
A CSP Approach for Metamodel Instantiation

Adel Ferdjoukh, Anne-Elisabeth Baert, Annie Chateau, Rémi Coletta and Clémentine Nebut

LIRMM, Université Montpellier 2 and CNRS,
Montpellier, France

{ferdjoukh, baert, chateau, coletta, nebut}@lirmm.fr

Abstract—This work is a contribution of Artificial Intelli-
gence to Software Engineering. We present a comprehensive
approach to metamodel instantiation using CSP. The gener-
ation of models which conform to a given metamodel is a
crucial issue in Software Engineering, especially when it comes
to produce a variate and large dataset of relevant models to test
model transformations or to properly design new metamodels.
We define an original constraint modeling of the problem of
generating a model conform to a metamodel, also taking into
account its additional OCL constraints. The generation process
we describe appears to be quicker, more efficient and flexible
than any other state-of-the-art approach.

Keywords-CSP; Model Driven Engineering; Metamodel

I. INTRODUCTION

Model generation ([1], [2]) is a problem stemming

from Model-Driven Engineering (MDE). MDE is a recent

paradigm that recommends the intensive use of structured

models during all the lifecycle of a software, from the

early requirements down to the testing phases ([3], [4]). The

various models have different structures according to the

different purposes they are designed for. Such a structure

is defined by a model called a metamodel. The models can

be handled by programs, which are called model transfor-

mations. While testing such model transformations or while

designing a metamodel, i.e. a new structure for models, a

model generation mechanism is of prime importance, to

obtain test data or to check if the designed metamodel

structures adequate models [5]. The main properties that are

required for a proper model generation are: (i) scalability,

which implies a reasonable generation time, (ii) validity,

meaning that the generation process must take into account

additional constraints on the metamodel, namely Object

Constraint Language (OCL) constraints, (iii) flexibility, im-

plying that it can easily be parameterized, depending on the

purpose of the automated generation, (iv) diversity of the

solutions.

Model generation have been studied from several angles,

like grammar graphs ([6], [5]), constraint solving with the

Alloy constraint solver ([7], [8]), random graphs ([9]), and a

first approach by CSP modeling was proposed by Cabot et al.

in [10], [11]. These approaches present interesting points of

view, however none of them gather all the required properties

expected for model generation. The contribution of the paper

is a model generation mechanism based on CSP, that can fit

all these properties. In this paper, we propose a modeling

of a metamodel as a CSP. We show that this modeling

is adequate to support additional constraints coming from

OCL constraints completing the metamodel. We validate our

modeling with experiments of model generation from several

metamodels taken from the literature.

The rest of the paper is organized as follows. In Section

II, we detail the concepts of model and metamodel, as well

as OCL constraints. In Section III, we analyze the existing

work on model generation to identify the improvable aspects.

In Section IV, we present our original CSP modeling of the

metamodel instantiation problem. In Section V, we detail

our experiments performed on several datasets.

II. CONTEXT AND PRELIMINARY DEFINITIONS

This section presents the basic concepts and definitions

concerning the objects we aim to model in Section IV.

A. Models and metamodels

A model is a representation of a system or part of it,

with a given objective. A model is written using a modeling

language, for example, the Unified Modeling Language

(UML)1. A metamodel is the model of such a modeling

language, it defines the concepts that can be used while

designing a model. For example, the UML metamodel

defines the concepts that can be used in a UML model:

classes, attributes, associations, use cases, etc, and how the

concepts are linked through relations.

A model is said to conform to its metamodel. Metamodels

being models, they also have to conform to a metamodel,

that is called a meta-metamodel. It is usually accepted that

this meta-metamodel should be unique, and can define itself,

so that the meta-metamodel conforms to itself. In this paper,

we use ecore (from the EMF [12]) as meta-metamodel.

Since models and metamodels are usually defined with

object-oriented languages, a model (resp. a metamodel)

can be seen as an instance of its metamodel (resp. meta-

metamodel). The conformance relations are represented in

Figure 1. A metamodel is often accompanied with a set

of constraints that have to be respected by all the models.

