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Abstract

Finding a constraint network that will be efficiently
solved by a constraint solver requires a strong ex-
pertise in Constraint Programming. Hence, there is
an increasing interest in automatic reformulation.
This paper presents a general framework for learn-
ing implied global constraints in a constraint net-
work assumed to be provided by a non-expert user.
The learned global constraints can then be added to
the network to improve the solving process. We ap-
ply our technique to global cardinality constraints.
Experiments show the significance of the approach.

1 Introduction
Encoding a problem as a constraint network (called model)
that will be solved efficiently by a constraint toolkit is a diffi-
cult task. This requires a strong expertise in Constraint Pro-
gramming (CP), and this is known as one of the main bot-
tlenecks to the widespread of CP technology [Puget, 2004].
CP experts often start by building a first model that expresses
correctly the problem without any other requirement. Then,
if the time to solve this model is too high, they refine it
by adding new constraints that do not change the set of so-
lutions but that increase the propagation capabilities of the
solver. In Ilog Solver 5.0. user’s manual, a Gcc constraint
is added to improve the solving time of a graph coloring
problem (page 279 in [Ilog, 2000]). In [Régin, 2001], new
constraints are added in a sports league scheduling problem.
Such constraints are called implied constraints [Smith et al.,
1999]. The community has studied automatic ways of gener-
ating implied constraints from a model. Colton and Miguel
[Colton and Miguel, 2001] exploit a theory formation pro-
gram to provide concepts and theorems which can be trans-
lated into implied constraints. In Hnich et al. [Hnich et al.,
2001], some implied linear constraints are derived by using an
extension of the Prolog Equation Solving System [Sterling et
al., 1989]. In all these frameworks the new generated con-
straints are derived from structural properties of the original
constraints. They do not depend on domains of variables.

This paper presents a framework based on ideas presented
in [Bessiere et al., 2005]. This framework contains two orig-
inal contributions in automatic generation of implied con-
straints: First, it permits to learn global constraints with pa-

rameters; Second, the implied constraints are learned accord-
ing to the actual domains of the variables in the model.

Learning global constraints is important because global
constraints are a key feature of constraint programming. They
permit to reduce the search space with efficient propaga-
tors. Global constraints generally involve parameters. For
instance, consider the NValue(k, [x1, . . . , xn]) constraint. It
holds iff k is equal to the number of different values taken
by x1, . . . , xn. k can be seen as the parameter, which leads
to different sets of allowed tuples on the xi’s depending on
the value it takes. The increase of expressiveness provided
by the parameters increases the chances to find implied con-
straints in a network. A learning algorithm will try, for exam-
ple, to learn the smallest range of possible values for k s.t. the
NValue is an implied constraint. The tighter the range for k,
the more the learned constraint can reduce the search space.
Many constraints from [Beldiceanu et al., 2005] may be used
as implied constraints involving parameters.

Learning implied constraints according to the actual do-
mains is important because constraints learned that way take
into account more than just the structure of the network and
the constraints. They are closer to the real problem to be
solved. For instance, if we know that X, Y and Z are 0/1
variables, we can derive X = Z from the set of constraints
X , Y, Y , Z. Without knowledge on the domains, we cannot
derive anything. Even an expert in CP has difficulties to find
such constraints because they depend on complex interactions
between domains and constraints.

2 Motivation Example
Let us focus on a simple problem where n tasks have to be
scheduled. All tasks have the same duration d. Each task i
requires a given amount mi of resource. Steps of time are rep-
resented by integers starting at 0. At any time, the amount of
resource used by all tasks is bounded by maxR. The starting
times of any two tasks must be separated by at least two steps
of time. Random precedence constraints between start times
of tasks are added. The makespan (maximum time) is equal to
2∗ (n−1)+d (the best possible makespan w.r.t. the constraint
on starting times). The question is to find a feasible schedule.
We implemented a naive model with Choco [Choco, 2005].
The start time of task i is represented by a variable xi with
domain [0..2 ∗ (n − 1)] (because of the makespan), and the
resource capacity is represented at each unit of time t by an



Naive model Implied constraint
n / d / n1 / n2 / maxR #nodes / time (sec.) #nodes / time (sec.)

