
View Selection Under Multiple Resource

Constraints in a Distributed Context

Imene Mami1, Zohra Bellahsene1, and Remi Coletta2

1 University Montpellier 2 - INRIA, LIRMM, France
2 University Montpellier 2 - LIRMM, France

{mami,bella,coletta}@lirmm.fr

Abstract. The use of materialized views in commercial database sys-
tems and data warehousing systems is a common technique to improve
the query performance. In past research, the view selection issue has es-
sentially been investigated in the centralized context. In this paper, we
address the view selection problem in a distributed scenario. We �rst ex-
tend the AND-OR view graph to capture the distributed features. Then,
we propose a solution using constraint programming for modeling and
solving the view selection problem under multiple resource constraints in
a distributed context. Finally, we experimentally show that our approach
provides better performance resulting from evaluating the quality of the
solutions in terms of cost saving.

1 Introduction

View materialization is a widely used strategy in commercial database systems
and data warehousing systems to improve the query performance. Indeed, an-
swering queries using materialized views can signi�cantly speed up the query
processing since the access to materialized views is much faster than recom-
puting views on demand. However, whenever a base relation is changed the
materialized views built on it have to be updated in order to compute up-to-
date query results. The process of updating materialized views is known as view
maintenance. Besides, materialized views need storage space.

The problem of choosing which views to materialize by taking into account
three important features: query cost, view maintenance cost and storage space
is known as the view selection problem. This is one of the most challenging
problems in data warehousing [16]. For this reason the view selection problem has
received signi�cant attention in past research but most of these studies presented
solutions in the centralized context [9].

In a distributed environment the view selection problem becomes more chal-
lenging. Indeed, it includes another issue which is to decide on which computer
nodes the selected views should be materialized. Furthermore, resource con-
straints such as CPU, IO, network bandwidth have to be taken into considera-
tion. The view selection problem in a distributed context may also be constrained

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

Author manuscript, published in "DEXA'2012: Database and Expert Systems Applications, Austria"
 DOI : 10.1007/978-3-642-32597-7_25

http://dx.doi.org/10.1007/978-3-642-32597-7_25
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00736722
http://hal.archives-ouvertes.fr

by storage space capacities per computer node and maximum view maintenance
cost.

To the best of our knowledge, no past work has addressed this problem under
all these resource constraints. Our constraint programming based approach �lls
this gap. Indeed, all these resource constraints will easily be modeled with the
rich constraint programming language. Furthermore, the heuristic algorithms
which have been designed to solve the view selection problem in a distributed
scenario are deterministic algorithms. For example greedy algorithm [3] and ge-
netic algorithm [8], a type of randomized algorithms. These heuristic algorithms
may provide near optimal solutions but there is no guarantee to �nd the global
optimum because of their greedy nature or their probabilistic behavior. We have
demonstrated in our recent work [10] the bene�t of using constraint program-
ming techniques for solving the view selection problem with reference to the
centralized context in terms of the solution quality. Indeed, our approach is
able to provide a near optimal solution to the view selection problem during a
given time interval. The quality of this solution may be improved over time until
reaching the optimal solution. Speci�cally, our main contributions are:

1. We propose an extension of the concept of the AND-OR view graph [15]
in order to re�ect the relation between views and communication network
within the distributed scenario. We make use of the concept of the AND-OR
view graph to exhibit common sub-expressions between queries of workload
which can be exploited for sharing updates and storage space.

2. We describe how to model the view selection problem in a distributed con-
text as a Constraint Satisfaction Problem (CSP). Its resolution is supported
automatically by the constraint solver embedded in the constraint program-
ming language such as the powerful version of CHOCO [1]. The view selection
problem has been addressed under multiple resource constraints. The limited
resources are the total view maintenance cost and the storage space capacity
for each computer node. Furthermore, we consider the IO and CPU costs for
each computer node as well as the network bandwidth.

3. We have implemented our approach and compared it with a randomized
method i.e., genetic algorithm [8] which has been designed for a distributed
setting. We experimentally show that our approach provides better perfor-
mance resulting from evaluating the quality of the solutions in terms of cost
saving.