Those constraints are usually called well-formed rules, and

expressed with the Object Constraint Language (OCL)1.

1http://www.uml.org/

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.156

1044

Figure 1. L.h.s: the general modeling hierarchy and conformance relations;
R.h.s: example of the Petri net modeling hierarchy.

To illustrate those notions, we use the example of Petri

nets. Figure 2 shows a metamodel for the Petri nets, that

is taken and slightly adapted from reference [13]. This

metamodel is drawn using the UML class diagram syntax. A

Petri net has a name and is composed of several nodes and

several arcs. There are two types of nodes: transitions and

places. A place has a marking, that is an integer (precisely

an EInt here, that is the ecore type for integers. Note

that all the ecore types begin by the letter ’E’). An arc

has a weight, that is also an integer. An arc has one source

and one target, that are nodes that have this arc respectively

in its outgoing or ingoing arcs.

Figure 2. A metamodel for Petri nets, slightly modified from [13] .

Example 1 (OCL constraints for Petri nets):
The Petri nets metamodel comes with the three following

OCL constraints:
1) Distinct nodes must have distinct names:

context PetriNet inv :
self.nodes->forAll(n1 , n2 |

n1 <> n2 implies n1.name <> n2.name)

2) An arc must not link two places or two transitions:
context Arc inv :
self.source.oclType() <> self.target.oclType()

3) The marking of a place must be positive:
context Place inv : self.marking >= 0

Let us focus on the simple Petri net model presented

with a usual syntax in Figure 3. This model can also be

seen as an instance of the Petri net metamodel: this is

illustrated in Figure 4 using a UML instance diagram. In

this diagram, we find two instances of the metaclass Place
with respective names place1 and place2, and respective

marking value 2 and 3. We find an instance of the metaclass

Transition, and two instances of the metaclass Arc,

linked with the different places and transitions with links

source and target. This model respects the three OCL

constraints presented above.

place1 trans1 place2

11 23

Figure 3. A model for a Petri net.

A model generation mechanism thus aims at generating

instances of a given metamodel, such as the one presented in

Figure 4. In the following subsection, we describe properties

that a model generation should enforce.

B. Properties for model generation

Several properties are expected from a model generation

mechanism.

• Scalability. The proposed approach must scale to large

models and large metamodels. Indeed, large models are

useful to test model transformations, for example to test

their ability to scale.

• Validity. Only valid models must be generated. The

generated models must conform to their metamodel,

and respect the OCL constraints. Consequently, a model

generation mechanism must be able to take into account

the OCL constraints and a whole metamodel.

Figure 4. A model for a Petri net, seen as an instance of the Petri net
metamodel of Figure 3.

1045

• Flexibility. Since model generation can be used for

different purposes such as model transformations test-

ing and metamodel adjustment, model generation must

easily be parameterized so as to generate small or large

models, similar or dissimilar models, etc.

• Diversity and coverage. The generated models must be

as representative as possible of the metamodel, and

should well cover the metamodel while generating a

large diversity of models.

III. RELATED WORK

Model generation being of prime important for model

transformation testing and metamodel validation, it has been

studied in the literature. In this section, we give an overview

of the proposed approaches, and then go more into details

for the approach proposed by Cabot et al [11], that is the

nearest from the one we propose.

A. Several paradigms for model generation

Several approaches were proposed in the fields of Model

Driven Engineering to propose model generation mecha-

nisms, automatically instantiating a metamodel.

In [9], an approach based on random graph generation

is exposed. To be more precise, random tree generation is

used. The covering tree of the metamodel, formed by the

containment references, is encoded into generating func-

tions, that are later used in the generation process. The

actual generation process is not deeply explained, however it

seems that many ad-hoc generators have to be implemented.

In this approach the OCL constraints are not taken into

account (or only with ad hoc generators, such as generators

for the inheritance relations, ensuring that there is no cycle

in the relation), and the approach only generates skeletons

of models (the covering tree) that have to be completed

using another approach so as to obtain a complete model.