4 / 4 / 4 / 0 / 4 —– / > 60 46 / 0.05
4 / 4 / 4 / 0 / 3 42,129 / 7.50 46 / 0.03
4 / 4 / 4 / 0 / 2 85 / 0.20 25 / 0.05
4 / 4 / 3 / 1 / 4 45 / 0.05 45 / 0.05
4 / 4 / 3 / 1 / 3 33 / 0.05 32 / 0.05
4 / 4 / 3 / 1 / 2 7 (unsat) / 0.05 3 (unsat) / 0.03

Table 1: Results on the naive model (left) and when an implied Gcc
is added to the model (right). (n tasks of duration d among which n j

tasks use j resources.)

array R[t][1..n] of variables, where R[t][i] = mi if task i is
active at time t, R[t][i] = 0 otherwise. Constraints ensuring
consistency between xi and R[t][i] and constraints on separa-
tion of starting times are primitive ones. Sum constraints are
used for expressing resource capacity (

∑n
i=1 R[t][i] ≤ maxR).

We place us in the context of a non expert user, so we run the
default search heuristics of Choco (the variable with mini-
mum domain first, assigned with its smallest available value).
We put a cutoff at 60 seconds. Table 1(left) reports results on
instances where n = 4, d = 4 and n j is the number of tasks
requiring j resources. Only two precedence constraints are
added. It shows that even on these small instances, our naive
model can be hard to solve with standard solving techniques.
If we want to solve this problem with more tasks, we def-
initely need to improve the model. An expert-user will see
that constraints on the starting time of tasks induce limits on
the number of tasks that can start at each point of time.1 The
makespan is indeed equal to the minimal possible value for
scheduling all the tasks if they are separated by at least two
units. We therefore have to place tasks as soon as possible.
This means that one task starts at time zero, one task at time
2, etc. This can be expressed explicitly with a global cardi-
nality constraint (Gcc). Gcc([x1, . . . , xn], [pv1, . . . , pvk ]) holds
iff |{i | xi = v j}| = pv j for all j. So, we add to our model a Gcc
constraint that involves all starting times x1, . . . , xn and guar-
antees that the n first even values of time are taken at least
once: Gcc([x1, . . . , xn], [p0, . . . , p2n−1]), where pv ∈ 1 . . . n if
v is even, pv ∈ 0 . . .n otherwise. As shown in Table 1(right),
adding this simple Gcc constraint to the naive model leads to
significant improvements. This example shows that for a non-
expert user, even very small problems can lead to bad perfor-
mance of the solver. Adding simple implied constraints to the
model can dramatically reduce the solving cost.

3 Basic Definitions
A constraint networkN is defined by a setX = {x1, . . . , xn} of
variables, a set D = {D(x1), . . . ,D(xn)} of domains of values
for the variables in X, and a set C of constraints. A constraint
c is defined on its scope X(c) ⊆ X. c specifies which com-
binations of values (or tuples) are allowed on the variables in
X(c). A solution to N is an assignment of values from their
domain to all variables in X s.t. all constraints in C are satis-
fied. sol(N) denotes the set of solutions ofN .

1The automatic generation of robust search heuristics is out of
the scope of this paper.

An implied constraint for a constraint networkN is a con-
straint that does not change the solutions of N . That is,
given the constraint network N = (X,D,C), the constraint
c with X(c) ⊆ X is an implied constraint for N if sol(N) =
sol(N + c) whereN + c denotes the network (X,D,C ∪ {c}).