The rest of this paper is organized as follows. Section 2 de�nes the view selec-
tion problem in a distributed scenario and discusses the settings for the problem.
In section 3, we present the framework that we have designed speci�cally to a
distributed setting. Section 4 describes how to model the view selection problem
under multiple resource constraints in a distributed environment as a constraint
satisfaction problem (CSP). In section 5, it is provided our experimental evalua-
tion. Section 6 presents a brief survey of related work. Finally, section 7 contains
concluding remarks and future work.

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

2 Preliminaries

2.1 View Selection Problem and Cost Model in a Distributed

Context

View Selection Problem The general problem of view selection in a central-
ized context is to select a set of views to be materialized that minimizes the cost
of evaluating the query workload. In a distributed scenario, multiple computer
nodes with di�erent resource constraints (i.e., CPU, IO, storage space capacity,
network bandwidth, etc.) are connected to each other. Moreover, each computer
node may share data and issue numerous queries against other computer nodes.
In this paper, we have examined the problem of choosing a set of views and a
set of computer nodes at which these views should be materialized so that the
full query workload is answered with the lowest cost. In our approach, the view
selection is decided under multiple resource constraints. Resources may be stor-
age space capacity per computer node and maximum view maintenance cost.
Furthermore, we consider the IO and CPU costs for each computer node as well
as the network bandwidth.

Cost Model The cost model assigns an estimated cost e.g., query cost or view
maintenance cost to any view (or query) in the search space. In a distributed
system, a cost model should re�ect CPU, IO and communication costs.

Estimated cost = IO cost+ CPU cost+ Communication cost

The two �rst components IO and CPU costs measure the local processing cost.
This cost is computed as the sum of all execution costs incurred by the required
relational operations. The CPU cost is estimated as the time needed to process
each tuple of the relation e.g., checking selection conditions. The IO cost estimate
is the time necessary for fetching each tuple of the relation. The third cost
component is the communication cost which is the time needed to transfer data
e.g., transmitting views on the communication network. In our cost model these
costs are estimated according to the size of the involved relations and in terms
of time.

2.2 Constraint Programming

Constraint Programming is known to be a powerful approach for modeling and
solving combinatorial search problems such as scheduling and timetabling. More
recently, constraint programming has been considered as bene�cial in data min-
ing setting [13]. By constraint programming, we mean the computer implemen-
tation of an algorithm for solving Constraint Satisfaction Problems (CSPs).

A CSP model is composed of a set of variables V AR = {var1, var2, ..., varn},
each variable vari has a set of values which is called the domain of values
DOM = {dvar1 , dvar2 , ..., dvarn} and a set of constraints CST = {c1, c2, ..., cn}
that describes the relationship between subsets of variables. Formally, a con-
straint Cijk between the variables vari, varj , vark is any subset of the possible
combinations of values of vari, varj , vark, i.e., Cijk ⊂ dvari × dvarj × dvark .

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

The subset speci�es the combinations of values that the constraint allows. A
feasible solution to a CSP is an assignment of a value from its domain to every
variable, so that the constraints on these variables are satis�ed. For optimization
purpose some cost expression on these variables takes a maximal or minimal
value.

Fig. 1: Search tree using constraint propagation.

Let us illustrate how the constraint programming can be applied to se-
lect and place materialized views. Figure 1 shows the domain reduction of
nine variables Mat(v1, s1), Mat(v1, s2), Mat(v1, s3), Mat(v2, s1), Mat(v2, s2),
Mat(v2, s3),Mat(v3, s1),Mat(v3, s2) andMat(v3, s3) whereMat(vi, sj) denotes
for each view vi if it is materialized or not materialized on site sj . It is a binary
variable, dMatvi,sj