Moreover, this approach is not flexible.

In [6], [5], the authors propose an approach based on

grammar graph. The idea is to introduce elementary gram-

mar rules encoding a metamodel, and applying them until the

obtention of a conform model. Unfortunately, this approach

does not deal properly with OCL constraints. The authors

give hints to take part of the OCL constraints into accounts,

but the whole OCL constraints can hardly be translated.

Moreover, this approach is not easily flexible to introduce

external constraints precising additional requirements on the

generated models.

In [7], [8], the authors translate a metamodel and its

OCL constraints into the Alloy language, and use the Alloy

solver to obtain solutions. The mapping from a metamodel to

Alloy is rather easy, since the two paradigms are not so far.

However, the approach suffers from a scalability problem.

The Alloy solver is dedicated to model checking and does

not allow to quickly obtain solutions.

Approach scalability validity diversity flexibility
random graphs[9] ? no no no

grammar graphs[6], [5] yes no yes no
Alloy [7], [8] no yes no medium

CSP [11] no yes possible yes

Table I
COMPARISON OF THE DIFFERENT APPROACHES FOR MODEL

GENERATION

Moreover, none of these approaches can benefit from the

following facilities of CSP to achieve:

Diversity Thanks to recent works in solution counting

[14], [15] CSP provide a way to generate a random set

of solutions. Another alternative is to generate a solution

far from an other one. In this case work on the distance

constraint [16] may apply.

Flexibility: OCL constraints enforce hard constraints over

the generated models, but do not prevent from generating

dummy models, such as an UML model with only one class

per package. But an expert is able to detect such dummy

models. Recent works on constraint acquisition [17], [18]

would be a way to learn extra constraints, in our example:

the number of package in a realistic UML model is half the
number of classes.

B. CSP for model generation

In [11], the authors propose an approach based on CSP,

the metamodel as well as the OCL constraints are encoded

into a CSP, and the ECLiPSe solver [19] is used to generate a

solution (or show the absence of it). The approach was first

proposed in the UML context [10]. Judging by the given

results, this approach suffers from scalability problems.

However, this problem does not mean that CSP is not

suitable for the model generation problem. Indeed, analyzing

the CSP modeling proposed in [11], one can notice several

points that explain the limited performances. First of all, list

variables are intensively used, when they are not necessary.

Then disjunctive constraints are used (such as nth). Global

constraints are never used is the modeling. Finally, the OCL

is systematically and brutally introduced through a direct

translation into prolog. In this paper, we show that a correct

CSP modeling allows good performances.

C. Comparaison of the paradigms used in the literature

A comparison of the approaches presented above w.r.t.

our four criteria is given in Table I. None of the approaches

fits all the criteria. The last line concerns the use of CSP

by Cabot et al. The main problem in this work concerns

the scalability, that is due to problems in the CSP modeling.

The properties of diversity and flexibility are not tackled by

Cabot et al, however, we claim that a CSP based approach

can benefit from several works in the literature in order

to fit those two properties. Diversity and coverage can

be achieved using a distance to put away the different

solutions computed by the solver [16]. Flexibility can be

enhanced using for example learning mechanism presented

1046

in [18], [17] to learn implicit constraints establishing the

characteristics of a relevant model, so as to generate only

meaningful models. The approach presented in this paper

presents all the properties to fit the four criteria.

IV. THE CSP MODEL

We propose here a modeling in which we consider that all

features and references are propagated in all the sub-classes.

To take into account the notion of inheritance between

the classes of a metamodel, we copy the features and the

references from the super-classes into the sub-classes.

All along this section, we use the simple metamodel of

Figure 5 in order to illustrate the different modeling steps

from a metamodel to CSP.

Figure 5. Metamodel containing two classes and one reference.

A. Classes modeling

1) Variables and domains: A class is modeled by two

kinds of variables: variables representing the instances of the

class and variables representing the features of each instance.