Global constraints are defined on any number of vari-
ables. For instance, alldifferent is a global constraint
that can be instantiated on scopes of variables of any size.
For most of the global constraints, the signature is not com-
pletely fixed. Some of their variables can be seen as pa-
rameters, that is, ’external’ variables that are not involved
in any other constraint of the problem. For instance, the
Gcc constraint Gcc([x1, . . . , xn], [pv1, . . . , pvk ]) involves xi’s
and pv’s. The pv’s can be variables of the problem (like
in [Quimper et al., 2003]), or parameters that take a value
in a range (like in [Régin, 1996]). Another example is the
Among constraint. Among([x1, . . . , xn], [v1, . . . , vk],N) holds
iff |{i | ∃ j ∈ 1..k, xi = v j}| = N. The v j’s and N can be
parameters or variables [Beldiceanu and Contejean, 1994;
Bessiere et al., 2006]. So, a global constraint C defined on
a scheme scheme(C) can be specified into different types
of parametric constraints depending on which elements in
scheme(C) are variables or parameters.
Definition 1 (Parametric constraint) Given a global con-
straint C defined on scheme(C), a parametric constraint de-
rived from C is a global constraint C[P] s.t. P = {p1, . . . , pm}

is the set of parameters of C[P] with P ⊂ scheme(C), and
X(C[P]) is the scope of C[P] with X(C[P]) = scheme(C) \ P.

So, in addition to its variables, a constraint can be defined
by a set P of parameters. The set of tuples that are allowed by
the constraint depends on the values the parameters can take.
Definition 2 (Instance of parametric constraint) Given a
constraint network N = (X,D,C), an instance of a para-
metric constraint C[P] in N is a constraint C[P← S ] s.t.:
• X(C[P← S ]) = X(C[P]) ⊆ X,

• P ∩ X = ∅,

• S ⊆
�
|P| is a set of tuples on P,

• C[P ← S ] is satisfied by an instantiation e on X(C[P])
iff there exists t ∈ S s.t. the tuple (e+ t) on scheme(C) is
a satisfying tuple for the global constraint C from which
C[P] is derived.

Example 1 Let C[P] be the parametric constraint derived from
Among([x1, . . . , x4], [v],N) with scope (x1, . . . , x4) and parameters
P = (v,N). Let S = {(1, 3), (2, 1)} be a set of combinations for
P. A tuple on (x1, . . . , x4) is accepted by the instance of constraint
C[P ← S ] iff it has three occurrences of value 1 or one occurrence
of value 2. Tuples (1, 1, 3, 1) and (1, 1, 2, 3) satisfy the constraint.
Tuples (3, 2, 2, 2) and (2, 1, 1, 2) do not. We suppose that this para-
metric constraint allows us specifying combinations of parameters
that are allowed. In practice, propagation algorithms often put re-
strictions on how parameters can be expressed.

Given a parametric constraint C[P], different sets S and
S ′ of tuples for the parameters lead to different constraints
C[P ← S ] and C[P ← S ′]. Hence, when adding an instance
of parametric constraint C[P] as implied constraint in a net-
workN , it is worth using a set S of tuples for the parameters
which is as tight as possible and C[P← S ] is implied inN .



4 Learning Implied Parametric Constraints
The objective is to learn a ’target’ set T ⊆

�
|P|, as small as

possible s.t. C[P] is still an implied constraint. Any s ∈
�
|P|

which is not necessary to accept some solutions of N can be
discarded from T . The tighter the learned constraint is, the
more promising its filtering power is.

Definition 3 (Learning an implied parametric constraint)
Given a constraint network N = (X,D,C) and a parametric
constraint C[P] with P ∩ X = ∅ and X(C[P]) ⊆ X, learning
an instance of the parametric constraint C[P] implied in N
consists in finding a set S ⊆

�
|P| as tight as possible s.t.

C[P← S ] is implied inN .
A set of tuples T s.t. C[P ← T ] is implied in N and there

does not exist any S ⊂ T with C[P ← S ] implied in N is
called a target set for C[P] inN .