= 0,1 (0: vi is not materialized on site sj , 1: vi is materialized

on sj). The problem is to select a set of views and a set of sites at which these
views should be materialized under a maintenance cost constraint which guaran-
tees that the total maintenance cost of the set of materialized views is less than
12 (knowing that Mc(v1, s1)=8, Mc(v1, s2)=14, Mc(v1, s3)=18, Mc(v2, s1)=16,
Mc(v2, s2)=15, Mc(v2, s3)=3, Mc(v3, s1)=12, Mc(v3, s2)=3 and Mc(v3, s3)=9;
where Mc(vi, sj) denotes the cost of maintaining the view vi on site sj). At
the beginning, the initial variable domains are represented by three columns of
white squares meaning that every view can be materialized on any site. Consid-
ering the maintenance cost constraint, it appears that Mat(v1, s2), Mat(v1, s3),

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

Mat(v2, s1), Mat(v2, s2) and Mat(v3, s1) cannot take the value 1 because oth-
erwise the total maintenance cost will be greater than 12. Let redvisj denotes
the reduction of the domain of the variable Mat(vi, sj). For instance in �gure 1,
redv1s2,v1s3,v2s1,v2s2,v3s1 �lters the value 1 (the inconsistent value) from the do-
main ofMat(v1, s2),Mat(v1, s3),Mat(v2, s1),Mat(v2, s2) andMat(v3, s1). The
deleted values are marked with a black square. After this stage some variable
domains are not reduced to singletons, the solver takes one of these variables and
tries to assign it each of the possible values in turn (i.e., Mat(v1, s1)=1). This
enumeration stage triggers more reductions (i.e., redv3s3 where Mat(v1, s1)=1)
which leads in our example to four solutions. These solutions are of various
quality or cost. In addition to providing a rich constraint language to model
a problem as a CSP and techniques such as constraint propagation to reduce
the search space by excluding solutions where the constraints become inconsis-
tent, constraint programming o�ers facilities to control the search behavior. This
means that search strategies can be de�ned to decide in which order to explore
the created child nodes in an enumeration tree which can signi�cantly reduce
the execution time. Furthermore, constraint programming provides ways to limit
the tree search regarding di�erent criteria. For instance performing the search
until reaching a feasible solution in which all constraints are satis�ed, or until
reaching a search time limit or until reaching the optimal solution.

3 Distributed AND-OR View Graph

In order to exhibit common sub-expressions between queries of workload, the
view selection is represented by using a AND-OR view graph [15,12]. Common
sub-expressions can be exploited for sharing updates and storage space. The
AND-OR view graph is a Directed Acyclic Graph (DAG) which is composed of
two types of nodes: Operation nodes (Op-nodes) and Equivalence nodes (Eq-
nodes). Each Op-node represents an algebraic expression (Select-Project-Join)
with possible aggregate function. An Eq-node represents a set of logical expres-
sions that are equivalent (i.e., that yield the same result). The Op-nodes have
only Eq-nodes as children and Eq-nodes have only Op-nodes as children. The
root nodes are equivalence nodes representing the queries and the leaf nodes
represent the base relations. Equivalence nodes correspond to the views that are
candidates to materialization.

The AND-OR view graph is the union of all possible execution plans of
each query. Our motivation to consider all execution strategies is that it has
been argued that a good selection of materialized views can only be found by
considering the optimization of both global processing plans and materialized
view selection [17]. The AND-OR view graph of the queries q1= P join PS join S
and q2= PS join S join N where P, PS, S and N are the base relations 3 is shown
in �gure 2. Circles represent operation nodes and boxes represent equivalence
nodes. For simplicity, we represent only two execution plans for the query q1

3 The subscripts P, PS, S and N denote respectively the base relations of TPC-H
benchmark: Part, PartSupp, Supplier and Nation

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

and one execution plan for the query q2. The remaining execution plans are just
indicated by dashed lines. For example, view P-PS-S, corresponding to query q1,
can be computed from P-PS and S or P and PS-S. This dependence is indicated
in �gure 2 by AND and OR arcs.