We consider a given metamodel M, with a set of n classes

{c1, . . . , cn}.
We denote by Maxsize(c) (resp. Minsize(c)) the max-

imal (resp. minimal) number of instances of a class c. For

each class ck, and each i ∈ {1, . . . ,Maxsize(ck)}, we

denote by Idck,i the variable representing the ith instance of

the class ck. We note Mk =
k∑

j=1

Maxsize(cj). The domain

D(Idck,i) of Idck,i is:

{Mk−1 + 1, . . . ,Mk−1 +Minsize(ck)}
if i ≤Minsize(ck),

{0} ∪ {Mk−1 +Minsize(ck) + 1, . . . ,Mk}
otherwise.

Note: Different class domains are disjoint, except for the

value 0. This latter value means that the instance is not

allocated. In addition, the root class only has one instance.

A class feature of simple type is modeled using a variable

whose type is the domain: for each simple feature f of c
and for each i ∈ {1, . . . ,Maxsize(c)}, we create a variable

Fc,i,f whose domain is given by:

D(Fc,i,f) = Type(f).

Enumerations are more complex features, that are mod-

eled as follows: let enum an l literals enumeration, f a

feature of type enum. The domain of Fc,i,f is given by:

D(Fc,i,f) = {1, . . . , l} .
2) Constraints: Values affected to the instances of the

different classes must be different. Only 0 can be affected

to different variables because it indicates a not allocated

instance. To answer this issue, we post the following Gcc

[20] constraint.

Gcc([Idc1,0, . . . , Idck,Maxsize(ck)], // variables

[0, . . . ,Mk], // values

[0, . . . , 0], // lower bounds

[
k∑

j=1

Minsize(cj), 1, . . . , 1]). // upper bounds

(1)

Example 2: Let us illustrate our modeling on the meta-

model in Figure 5 when the user asks for [1− 3] instances

of class a and [3 − 5] instances of class b. This kind of

requirement on the number of instances for each class partic-

ipates to the flexibility property. We fulfill this requirement

by adapting the domain of the involved variables.

We create the following CSP variables:

• variables {Ida,1, Ida,2, Ida,3} represent the instances

of class a. Their domains are: D(Ida,1) = {1}, and

D(Ida,2) = D(Ida,3) = {0, 2, 3}.
• variables {Fa,1,f , Fa,2,f , Fa,3,f} represent feature f

value for each instance of a. The domain of these

variables is: D(f) = [−50, 50]
• variables {Idb,1, Idb,2, Idb,3, Idb,4, Idb,5} represent the

instances of class b. The domains of these variables

are: D(Idb,1) = D(Idb,2) = D(Idb,3) = {4, 5, 6} and

D(Idb,4) = D(Idb,5) = {0, 7, 8}.
Please note that the domains of instances of distinct classes

are disjoint, except for the value 0 which belongs to the

domain of non-mandatory instances variables.

We also post the following Gcc constraint:

Gcc([Ida,1, . . . , Ida,4, Idb,1, . . . , Idb,5],
[0, 1, . . . , 8], [0, . . . , 0], [8, 1, . . . , 1]).

(2)

This Gcc constraint stipulates that the value 0 can appear

8 times which is the total number of variables, whereas

the other values {1, . . . , 8} can appear only once among

all instances variables. All instances variables must have

different values except for the value 0.

A solution to this CSP is, for instance:

Ida,1 = 1, Ida,2 = 2, Ida,3 = 0
Fa,1 = −10, Fa,2 = 15, Fa,3 = 0
Idb,1 = 6, Idb,2 = 5, Idb,3 = 7, Idb4 = 8, Idb,5 = 0

B. References modeling

The most interesting idea in our references modeling is

considering them as pointers from class instances to others.

While the modeling proposed by Cabot et al. in [10], [11]

1047

treats a reference instance as a pair of variables (a, b) where

a class instance a references a class instance b, we propose

to model a reference using only one variable associated to

a class instance a. It will take the value assigned to the

variable of class instance b referenced by a.