We now give a general process to learn the parameters of
implied global constraints. Since our goal is to deal with any
type of constraint network, we focus on global constraints C
and sets of parameters P ⊆ scheme(C) s.t. C[P←

�
|P|] is the

universal constraint. This means that if N contains the vari-
ables in scheme(C) \ P, C[P ←

�
|P|] is an implied constraint

in N . The learning task is to find a small superset of a target
set T (see Definition 3). Given a problemN = (X,D,C) and
a parametric constraint C[P], we denote by:

• ubT a subset of
�
|P| s.t. C[P ← ubT ] is an implied con-

straint,

• lbT a subset of ubT s.t. for any t ∈ lbT , C[P← ubT \ {t}]
is not an implied constraint.

In other words, lbT represents those combinations of values
for the parameters that are necessary in ubT to preserve the
set of solutions of N , and ubT those for which we have not
proved yet that we would not lose solutions without them.
The following propositions give some general conditions on
how to incrementally tighten the bounds lbT and ubT while
keeping the invariant lbT ⊆ T ⊆ ubT , where T is a target.

Proposition 1 Let C[P ← ubT ] be an implied constraint in
a network N . If there exists S ⊂ ubT s.t. sol(N) = sol(N +
C[P← S ]) then C[P← S ] is an implied constraint inN . So
ubT can be replaced by S .

Testing equivalence of the sets of solutions of two networks
is coNP-complete. This cannot be handled by classical con-
straint solvers. Hence, we have to relax the condition to a
condition that can more easily be checked by a solver.

Corollary 1 Let C[P ← ubT ] be an implied constraint in a
network N . If there exists S ⊆ ubT s.t. N + C[P ← S ] is
inconsistent then C[P ← ubT \ S ] is an implied constraint in
N . So ubT can be replaced by ubT \ S .

The weakness of this corollary is that we have no clue on
which subsets S of ubT to test for inconsistency. But we know
that an implied constraint should not remove solutions when
we add it to the network. Hence, solutions can help us.

Proposition 2 Let C[P ← ubT ] be an implied constraint in
a network N and e be a solution of N . For any S ⊆ ubT s.t.
C[P ← S ] is an implied constraint for N there exists t in S
s.t. e satisfies C[P← {t}].

If a given solution is accepted by a unique combination of
values for the parameters, then this combination is necessary
for having an implied constraint (i.e., it belongs to lbT ).

Corollary 2 Let C[P ← ubT ] be an implied constraint in a
network N and e be a solution of N . If there is a unique t in
ubT s.t. e satisfies C[P← {t}] then t can be put in lbT .

By Corollaries 1 and 2 we can shrink the bounds of an ini-
tial set of possibilities for the parameters. Algorithm 1 per-
forms a brute-force computation of a set ubT s.t. C[P← ubT ]
is an implied constraint for a network N . This algorithm
works when no extra-information is known from the param-
eters. It uses corollaries 1 and 2. The input is a parametric
constraint and a constraint network (and optionally an initial
upper bound UB on the target set). The output is a set ubT
of tuples for the parameters, s.t. no solution of the problem is
lost if we add C[P← ubT ] to the network.

Algorithm 1: Brute-force Learning Algorithm

Input: C[P],N (optionally UB);
Output: ubT ;
begin

lbT ← ∅;
ubT ← � |P| ; /* or the tighter UB */
while lbT , ubT and not ’time-out’ do

Choose S ⊂ ubT \ lbT ;
if sol(N +C[P← S ]) = ∅ then1

ubT ← ubT \ S ; /* Corollary 1 */

else
pick e in sol(N +C[P← S ]);
if there is a unique t in ubT s.t. e satisfies2
C[P← {t}] then

lbT ← lbT ∪ {t} ; /* Corollary 2 */

end

It is highly predictable that Algorithm 1 can be inefficient.
The space of possible combinations of values to explore is
exponential in the number of parameters. In addition, check-
ing whether N + C[P ← S ] is inconsistent (line 1) is NP-
complete. Even if N in this learning phase should be only
a subpart of the whole problem, it is necessary to use some
heuristics to improve the process. Fortunately, in practice,
constraints have characteristics that can be used. The next
section studies some of these properties.