Fig. 2: AND-OR view graph of two queries q1 and q2

In this paper, we extend the concept of the AND-OR view graph to deal
with distributed settings. Therefore, we propose the distributed AND-OR view
graph to re�ect the relation between views and communication network in the
distributed scenario. We consider a distributed setting involving a set of sites
(computer nodes) with di�erent resource constraints (CPU, IO, storage space ca-
pacity, network bandwidth), a set of queries, a set of updates and their respective
frequencies. For each query q, we consider all possible execution plans which rep-
resent its execution strategies. In this paper we consider selection-projection-join
(SPJ) queries that may involve aggregation and a group by clause as well. Let us
consider the query q de�ned over a simpli�ed version of the TPC-H benchmark
[2]. Query q �nds the minimal supply cost for each country and each product
having the brand name 'Renault'. The associated query is as follows:

Select P.partkey, N.nationkey, N.name, Min(PS.supplycost)

From Part P, Supplier S, Nation N, PartSupp PS

Where P.brand = 'Renault'

and P.partkey = PS.partkey

and PS.suppkey = S. suppkey

and S.nationkey = N.nationkey

Group by P.partkey, N.nationkey, N.name;

A sample distributed AND-OR view graph is shown in �gure 3. For simplicity,
we consider a network of only three sites s1, s2, s3 and we illustrate a part of the
query q by considering only join operations and one execution strategy. Indeed,
in �gure 3 we consider only the join between Part (P) and PartSupp (PS) and
the join between PartSupp (PS) and Supplier (S). The execution strategy that
we have presented in �gure 3 is ((P join PS) join S). We suppose that the base
relations are stored on di�erent sites.

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

Fig. 3: Distributed AND-OR view graph.

In order to represent the communication channels, every node is split into
three sub-nodes, each of which denotes the view or the execution operation at
one site. The communication edges between equivalence nodes of the same level
(i.e., (P − PS − S, S1), (P − PS − S, S2) and (P − PS − S, S3)), as shown in
the dashed rectangle in �gure 3, denote that a view can be answered from any
other site if it is less expensive than computing this view from any children
nodes. However, these edges are bidirectional creating cycles which no longer
conforms to the characteristics of a DAG. In order to eliminate cycles, each sub-
node (vi, Sj), as illustrated in �gure 4, has been arti�cially split into two nodes
(vi, Sj)

′ and (vi, Sj)
′′.

Fig. 4: Modi�ed Distributed AND-OR view graph.

4 Modeling View Selection Problem in a Distributed
Context as a Constraint Satisfaction Problem (CSP)

In this subsection, we describe how to model the view selection problem in
a distributed scenario as a Constraint Satisfaction Problem (CSP). Then, its
resolution is supported automatically by the constraint solver embedded in the
constraint programming language. All the symbols as well as the variables that
we have used in our CSP model are de�ned in Table 1. The view selection in a
distributed scenario can be formulated by the following constraint satisfaction
model.

minimize
∑

(vi,sj)∈Q(G)

(
fq(vi) ∗Qc(vi, sj)

)
(1)

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

subject to ∀sj ∈ S
∑

(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ |vi| ∗ IOj

)
≤ Spmaxj (2)

∑
(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ fu(vi) ∗Mc(vi, sj)

)
≤ Umax (3)

In our approach, the main objective is the minimization of the total query
cost. The total query cost is computed by summing over the cost of processing
each input query rewritten over the materialized views. Constraints (2) and (3)
state that the views are selected to be materialized on a set of sites under a
limited amount of resources. Constraint (2) ensures that for each site the total
space occupied by the materialized views on it is less than its storage space
capacity. Constraint (3) guarantees that the total maintenance cost of the set of
materialized views is less than the maximum view maintenance cost.

Symbols of CSP model

G The distributed AND-OR view graph.

Q(G) The query workload.

V (G) The set of candidate views

U The set of updates.

δ(vi, sj , u) denotes the di�erential result of view vi on sj , with respect to update u.

fq The frequency of a query.

fu The update frequency of a query (or view).

S The set of sites which represent the computer nodes.

Spmaxi The storage space capacity of the site si.

Umax The maximum view maintenance cost.

|vi| The size of vi in terms of number of bytes.

Bw(sk, sj) The bandwidth between sj and sk.