Let c a metamodel class and c.AllReferences the set of

all references of c. Let r ∈ c.AllReferences a reference of

c. We denote by LowerBound(r) (resp. UpperBound(r))
the lower (resp. upper) bound of r.

For each i ∈ {1, . . . ,Maxsize(c)} and for each reference

r ∈ c.eAllReferences, we create j variables Ref c,r
i,j , where

j ∈ {1, . . . , UpperBound(r)}.
The set of all types of the reference r is denoted by:

Sdst(r) = r.EReferenceType∪
r.EReferenceType.getSubTypes(),

where getSubTypes() designates the sub-types set of a class

and EReferenceType returns reference destination class.

The domain of the variable Ref c,r
i,j , noted D(Ref c,r

i,j), is

given as follow:

∪c∈Sdst(r)(D(Idc,1)), if j < LowerBound(r),
∪c∈Sdst(r)(D(Idc,1)) ∪ {0}, otherwise.

It means that the LowerBound(r) first variables must be

allocated, thus, 0 does not belong to their domain. The other

variables are optional, therefore their domain contains 0.

We also add the following constraints to the CSP:

• For each class c and r a reference of c, for each i ≤
Maxsize(c), j ≤ UpperBound(r):

(Idc,i = 0 ∧ 0 ∈ D(Ref c,r
i,j))↔ (Ref c,r

i,j = 0).

When a class instance is not allocated, no reference

instance associated to it should be allocated.

• Let cr the root class of a metamodel and Refs(cr) the

set of its references. We define the following Gcc con-

straint, ∀r ∈ Refs(cr), j ∈ {1, . . . , UpperBound(r)}:
Gcc([Ref c,r

1,j], [vals], [0, . . . , 0], [h, 1, . . . , 1]),

where vals = ∪(D(Ref cr,r
1,j)) is the set of values

which can be affected to the Ref cr,r
1,j variables and

h =
∑

r∈Refs(cr)
UpperBound(r) the number of

created reference variables.

Example 3: To model the reference r linking the two

classes a and b in the metamodel in Figure 5 we create

the following CSP variables:

• For each variable Ida,i modeling the instances of class

a, we create 3 variables {Refa,r
i,1 , Refa,r

i,2 , Refa,r
i,3 },

with D(Refa,r
i,1) = D(Refa,r

i,2) = {4, 5, 6, 7, 8} and

D(Refa,r
i,3) = {0, 4, 5, 6, 7, 8}. Indeed, the third vari-

able is optional, then its domain should contain 0 in

the case this variable is not used.

Figure 6. An example of value affectation for variables modeling the
reference.

These variables can be seen as pointers from class a
instances variables Ida,i to class b instances variables

Idb,j .

An example of the affectation of these variables is shown

in Figure 6. When a variable Refa,r
i,j is equal to a value v,

we consider that the instance of class a represented by the

variable Ida,i references the instance of class b represented

by the variable which is affected v. As it is visible in

Figure 6, class a instance references 3 instances of class

b. The dashed line in the figure indicates that this variable

is optional which means that its domain contains 0.

C. CSP model for OCL constraints

Object Constraint Language (OCL) is a formal language,

based on predicates logic. It allows the expression of con-

straints on metamodels, as illustrated in Example 1.

In this paper, all the possible constructions of OCL are not

treated but only the most widespread. However, we think that

the other constructions are also feasible in our CSP model.

In the case of OCL constraints about a class feature, we

propose to limit the domain of the variables representing

these features. When we model a class feature, we create a

domain containing positive and negative values. The CSP

model of this first type of OCL constraints is only the

limitation of the domain by the application of a boolean

expression on each value in the domain.

For example, we define an OCL constraint on the class

Place of Petri nets metamodel in Figure 2. This constraint

stipulates that the value of feature marking should always be

positive. To model this OCL constraint we limit the domain

[−50, 50] created at the modeling of the feature marking and

subtract the negative values. The new domain for feature

marking becomes [0, 50]. This model does not create any

new CSP variable or constraint so it remains efficient.