5 Using Properties on the Constraints
For a given parametric constraint C[P], different representa-
tions of parameters may exist. The complexity of associated
filtering algorithms generally differs according to the repre-
sentation used. The more general case studied in Section 4
consists in considering that allowed tuples of parameters for
C[P] are given in extension as a set S ⊆

�
|P|.

5.1 Partitioning parameters
In practice, many parametric constraints satisfy the follow-
ing property: any two different combinations of values in

�
|P| for the parameters correspond to disjoint sets of so-

lutions on X(C[P]). For instance, this is the case for the
Gcc([x1, . . . , xn], [pv1 , . . . , pvk ]) constraint: Each combination



of values for the parameters pv1 , . . . , pvk imposes a fixed num-
ber of occurrences for each value v1, . . . , vk in x1, . . . , xn.

Definition 4 A parametric constraint C[P] is called
parameter-partitioning iff for any t, t′ in

�
|P|, if t , t′ then

C[P← {t}] ∩ C[P← {t′}] = ∅.
Given an instantiation e on X(C[P]), the unique tuple t on

P s.t. e satisfies C[P← {t}] is denoted by te.

When a constraint is parameter-partitioning, we have the
nice property that there is a unique target set.

Lemma 1 Given a constraint network N , if a parametric
constraint C[P] is parameter-partitioning then there exists a
unique target set T for C[P] in N .

The next proposition tells us that when a constraint is
parameter-partitioning, updating the lower bound on the tar-
get set is easier than in the general case.

Proposition 3 Let C[P← ubT ] be an implied constraint in a
network N and e be a solution of N . If C[P] is a parameter-
partitioning constraint then the unique tuple te on P s.t. e
satisfies C[P← {t}] can be put in lbT .

This Proposition is a first way to improve Algorithm 1. It
allows a faster construction of lbT because any solution ofN
contributes to the lower bound lbT in line 2.

5.2 Parameters as sets of integers
As far as we know, existing parametric constraints are defined
by sets of possible values for their parameters p1, . . . , pm

taken separately. This means that the target set T must be
a Cartesian product T (p1) × · · · × T (pm), where T (pi) is the
target set of values for parameter pi. In other words, T is de-
rived from the sets of possible values of each parameter. This
is less expressive than directly considering any subset of

�
|P|,

but the learning process is easier to handle. Let lbT (pi) and
ubT (pi) be the required and possible values in T (pi). Corol-
laries 1 and 2 are specialized in Corollaries 3 and 4.

Corollary 3 Let C[P ← ubT ] be an implied constraint in
a constraint network N , with ubT =

�
pi∈P(ubT (pi)). Let

pi ∈ P, S i ⊆ ubT (pi) \ lbT (pi) and S =
�

j,i ubT (p j) × S i.
If N + C[P ← S ] has no solution then values in S i can be
removed from ubT (pi).

This corollary says that if a parametric constraint instance
C[P ← S ] is inconsistent with a network whereas all its pa-
rameters except one (pi) can take all the values in their upper
bound, then all values in S (pi) can be discarded from ubT (pi).

Corollary 4 Let C[P ← ubT ] be an implied constraint in a
network N and e be a solution of N . Given a parameter
pi ∈ P and a value v ∈ ubT (pi), if we have t[pi] = v for every
tuple t in ubT s.t. e satisfies C[P ← {t}], then v can be put in
lbT (pi).