CSP variables and their domains

Mat(vi, sj) The materialization of the view vi on site sj . It is a binary variable
(dMat(vi,sj) =0,1; 0: vi is not materialized on sj , 1: vi is materialized

on sj).

Qc(vi, sj) The query cost corresponding to the view vi if it is computed
or materialized on site sj .

Mc(vi, sj) The maintenance cost corresponding to the view vi if it is updated
on site sj .

The costs are de�ned in terms of time (see subsection 2.1).
Their domain is a �nite subset of R∗+(dQc(vi,sj) ⊂ R∗+ and dMc(vi,sj) ⊂ R∗+).

Table 1: Symbols and CSP variables.

The query and maintenance costs may be formulated as follows.

Qc(vi, sj) = min
sk∈S

(
Qclocal(vi, sk) +

|vi|
Bw(sk, sj)

)
(4)

Qclocal(vi, sj) =

{
ComputingCost(vi, sj) if Mat(vi, sj) = 0
|vi| ∗ IOj otherwise

(5)

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

ComputingCost(vi, sj) = min
opl∈child(vi,sj)

(
cost(opl, sj) +

∑
(vm,sn)∈child(opl)

(
Qc(vm, sn) +

|vm|
Bw(sn, sj)

)) (6)

Query Cost. The query cost includes the local processing cost and the communi-
cation cost. The local processing cost re�ects CPU and IO costs (see subsection
2.1). Constraint (4) guarantees that a view is answered from the site that can
provide the answer with the lowest cost. Constraint (5) and (6) ensure that the
minimum cost path is selected for computing a given view on a given site. Each
minimum cost path is composed of all the cost of executing the operation nodes
on the path and the query cost corresponding to the related views or bases
relations. The reading cost is considered if the view has been materialized.

Mc(vi, sj) =


0 if Mat(vi, sj) = 0∑

u∈U(vi,sj)

(
minsk∈S

(
Mcost(vi, sk, u) +

|vi|
Bw(sk,sj)

))
otherwise

(7)

Mcost(vi, sj , u) = min
opl∈child(vi,sj)

(
cost(opl, sj , u) +

∑
(vm,sn)∈child(opl)

(
UpdatingCost(vm, sn, u) +

|vm|
Bw(sn, sj)

)) (8)

UpdatingCost(vm, sn, u) =

{
Mcost(vm, sn, u) +

|vl|
Bw(sn,sm)

if Mat(vm, sn) = 0

δ(vm, sn, u) otherwise

(9)

View Maintenance Cost. The view maintenance cost is computed by summing
the number of changes in the base relations from which the view is updated. We
assume incremental maintenance to estimate the view maintenance cost. There-
fore, the maintenance cost is the di�erential results of materialized views given
the di�erential (updates) of the bases relations. Constraint (7) guarantees that a
view with respect to the updates of the underlying base relations is updated from
the site that can provide the di�erential results with the lowest cost. Constraints
(8) and (9) insure that the best plan with the minimum cost is selected to main-
tain a view. The view maintenance cost is computed similarly to the query cost,

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

but the cost of each minimum path is composed of all the cost of executing the
operation nodes with respect to update on the path and the maintenance cost
corresponding to the related views.

5 Experimental Evaluation

In this section, we demonstrate the performance of our approach and a random-
ized method i.e., genetic algorithm which has been designed for a distributed set-
ting [8]. The performance of view selection methods was evaluated by measuring
the solution quality which results from evaluating the quality of the obtained set
of materialized views in terms of cost saving.