The reference navigation mechanism of OCL is used in

nearly all constraints, it allows a constraint to browse the

metamodels elements through relations. To model this con-

struction we have to verify an equality between a reference

CSP variable (the pointer) and a class instance variable (the

1048

pointed). The treatment of the OCL constraint is applied

to all the couples verifying this equality. The treatment of

references in our model as pointers allows to efficiently treat

reference navigation in OCL constraints.

There are OCL constraints about collections which imply

the creation of a binary constraints sets. To remain efficient,

our model transforms these binary constraints into a global

constraint Alldiff [21].

The CSP model we propose for OCL constraints takes

into account the particularity of each construction of OCL

language. This allows our solution to remain efficient. Con-

versely, the existing solution of Cabot and al. creates the

same CSP model for each OCL constraint.

D. Comparing to Cabot et al. CSP model

We can observe some lacks in Cabot and al. CSP model

proposed in [10]. Our solution corrects the failures and

brings improvements to the CSP model in order to get an

efficient generation process. The main improvements are the

following:

• The previous CSP model uses list variables to model

the instances of each class to distinguish classes one

from the others. This slows constraints propagation.

We use a set of instances variables for each class.

To distinguish each instance and its class, we create

contiguous interval domains.

• The major part of the constraints between variables

in our model are global constraints. These constraints

spread more easily and reduce considerably the number

of constraints created. Cabot and al. CSP model does

not use any global constraint.

• The preceding CSP model involves lots of disjunc-

tive constraints and constraints which achieve only

few propagation, such as the Element constraint (nth,

which returns the nth element of a list). Disjunctive

constraints must be avoided in an efficient CSP model.

In addition, separating the lists into simple variables

in our CSP model implies the suppression of the nth
constraint.

• Another interesting idea of our CSP model is to con-

sider a reference between two classes as a pointer from

instances of the source class to instances of the target

class. This particularity reduces by half the number

of variables representing references between classes

comparing to the existing solution. It is also a good

base to treat the OCL constraints of a metamodel.

• We propose an OCL constraints modeling as accurate

as possible. It takes into account the particularities of

each construction in OCL language. Indeed, we only

limit the variable domain when an OCL constraint

is about a class feature which is one of the most

widespread OCL constraints construction and we create

a global constraint when the OCL model creates a

binary constraints set. Conversely, Cabot and al. model

creates the same number of CSP constraints for all OCL

constraints without looking to their characteristics.

V. EXPERIMENTS

We use the EMF framework tools to develop a test

program which takes a metamodel in entry and generates

models conforming to it. The metamodel is transformed to

a CSP problem. We write a CSP instance in the XCSP

format. The Abscon solver [22] is used to solve CSP and

returns solutions. The metamodel is instantiated according

to the values returned by the solver and a valid model is

generated.

We use the following metamodels for our experiments:

1) Petri nets metamodel (Figure 2);

2) Entities and Relationships metamodel (Figure 7);

3) B language specification metamodel ([23]);

4) Sad software architecture metamodel ([24]).

Their numbers of classes are presented in Table II.

The main purposes of our experiments are:

1) Comparing our solution to Cabot and al. EMFtoCSP
tool and show that our CSP model is more efficient

than the existing one. For that, we use the metamodel

Entities and Relationships shown in Figure 7.

2) Verifying that our solution can generate models con-

taining a high number of class instances and conform-

ing to metamodels containing substantial number of

classes. Thus we also use the metamodels (3) and (4),

which are significatively large metamodels.

Figure 7. A metamodel for Entities and Relationships.

A. Comparing Our solution with Cabot and al. tool

The results in Figures 8 are obtained after the experiments

carried on the Entities and Relationships metamodel (Figure

7). Resolution durations are given in CPU time. Cabot and
al. experiments results are extracted from [11]. The curves

1049

in Figure 8 show that the resolution with our solution is

eight times faster than Cabot and al. tool 1.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

R
es

o
lu

ti
o
n

d
u
ra

ti
o
n

-
C

P
U

ti
m

e

Class instances

Cabot et al.
Ferdjoukh et al.