As in Section 5.1, Algorithm 1 can be modified to deal with
the specific case where parameters are represented as sets of
integers. Corollary 4 tells us when a value must go in lbT (pi)
for some parameter pi. Corollary 3 tells us when a value can
be removed from ubT (pi) for some parameter pi.

5.3 Parameters as ranges
The possible values for a parameter pi can be represented by
a range of integers, that is, a special case of set where all val-
ues must be consecutive w.r.t. the total order on integers. The
only possibility for modifying the sets lbT (pi) and ubT (pi)
of a parameter pi is to shrink their bounds min(lbT (pi)),
max(lbT (pi)), min(ubT (pi)) and max(ubT (pi)). This case re-
stricts even more the possibilities for the combinations of pa-
rameters allowed, and simplifies the learning process. Corol-
laries 1 and 2 can be specialized as Corollaries 5 and 6.

Corollary 5 Let C[P ← ubT ] be an implied constraint in
a constraint network N , where parameters are represented
as ranges. Let pi ∈ P and v < min(lbT (pi)) (resp. v >
max(lbT (pi))) and S =

�
j,i ub(p j) × (−∞..v] (resp. S =�

j,i ub(p j) × [v.. + ∞)). If N + C[P ← S ] has no solution
then min(ubT (pi)) > v (resp. max(ubT (pi)) < v).

Corollary 6 Let C[P ← ubT ] be an implied constraint in a
network N and e be a solution of N . Given a parameter
pi ∈ P and a value v ∈ ubT (pi), if we have t[pi] = v for every
tuple t in ubT s.t. e satisfies C[P ← {t}], then min(lbT (pi)) ≤
v ≤ max(lbT (pi)).

Thanks to Corollary 5, tightening the upper bounds for a
given pi is simply done by checking if forcing it to take val-
ues smaller than the minimum (or greater than the maximum)
value of its lower bound leads to an inconsistency in the net-
work. If yes, we know that all these values smaller than the
minimum of lbT (pi) (or greater than the maximum of lbT (pi))
can be removed from ubT (pi).

6 Making the Learning Process Tractable
One of the operations performed by the learning technique
described in Sections 4 and 5 is a call to a solver to check
if the network containing a given instance of parametric con-
straint is still consistent (line 1 in Algorithm 1). This is NP-
complete. A key idea to tackle this problem is that implied
constraints learned on a relaxation of the original network are
still implied constraints on the original network.

Proposition 4 Given a network N = (X,D,C) and a net-
work N ′ = (X,D′,C′), if a constraint c is implied in N ′ and
sol(N) ⊆ sol(N ′) then c is implied in N .

Selecting a subset of the constraints.
Thanks to Proposition 4, we can select any subset of the con-
straints of the network on which we want to learn an implied
constraint, and the constraint learned on that subnetwork will
be implied in the original network. In the example of Sec-
tion 2, the Gcc constraint is only posted on the variables rep-
resenting tasks and is an implied constraint on the subnet-
work where neither the resource constraints nor the prece-
dence constraints are taken into account. Thus, the underly-
ing network was a simple one that could easily be solved.

Optimization problems.
In an optimization problem, the set of solutions is the set of
instantiations that satisfy all constraints and s.t. a cost func-
tion has minimal (or maximal) value. IfN = (X,D,C) is the
network and f is the cost function, letN ′ = (X,D,C∪{cUB

f })



n / d / n1 / n2 / maxR #nodes learning(sec.)
+ solve (sec.)