5.1 Experiment Settings

For our experiments, we implemented a simulated distributed environment in-
cluding a network of a set of sites (computer nodes). We assume that the di�erent
sites are divided into clusters so that there is a high probability that the sites
which belong to the same cluster have similar query workloads. In our approach,
for each cluster all the queries of the di�erent workloads are merged into the
same graph (see section 3) in order to detect the overlapping and capture the
dependencies among them. Then, our method decides which views have to be
selected and determine where these views should be materialized so that the full
query workload is answered with the lowest cost under multiple resource con-
straints. The query workload are de�ned over the database schema of the TPC-H
benchmark [2]. We then randomly assigned values to the frequencies for access
and update based on a uniform distribution. In order to solve the view selection
problem in a distributed context as a constraint satisfaction problem, we have
used the latest powerful version of CHOCO [1]. For the randomized method, we
have implemented the genetic algorithm presented in [8] by incorporating space
and maintenance cost constraints into the algorithm. In order to let the genetic
algorithm converge quickly, we generated an initial population which represents
a favorable view con�guration rather than a random sampling. Favorable view
con�guration such as the views which satisfy space and maintenance cost con-
straints are most likely selected for materialization. In the experimental results,
the solution quality denoted by Qs is computed as follows.

Qs = 1−
∑

(vi,sj)∈Q(G)

(
fq(vi) ∗Qc(vi, sj)

)
WM

(10)

Where WM is the total query cost obtained using the "WithoutMat" approach
which does not materialize views and always recomputes queries. The "Without-
Mat" approach is used as a benchmark for our normalized results. Recall that
Qc(vi, sj) is the query cost corresponding to the view vi on site sj and fq(vi) is
the frequency of the view vi corresponding to a single query.

In our approach, the view selection problem in a distributed environment is
constrained by storage capacities Spmax = {Spmaxi

, Spmaxj
, .., Spmaxn

} where
each site si has an associated storage space capacity Spmaxi

and maximum view
maintenance cost Umax. Similar to [6] the storage space and maintenance cost

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

limits are computed respectively as a function of the size (see equation 11) and
total maintenance cost (see equation 12) of the query workload.

Spmaxi = α ∗ Spi(AllM) (11)

Umax = β ∗Mc(AllM) (12)

Where AllM is the "AllMat" approach which materializes the result of each
query of the workload; α and β are constant. In our experiments, the storage
space limit is per site and computed as a function of the size of the associated
query workload. The view maintenance cost limit is calculated as a function of
the total maintenance cost when all the queries are materialized.

Our approach to solve the view selection problem in a distributed setting is
able to provide optimal solutions. However, computing optimal solutions may be
very expensive because of the great number of comparisons between all possible
subsets of views which are candidate to materialization. In this case, we use
timeout condition to limit the search by considering that some solutions should
not be explored. As mentioned in section 2.2, the constraint solver can �nd a
set of feasible solutions in which all the constraints are satis�ed before reaching
the optimal solution. In the next experiments, the constraint solver performed
a search until reaching the timeout condition. Indeed, our approach is able to
provide a feasible solution at any time. The timeout condition was set to the
time required by the genetic algorithm to solve the problem. This means that
the constraint solver was left to run until the convergence of the genetic algorithm
in the following experiments.

5.2 Experiment Results

We examined the e�ectiveness of our approach within three experiments. The
�rst one compares the performance of our approach and the genetic algorithm
for various values of storage space and maintenance cost limits. The second ex-
periment evaluates the view selection methods with respect to di�erent sizes
of the distributed AND-OR view graph in terms of number of views (equiva-
lence nodes). Finally, the last experiment evaluates our approach and the genetic
algorithm with di�erent network sizes in terms of the number of sites per cluster.

Performances under resource constraints. In this experiment, we examine
the impact of space and maintenance cost constraints on solution quality. For
this evaluation, each cluster includes 8 sites with di�erent constraints of CPU,
IO and network bandwidth and each site has an associated query workload. The
values of α and β which de�ne respectively the storage space capacities and the
view maintenance cost limit are varied from 10% to 100%. All the results are
shown in �gure 5.

Figure 5 (a) investigates the in�uence of space constraint on solution quality
for each value of α where β was set to 60%. We note that the quality of the
solutions produced by our approach and genetic algorithm improves when α

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

(a) Solution quality while varying
the space constraint

(b) Solution quality while varying
the maintenance cost constraint

Fig. 5: Evaluating the performance under resource constraints.

increases, since there is storage space available for more views to be materialized.
However, when α>=80% there is no improvement in the solution quality because
the maintenance cost constraint becomes the signi�cant factor.

