every 10 nodes only.
We re-ran the whole set of experiments with this new setting. Table 4 reports

Table 2. Performance (CPU time, nodes and constraint checks) of AC, variable-
based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and
maxRPC on various instances.

AC apx-maxRPC apc-maxRPC maxRPC

scen1-f9 CPU(s) 90.34 31.17 33.40 41.56
#nodes 2,291 1,080 1,241 726
#ccks 3,740,502 3,567,369 2,340,417 50,045,838

scen2-f25 CPU(s) 70.57 46.40 27.22 81.40
#nodes 12,591 4,688 3,928 3,002
#ccks 15,116,992 38,239,829 8,796,638 194,909,585

scen6-w2 CPU(s) 7.30 1.25 2.63 0.01
#nodes 2,045 249 610 0
#ccks 2,401,057 1,708,812 1,914,113 85,769

scen7-w1-f4 CPU(s) 0.28 0.17 0.54 0.30
#nodes 567 430 523 424
#ccks 608,040 623,258 584,308 1,345,473

scen11-f9 CPU(s) 2,718.65 1,110.80 1,552.20 2,005.61
#ccks 103,506 40,413 61,292 32,882
#nodes 227,751,301 399,396,873 123,984,968 3,637,652,122

scen11-f10 CPU(s) 225.29 83.89 134.46 112.18
#ccks 9,511 3,510 4,642 2,298
#nodes 12,972,427 17,778,458 6,717,485 156,005,235

scen11-f11 CPU(s) 156.76 39.39 93.69 76.95
#ccks 7,050 2,154 3,431 1,337
#nodes 7,840,552 10,006,821 5,143,592 91,518,348

scen11-f12 CPU(s) 139.91 69.50 88.76 61.92
#ccks 7,050 2,597 3,424 1,337
#nodes 7,827,974 11,327,536 5,144,835 91,288,023

geo50-20d4-75-19 CPU(s) 242.13 553.53 657.72 982.34
#nodes 195,058 114,065 160,826 71,896
#ccks 224,671,319 594,514,132 507,131,322 2,669,750,690

geo50-20d4-75-30 CPU(s) 0.84 1.01 1.07 1.02
#nodes 359 115 278 98
#ccks 261,029 432,705 313,168 1,880,927

geo50-20d4-75-84 CPU(s) 0.02 0.09 0.05 0.29
#nodes 59 54 59 52
#ccks 33,876 80,626 32,878 697,706

queensK20-5-mul CPU(s) 787.35 2,345.43 709.45 Time-out
#codes 55,596 40,606 41,743 –
#ccks 347,596,389 6,875,941,876 379,826,516 –

queensK15-5-add CPU(s) 24.69 17.01 14.98 35.05
#codes 24,639 12,905 12,677 11,595
#ccks 90,439,795 91,562,150 58,225,434 394,073,525

Table 3. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated at each node

AC apx-maxRPC apc-maxRPC maxRPC

geom 69.28 180.57 191.03 279.30
Average(CPU) scen 18.95 9.63 8.30 13.94

scen11 810.15 325.90 467.28 564.17
queensK 135.95 395.41 121.75 610.51

Table 4. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated every 10 nodes

AC apx-maxRPC apc-maxRPC maxRPC

geom 69.28 147.20 189.42 279.30
Average(CPU) scen 18.95 7.40 8.86 13.94

scen11 810.15 311.74 417.97 564.17
queensK 135.95 269.51 117.18 610.52

the CPU time average results. We observe that when the local parameters are
updated every 10 nodes, the gain for the adaptive approach is, on average, greater
than when the local parameters are updated at each node. This gives room for
improvement, by trying to adapt the frequency of update of these parameters.

8 Conclusion

We have introduced the notion of stability of values for arc consistency, a notion
based on the depth of their supports in their domain. We have used this notion
to propose parameterized consistency, a technique that allows to define levels
of local consistency of increasing strength between arc consistency and a given
strong local consistency. We have instantiated the generic parameterized con-
sistency approach to max restricted path consistency. We have experimentally
shown that the concept of parameterized consistency is viable. Then we have
introduced two techniques which allow us to make the parameter adaptable dy-
namically and locally during search . We have evaluated these two techniques
experimentally and we have observed that adapting the level of local consis-
tency during search using the parameterized consistency concept is a promising
approach that can outperform both MAC and a strong local consistency on many
problems.

References

1. Balafoutis, T., Paparrizou, A., Stergiou, K., Walsh, T.: New algorithms for max
restricted path consistency. Constraints 16(4), 372–406 (2011)

2. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, chap. 3. Elsevier (2006)

3. Bessiere, C., Régin, J.C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc
consistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

4. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary
constraints. Artif. Intell. 172(6-7), 800–822 (2008)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI. pp. 146–150 (2004)

6. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial
Intelligence Research 14, 205–230 (2001)

7. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint
satisfaction problem. In: IJCAI (1). pp. 412–417 (1997)

8. Katriel, I., Van Hentenryck, P.: Randomized filtering algorithms. Technical Report
CS-06-09, Brown University (June 2006)

9. Sellmann, M.: Approximated consistency for knapsack constraints. In: CP. pp.
679–693 (2003)

10. Stergiou, K.: Heuristics for dynamically adapting propagation in constraint satis-
faction problems. AI Commun. 22, 125–141 (August 2009)

	Adaptive Parameterized Consistency