4 / 4 / 4 / 0 / 4 47 0.3 + 0.05
4 / 4 / 4 / 0 / 3 47 0.3 + 0.05
4 / 4 / 4 / 0 / 2 23 0.3 + 0.02
4 / 4 / 3 / 1 / 4 43 0.5 + 0.05
4 / 4 / 3 / 1 / 3 30 0.3 + 0.02
4 / 4 / 3 / 1 / 2 3 (unsat) 0.5 + 0.02

Table 2: Learning an implied Gcc on the naive model of Section 2:
time to learn and solving time. (n tasks of duration d among which
n j tasks use j resources.)

where cUB
f is a constraint accepting all tuples on X with cost

below a fixed upper bound UB (we concentrate on minimiza-
tion). If UB is greater than the minimal cost, then any im-
plied constraint in N ′ accepts all solutions of N optimal wrt
f . The idea is thus to run a branch and bound on N for a
fixed (short) amount of time. UB is set to the value of the
best solution found. Then, the classical learning process is
launched on the network N + cUB

f . Note that if the learned
implied constraint improves the solving phase, it can permit
to quickly find a bound UB′ better than UB. Using this new
bound UB′, we can continue the learning process onN +cUB′

f

instead of N + cUB
f . The learned implied constraint will be

tighter because N + cUB
f is a relaxation of N + cUB′

f . We ob-
serve a nice cooperation between the learning process and the
solving process.

Time limit.
It can be the case that finding a subnetwork easy to solve is not
possible. In this case, we have to find other ways to decrease
the cost of the consistency test of line 1 in Algorithm 1. A
simple way is to put a time limit to the consistency test. If the
solver has not finished its search before the limit, ubT is not
updated and the algorithm goes to the next loop.

7 Experiments
We evaluate our learning technique on the Gcc constraint (see
Section 2). The Gcc global constraint is NP-hard to propagate
when all elements in its scheme are variables [Quimper et al.,
2003]. However, when the cardinalities of the values are pa-
rameters that take values in a range, efficient algorithms exist
to propagate it [Régin, 1996; Quimper et al., 2004]. In ad-
dition, the Gcc constraint can express many different features
on the cardinalities of the values. This is thus a good can-
didate for being added as an implied constraint. In all these
experiments we learn a Gcc where cardinalities are ranges of
integers. Results in Sections 5.1 and 5.3 apply directly. We
used the Choco constraint solver [Choco, 2005].

Satisfaction Problem.
The first experiment was performed on the problem of Sec-
tion 2. The learning algorithm was run on the subnetwork
where resource constraints and precedence constraints are
discarded. The learning is thus fast (300 to 800 milliseconds
for n = 4 or n = 5). We fixed to 30 the limit on the number of
consistency tests of the subnetwork with the added Gcc (line

n / d / n1 / n2 / maxR #nodes solve (sec.)
5 / 5 / 5 / 0 / 3 —– > 60
5 / 5 / 5 / 0 / 2 53,250 (unsat) 19
5 / 5 / 3 / 2 / 4 —– > 60
5 / 5 / 3 / 2 / 3 1,790 (unsat) 1.2
5 / 5 / 1 / 4 / 5 11,065 3.9
5 / 5 / 1 / 4 / 4 7,985 (unsat) 2.9

Table 3: Naive model with 5 tasks (n tasks of duration d among
which n j tasks use j resources.)

n / d / n1 / n2 / maxR #nodes learning (sec.)
+ solve (sec.)

5 / 5 / 5 / 0 / 3 63 0.7 + 0.05
5 / 5 / 5 / 0 / 2 361 (unsat) 0.7 + 0.3
5 / 5 / 3 / 2 / 4 92 0.8 + 0.08
5 / 5 / 3 / 2 / 3 123 (unsat) 0.7 + 0.2
5 / 5 / 1 / 4 / 5 39 0.7 + 0.05
5 / 5 / 1 / 4 / 4 154 (unsat) 0.7 + 0.2

Table 4: Learning an implied Gcc on the problems with 5 tasks:
time to learn and solving time. (n tasks of duration d among which
n j tasks use j resources.)