Figure 8. Comparison between our tool and Cabot and al..

This performance gap is the result of the following

improvements of our solution:

• The use of sets of variables to replace the lists used

by Cabot and al.. Variables of type list are difficult to

manipulate and they slow constraints propagation.

• Absence of global constraints in Cabot and al. CSP

model. For example, Alldiff global constraint could

replace the binary difference constraints introduced by

their CSP model. Conversely, our model uses global

constraints, for example the Global cardinality con-

straint (Gcc) which limits the number of appearance

of a value in a set of variables.

• Representing class references as pointers from the

source class to the destination class reduces by half the

variables modeling the references comparing to Cabot
and al. solution and also facilitates the navigation

operation in OCL constraints.

• A more detailed modeling for OCL constraints of a

metamodel increases the efficiency of our solution.

Indeed, the CSP model of OCL constraints does not

create any CSP variable. The model of some OCL

constraints does not create CSP constraints because it

consists in reducing variables domains.

B. Scaling of the solution

To measure efficiency of our solution relatively to the

size of datasets, we carry experiments on four metamodels

with different numbers of classes. The Table II shows the

number of classes for each metamodel. The results of these

experiments are shown in Figure 9 in which we make the

global number of instances in generated models vary. We

1The experiments have been driven on, if not the same, a slightly similar
computer considering CPU and memory.

notice that our solution is able to generate models conform

to metamodels containing a small number of classes and also

for metamodels containing a substantial number of classes.

The resolution time remains reasonable in all cases.

Metamodel #Classes
Petri nets 4

Entities and Relationships 5
B language 34

Sad 40

Table II
NUMBER OF CLASSES OF THE DIFFERENT METAMODELS USED IN

EXPERIMENTS.

The curves in Figure 9 show that the resolution time

is reasonable also for metamodels containing a substantial

number of classes. These good results are due to the follow-

ing reasons:

• There are not many constraints in the CSP model we

propose. When the number of CSP variables increases,

the number of constraints stays the same so the effi-

ciency is not affected.

• Global constraints like the Global cardinality constraint

(Gcc) which covers a lot of variables are used, their

propagation is easier than other constraints.

However, the results show also that, for a large number

of instances generated, our modeling is less efficient on

metamodels containing a smaller number of classes such

as Petri nets (4 classes), than on metamodels containing a

larger number of classes such as B language (34 classes).

This can be explained by the quick increase of variables

modeling the references.

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800

R
es

o
lu

ti
o
n

d
u
ra

ti
o
n

-
C

P
U

ti
m

e

Global number of instances

B language
Sad

Petri nets
Relashionships and entities

Figure 9. Comparing all metamodels experiments results.

VI. CONCLUSION

The model generation problem is a very challenging

application for the Software Engineering community. The

previous approaches lack of either efficiency or flexibility,

1050

which are required to extend the generation process in a use-

ful way. Due to a too basic modeling, even the previous CSP

approach presents such drawbacks. However, our modeling

based on a more careful treatment of the problem, saving a

significant amount of variables and constraints, seems really

promising. We achieve the generation of models with OCL

constraints, even for large instances, in a very reasonable

time, compared to the previous methods. Moreover, we

expect that this issue may be improvable, by a careful study

of the symmetries in the modeling of references.

Future works will focus on this aspect, as well as on the

diversity of the solutions. Indeed, when we generate several

solutions for the same metamodel, it is more interesting to

get them homogeneously distributed in solution space. It

means that we have to generate distant models (thus distant

graphs), for example using the work presented in [16].

The second part of the future works is to generate relevant

models. This is an important characteristic to practice model

transformation tests. Our objective is here to learn implicit

constraints through constraints acquisition mechanisms such

as the ones presented in [17], [18].

ACKNOWLEDGMENT

The authors would like to thank Christophe Lecoutre and

Vincent Perradin for their help to use Abscon Solver [22].

