
Producing Certified Functional Code
from Inductive Specifications

Pierre-Nicolas Tollitte1, David Delahaye2, and Catherine Dubois3

1 CEDRIC/ENSIIE, Évry, France,
tollitte@ensiie.fr

2 CEDRIC/CNAM, Paris, France,
David.Delahaye@cnam.fr

3 CEDRIC/ENSIIE/INRIA, Paris, France,
dubois@ensiie.fr

Abstract. Proof assistants based on type theory allow the user to adopt
either a functional style, or a relational style (e.g., by using inductive
types). Both styles have pros and cons. Relational style may be pre-
ferred because it allows the user to describe only what is true, discard
momentarily the termination question, and stick to a rule-based descrip-
tion. However, a relational specification is usually not executable. This
paper proposes to turn an inductive specification into a functional one,
in the logical setting itself, more precisely Coq in this work. We define for
a certain class of inductive specifications a way to extract functions from
them and automatically produce the proof of soundness of the extracted
function w.r.t. its inductive specification. In addition, using user-defined
modes which label inputs and outputs, we are able to extract several
computational contents from a single inductive type.

Keywords: Executable Specifications, Inductive Relations, Functional
Code Generation, Soundness Proof Generation, Coq

1 Introduction

Proof assistants based on type theory allow the user to adopt either a functional
style, or a relational style (e.g., by using inductive types). The choice between
the two styles may be guided by different requirements, but it is also a matter of
taste. Using inductive types or relational style may be preferred because it allows
the user to specify only what is true, discard termination issues, and stick to
usual rule-based presentations. A typical example, which illustrates these points,
concerns the definition of an operational semantics including a while loop. While
it is rather tricky to define an interpretation function [4], it is easier and more
natural to define its operational semantics by means of an inductive relation. The
former approach has to deal with general recursion, partiality, and termination.
The latter approach provides the user with a straightforward implementation,
where the inference system is formalized as an inductive type whose constructors
are a direct rewording of the inference rules. However, in some systems like Coq

or Isabelle, these definitions are not directly executable. Simulating the execution
of a program therefore requires proving a judgment using the constructors of the
inductive type with more or less automation, and this kind of process does not
scale up to complex specifications. Another argument in favor of relational style
is that an inductive specification may describe several computational behaviors
according to the arguments of the inductive relation which have been selected
as inputs. For example, from the predicate add where add n m p specifies that p
is the sum of n and m, it is possible to extract not only a function realizing the
addition, but also a function realizing the subtraction.

A feature offered by some systems such as Coq, Isabelle, or HOL, consists
of the possibility to extract code from functional specifications. In Isabelle [3, 2]
and Coq (see the previous work of some of the authors [6], as well as the plugin
distributed with Coq), it is even possible to do so from inductive specifications.
However, in the Coq framework, an ML function extracted from an inductive
type, even if it terminates, cannot be used in the Coq environment itself.

In this paper, we propose an approach which turns an inductive specification
into a functional one within the logical setting itself, i.e. Coq [10] in particular.
For a class of inductive specifications, we define a way to extract functions from
these specifications and produce the proof of soundness of any extracted function
w.r.t. its inductive specification. This allows us to not only use the generated
functions within the proof assistant, but also reason over them. This approach is
fully automatic if the extracted function follows a structural recursion scheme.
Otherwise, if the recursion is general, the user must provide termination infor-
mation, such as a measure or a well-founded order. Our approach is limited to
inductive specifications from which we can extract structurally recursive func-
tions. Our contribution consists in automating a common but tedious practice,
as illustrated by this quotation by Blazy and Leroy in [5]: “The recommended
approach to execute a Coq specification by inductive predicates, therefore, is to
define a reference interpreter as a Coq function, prove its equivalence with the
inductive specification, and evaluate applications of the function.”.

To produce the Coq functional code, we follow the translation scheme given
in [6] for extracting ML code from inductive specifications. Compared to [6],
we are able to deal with a larger family of inductive specifications, involving
in particular some specific cases of non-deterministic inductive relations, and as
said previously, we are also able to deal with proofs of soundness.

The closest approach to the work described in this paper concerns the com-
pilation of inductive relations in Isabelle/HOL into executable programs [3, 2]. In
this approach, the authors rely on a mode consistency analysis, in the same way
as in [6] and the work presented here. The notion of mode comes from logic pro-
gramming and helps us perform various analyses and optimizations. In [2], the
inductive definition is translated into a set of equations equivalent to the initial
moded definition, and then exported to a functional programming language. The
equivalence is proved by means of a sound and complete procedure. The main
difference between this approach and our work is that the authors are able to
compile non-deterministic specifications, while we reject some of them. As a con-

sequence, this approach relies on an infrastructure of sequences in order to have
all the possible results even if the specification is deterministic, resulting in less
readable programs in some cases. In another context, inductive specifications
encoded in Twelf [9] can be executed using a higher-order logic programming
language, but it does not export any code within or outside of the logic.