1 in Algorithm 1). Table 2 shows the results on a model con-
taining the learned implied Gcc. The first time number corre-
sponds to the learning process and the second to the solving
time. Results in Table 2 are almost the same as results in Ta-
ble 1, where the implied Gcc was added by the expert user.
This shows that a short run of the learning algorithm gives
some robustness to the model wrt the solving process: The
problem is consistently easy to solve on all types of instances
whereas some of them could not be solved on the naive model
of Section 2. Tables 3 and 4 show the results when we in-
crease the number of tasks and their length (n = d = 5 instead
of 4) and the number of random precedence constraints (4 in-
stead of 2). We stopped the search at 60 seconds. We were
able to solve all problems with size n = 6 in a few seconds
(including the learning time) while most of them are not solv-
able without the implied Gcc even after several minutes. This
first experiment shows that when taking a naive model with
a naive search strategy, our learning technique can improve
the robustness of the model in terms of solving time. The ef-
fort asked to the user was just to have the intuition that “there
is maybe some hidden Gcc related to the ordering of tasks”.
This is a much lower effort than studying by hand the possible
implied constraints for each number of tasks and durations n
and d.

Optimization Problem.
At the Institute of Technology of the University of Mont-
pellier (IUT), n students provide a totally ordered list
(u1, . . . , um) of the m projects they prefer: project ui is strictly
preferred to project ui+1. The goal is to assign projects s.t. two
students do not share a same project, while maximizing their
satisfaction: a student is very satisfied if she obtains her first
choice, less if she obtains the second one, etc. Obtaining no
project of her list is the worst possible satisfaction. Additional
constraints exist such as a limit of 6 projects selected in the set



Initial model Implied constraint
n #nodes solve (sec.) #nodes learning (sec.)

+ solve (sec.)
10 110 0.2 12 0.2 + 0.0
20 137,982 183.2 1,998 10.2 + 8.4
60 — > 12 hours 8.7 × 106 110.0 + 43min.

Table 5: Learning an implied Gcc on the ’projects’ optimization
problem. n is the number of students

of projects proposed by a teacher. A first model was provided
by students from that institute who are novices in constraint
programming: students are variables, domains are their set
of preferred projects plus an extra-value “0”, which means
that no project in the preferred list was found. Constraints
“(xi , x j) ∨ (xi = x j = 0)” between each pair (xi, x j) of stu-
dents express mutual exclusion on projects. Each student has
a preference-variable measuring her satisfaction. Preference-
variables are linked to student-variables by table constraints
{(u1, 0), . . . , (um,m − 1), (0,m)}. The objective is to minimize
the sum of preference-variables. This model is referred as the
initial model. We wish to learn an implied Gcc on student
variables. The solver is first launched on the initial model for
a short time (1 sec.) to get a first solution S 0 and an upper
bound on the quality of solutions, as described in Section 6.
We had only one real instance (with 60 students), so we de-
rived from the real data some sub-instances with less students
(preserving the ratio ”number of projects/number of students”
and the distribution of the choices).

Left hand side of Table 5 shows the time and number of
nodes with the initial model according to the number of stu-
dents n. Right hand side of Table 5 shows the results obtained
when learning an implied Gcc on the student variables. We
fixed to 10 × n the limit on the number of consistency tests
(line 1 in Algorithm 1), with a cutoff of 0.5 seconds for each
of them. Thus, the maximum learning time grows linearly
with the size of the problem. The learning time includes the
generation of an initial positive example. The results show
a tremendous speed up on the model refined with a learned
implied Gcc compared to the initial model. This shows that
learning implied global constraints in an optimization prob-
lem can greatly pay off when the model has been designed by
a non CP expert.

8 Conclusion

Global constraints are essential in improving the efficiency of
solving constraint models. We proposed a generic framework
for automatically learning implied global constraints with pa-
rameters. This is both the first approach that permits to derive
implied global constraints and the first approach that learns
implied constraints according to the actual domains, not just
constraints derived from structural or syntactical properties.
We applied the generic framework to special properties that
global constraints often satisfy. Our experiments show that a
very small effort spent learning implied constraints with our
technique can dramatically improve the solving time.
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