Figure 5 (b) examines the impact of maintenance cost constraint on solution
quality for each value of β where α was set to 80%. We can observe similarly to
�gure 5 (a) that we have better solutions when β increases since there is time
to update the materialized views. The performance stabilizes when β>=90%
because the space constraint becomes the signi�cant factor. We note from these
experiments that our approach outperforms the genetic algorithm in the case
where the resource constraints become very tight as well as in the case where we
relax them. Indeed, for di�erent values of α and β we can see that our approach
generates solutions with cost saving more than 2 times more than the genetic
algorithm.

(a) Number of sites=4 (b) Number of sites=8

Fig. 6: Evaluating the performance over di�erent number of views.

Performance according to the number of views. Let us now evaluate the
performance of our approach and the one of genetic algorithm while varying
the size of the search space. Recall that the size of the search space is estimated

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

according to the number of views (equivalence nodes) in the distributed AND-OR
view graph described in section 3. Figure 6 illustrates the quality of the solutions
produced by the two methods in a distributed environment. The number of sites
per cluster is 4 sites in �gure 6 (a) and 8 sites in �gure 6 (b). The queries of
the workload are randomly distributed over the network so that each site has an
associated query workload. For instance, in �gure 6 (b), the number of views in
the distributed AND-OR view graph ranges from 200 to 1232 views. For each
site, α was set to 40%. For the maintenance cost constraint, β was set to 60%.
The experiment results depicted in �gure 6 (a) and 6 (b) show that our approach
provides the lowest query cost while varying the number of views. In fact, the cost
saving is up to 27% more than the genetic algorithm. Therefore, our approach
provides better performances compared with the genetic algorithm in terms of
the solution quality.

Fig. 7: Evaluating the performance over di�erent number of sites.

Performance according to the number of sites. In order to evaluate the
performance of view selection methods according to the number of sites, we con-
ducted experiments with clusters of di�erent sizes. For each cluster, we consid-
ered di�erent number of sites with di�erent constraints of CPU, IO and network
bandwidth. The number of sites per cluster varies from 2 to 20. For each site,
α was set to 40% and for the maintenance cost constraint, β was set to 60%.
The experiment results are shown in �gure 7. As in the previous experiments,
we observe that our approach provides an improvement in the quality of the
obtained set of materialized views in terms of cost saving compared with the
genetic algorithm. Indeed, the cost saving is up to 15% more than the genetic
algorithm.

6 Related Work
Several view selection methods have been proposed in the literature to select
which views to materialize in a centralized context. They can be classi�ed into
four major groups.
Deterministic methods: Methods in this class take a deterministic approach by
exhaustive search [14] or by some heuristics such as greedy [5,15]. However,
greedy search is subjected to the known caveats, i.e., sub-optimal solutions may
be retained instead of the globally optimal one since initial solutions in�uence
the solution greatly.

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

Randomized methods: Typical algorithms in the context of view selection are
genetic [8,7] or use simulated annealing [4,6]. Randomized algorithms can be
applied to complex problems dealing with large or even unlimited search spaces.
However, the quality of the solution depends on the set-up of the algorithm as
well as the extremely di�cult �ne-tuning of algorithm that must be performed
during many test runs. Furthermore, randomized algorithms do not guarantee
to �nd the global optimum because of their probabilistic behavior.

Hybrid methods: Hybrid methods combine the strategies of deterministic and
randomized algorithms in their search. A hybrid approach has been applied in
[17] to the view selection problem which combine heuristic algorithms i.e., greedy
algorithms and genetic algorithms. They prove that hybrid algorithms provide
better solution quality. However, they are more time consuming and may be
impractical due to their excessive computation time.

Constraint Programming methods: A constraint programming based approach
has been presented in our previous work [10] to address the view selection prob-
lem in a centralized context. We have proved experimentally that our approach
provides better performance compared with a randomized method i.e., genetic
algorithm in term of cost savings. The success of using constraint programming
for combinatorial optimization is due to its combination of high level modeling,
constraint propagation and facilities to control the search behavior.