REFERENCES

[1] B. Baudry, T. Dinh Trong, J.-M. Mottu, D. Simmonds,
R. France, S. Ghosh, F. Fleurey, and Y. Le Traon, “Model
Transformation Testing Challenges,” in ECMDA workshop on
Integration of Model Driven Development and Model Driven
Testing, 2006.

[2] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and
J.-M. Mottu, “Barriers to systematic model transformation
testing,” Communications of the ACM, vol. 53, no. 6, 2010.

[3] T. Stahl, M. Völter, and K. Czarnecki, Model-driven software
development: technology, engineering, management, 2006.

[4] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven
Software Engineering in Practice, ser. Synthesis Lectures on
Software Engineering, 2012.

[5] K. Ehrig, J. Küster, and G. Taentzer, “Generating instance
models from meta models,” Software and Systems Modeling,
2009.

[6] K. Ehrig, J. M. Kister, G. Taentzer, and J. Winkelmann, “Gen-
erating instance models from meta models.” in FMOODS,
2006, pp. 156–170.

[7] S. Sen, B. Baudry, and J.-M. Mottu, “On combining multi-
formalism knowledge to select models for model transforma-
tion testing,” in ICST, 2008.

[8] S. Sen, B. Baudry, and J.-M. Mottu, “Automatic model
generation strategies for model transformation testing,” in
International Conference on Model Transformation, 2009.

[9] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria, “Uniform
random generation of huge metamodel instances,” in 5th
European Conference on Model-Driven Architecture Founda-
tions and Applications (ECMDA), 2009, pp. 130–145.

[10] J. Cabot, R. Clarisó, and D. Riera, “Verification of uml/ocl
class diagrams using constraint programming,” in Proc. of the
Software Testing Verification and Validation Workshop. IEEE
Computer Society, 2008, pp. 73–80.

[11] C. A. González Pérez, F. Buettner, R. Clarisó, and J. Cabot,
“EMFtoCSP: A Tool for the Lightweight Verification of
EMF Models,” in Formal Methods in Software Engineering:
Rigorous and Agile Approaches (FormSERA), 2012.

[12] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework 2.0, 2nd ed. Addison-
Wesley Professional, 2009.

[13] J. J. Cadavid, “Assisting precise Metamodeling,” Ph.D. dis-
sertation, Université de Rennes 1, 2012.

[14] C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting:
A new strategy for obtaining good bounds,” in AAAI, 2006,
pp. 54–61.

[15] N. Creignou and H. Daude, “Generalized satisfiability prob-
lems: minimal elements and phase transitions,” TCS, vol. 302,
no. 1-3, pp. 417 – 430, 2003.

[16] E. Hebrard, B. O’Sullivan, and T. Walsh, “Distance con-
straints in constraint satisfaction,” in IJCAI, 2007, pp. 106–
111.

[17] C. Bessiere, R. Coletta, E. Hebrard, G. Katsirelos, N. Lazaar,
N. Narodytska, C.-G. Quimper, and T. Walsh, “Constraint
Acquisition via Partial Queries,” in IJCAI, 2013, p. 7.

[18] N. Beldiceanu and H. Simonis, “A model seeker: Extracting
global constraint models from positive examples,” in CP,
M. Milano, Ed., 2012, pp. 141–157.

[19] K. R. Apt and M. Wallace, Constraint logic programming
using Eclipse. Cambridge University Press, 2007.

[20] J.-C. Régin, “Arc consistency for global cardinality con-
straints with costs,” in CP, 1999, pp. 390–404.

[21] J.-C. Régin, “A filtering algorithm for constraints of difference
in csps,” in AAAI, 1994, pp. 362–367.

[22] S. Merchez, C. Lecoutre, and F. Boussemart, “Abscon: A
prototype to solve csps with abstraction,” in CP, 2001, pp.
730–744.

[23] J. Cadavid, “B language metamodel in ecore format + ocl
well-formedness rules,” INRIA, 2012.

[24] J. Cadavid, “Sad3 metamodel + ocl well-formedness rules,”
INRIA, 2012.

1051