Analysis of view selection methods has shown that there is little work on
view selection in a distributed scenario. The view selection problem is addressed
in a distributed data warehouse environment in [3]. An extension of the concept
of a data cube lattice to capture the distributed semantics has been proposed.
Moreover, they extend a greedy based selection algorithm to the distributed
case. However, the cost model that they have used does not include the view
maintenance cost. Furthermore, the network transmission costs are not consid-
ered which is very important in a distributed context. The study presented in [8]
deals with the view selection problem in distributed databases. This approach
consists in applying a genetic algorithm to select a set of materialized views
and the nodes of the network on which they will be materialized. However, this
approach does not take into account neither the space nor the maintenance cost
constraint. Besides, our approach provides better results compared with genetic
algorithm in terms of the solution quality. A survey of view selection methods
can be found in our previous work [11].

7 Conclusion

In this paper we have designed a constraint programming based approach to
address the view selection problem under multiple resource constraints in a dis-
tributed environment. Furthermore, we have introduced the distributed AND-
OR view graph to re�ect the relation between views and communication network.
We have performed several experiments over TPC-H queries and comparison
with a genetic algorithm. The experiment results have shown that our approach
provides better performance where the space and maintenance cost constraints
become very tight as well as in the case where we relax them or when the number

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

of views is high. Besides, our approach provides better solution quality in terms
of cost saving when we consider diverse number of sites.

As a future work, we plan to design a set of pruning heuristics in order
to reduce the search space of candidate views to materialization. This means
that the size of the distributed AND-OR view graph will be small enough to
allow its use for solving the view selection problem in a large scale distributed
environments within reasonable execution time. The design of these heuristics
will also guarantee the optimality of the solution where no time limit is imposed.

References

1. Choco, open-source software for csp. http://www.emn.fr/z-info/choco-solver.
2. Tpc-h. http://www.tpc.org/tpch/spec/tpch2.14.3.pdf.
3. A. Bauer and W. Lehner. On solving the view selection problem in distributed

data warehouse architectures. In SSDBM, pages 43�, 2003.
4. R. Derakhshan, B. Stantic, O. Korn, and F.K.H.A. Dehne. Parallel simulated

annealing for materialized view selection in data warehousing environments. In
ICA3PP, pages 121�132, 2008.

5. H. Gupta. Selection of views to materialize in a data warehouse. In ICDT, pages
98�112, 1997.

6. P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized search.
Data Knowl. Eng., 42(1):89�111, 2002.

7. Minsoo Lee and Joachim Hammer. Speeding up materialized view selection in
data warehouses using a randomized algorithm. Int. J. Cooperative Inf. Syst.,
10(3):327�353, 2001.

8. F. Hueske K. Böhm L.W.F. Chaves, E. Buchmann. Towards materialized view
selection for distributed databases. In EDBT, pages 1088�1099, New York, NY,
USA, 2009. ACM.

9. I. Mami and Z. Bellahsene. A survey of view selection methods. In To appear in
Sigmod Record, 2012.

10. I. Mami, R. Coletta, and Z. Bellahsene. Modeling view selection as a constraint
satisfaction problem. In DEXA (2), pages 396�410, 2011.

11. Imene Mami and Zohra Bellahsene. A survey of view selection methods. SIGMOD
Record, 41(1):20�29, 2012.

12. H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection
and maintenance using multi-query optimization. In SIGMOD Conference, pages
307�318, 2001.

13. Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming for
itemset mining. In KDD, pages 204�212, 2008.

14. K.A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and
integrity constraint checking: Trading space for time. In SIGMOD Conference,
pages 447�458, 1996.

15. P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. E�cient and extensible algorithms
for multi query optimization. In SIGMOD Conference, pages 249�260, 2000.

16. Jennifer Widom. Research problems in data warehousing. In CIKM, pages 25�30,
1995.

17. C. Zhang, X. Yao, and J. Yang. An evolutionary approach to materialized views
selection in a data warehouse environment. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 31(3):282�294, 2001.

lir
m

m
-0

07
36

72
2,

 v
er

si
on

 1
 -

28
 S

ep
 2

01
2