The paper is structured as follows: in Section 2, we illustrate our approach on
a basic example; we then introduce, in Section 3, our notion of inductive specifi-
cation, and present our code generation algorithm; next, in Section 4, we describe
the generation of proofs of soundness for the extracted functions w.r.t. their cor-
responding inductive specifications; finally, in Section 5, we provide information
regarding the implementation which has been realized in the framework of Coq.

2 An Example

In this section, we present how our functional extraction should work on an ex-
ample of inductive specification within the Coq framework [10]. This functional
extraction is performed in several steps. First, the user annotates his/her in-
ductive relation with a mode specifying which arguments are inputs, the others
being considered as outputs. A mode consistency analysis is then performed to
determine if the extraction is possible w.r.t. the provided mode. If the previ-
ous analysis is successful, the inductive relation is translated into a functional
program. Finally, if the previous translation is successful, a proof of soundness
is produced, ensuring that the generated function verifies the initial inductive
relation. Compared to [6], the translation into a functional program is performed
within the logical framework (i.e. Coq), which requires the extracted function to
terminate and allows us to generate a proof of soundness.

As an example of extraction, let us consider the specification consisting in
searching for a value in a binary search tree, which can be formalized in Coq as
follows (let us note that we introduce two inductive relations, one for comparing
two values of the tree, and another one for searching a value in the tree):

Inductive b s t : Set :=
| Empty : b s t
| Node : b s t → nat → b s t → b s t .

Inductive comp_nat : Set := | In f | Sup | Eq .

Inductive path : Set :=
| Not_found | End_path
| Le f t : path → path | Right : path → path .

Inductive compare : nat → nat → comp_nat→ Prop :=
| Compare_eq : compare 0 0 Eq
| Compare_inf : f o ra l l n , compare 0 (S n) In f
| Compare_sup : f o ra l l n , compare (S n) 0 Sup
| Compare_rec : f o ra l l n m c , compare n m c →

compare (S n) (S m) c .

Inductive search : b s t → nat → path → Prop :=
| Search_empty : f o ra l l n , search Empty n Not_found
| Search_found : f o ra l l n m t1 t2 , compare n m Eq→

search (Node t1 m t2) n End_path
| Search_inf : f o ra l l n m t1 t2 b , search t1 n b →

compare n m In f → search (Node t1 m t2) n (Le f t b)
| Search_sup : f o ra l l n m t1 t2 b , search t2 n b →

compare n m Sup → search (Node t1 m t2) n (Right b) .

Using the mode {1, 2} both for the compare and search relations (which
means that we use the two first arguments of compare and search as inputs), the
following function can be automatically extracted from the relation search:

Fixpoint search12 (p1 : b s t) (p2 : nat) : path :=
match p1 with
| Empty ⇒ Not_found
| Node t1 m t2 ⇒

match compare12 p2 m with
| In f ⇒ let b := search12 t1 p2 in Le f t b
| Sup ⇒ let b := search12 t2 p2 in Right b
| Eq ⇒ End_path
end

end .

where compare12 is the function extracted from the relation compare.
It should be noted that using the mode {1, 2}, the relation search appears

as non-deterministic in the sense that several constructors overlap (in this case,
Search_found, Search_inf, and Search_sup). This requires a specific analysis
of the premises of the corresponding constructors to realize that the relation is
actually deterministic using the result of a given call to distinguish them (here,
the result of the application of compare12).

Once the previous function has been generated, it is possible to produce a
proof of soundness for this function, i.e. to prove that it verifies the relation from
which it has been extracted. To do so, the idea is to use the functional induction
scheme of the extracted function generated by Coq, which is the following (due to
space restrictions, we only describe the cases of Search_empty and Search_inf):

Lemma search12_ind :
f o ra l l P : b s t → nat → path → Prop ,

(f o ra l l (p1 : b s t) (p2 : nat) , p1 = Empty→
P Empty p2 Not_found) →

(f o ra l l (p1 : b s t) (p2 : nat) (t1 : b s t) (m : nat)
(t2 : b s t) , p1 = Node t1 m t2 →
compare12 p2 m = In f → P t1 p2 (search12 t1 p2) →
let p := search12 t1 p2 in
P (Node t1 m t2) p2 (Le f t p)) → . . .

f o ra l l (p1 : b s t) (p2 : nat) , P p1 p2 (search12 p1 p2) .

Using this induction scheme, it is possible to automatically complete the
proof of soundness for the function previously extracted as follows (we still focus
on the cases corresponding to the constructors Search_empty and Search_inf):

Lemma search12_sound :
f o ra l l (p1 : b s t) (p2 : nat) (p : path) ,

search12 p1 p2 = p → search p1 p2 p .
Proof .

intros until 0 ; intro H ; subst p ; apply search12_ind .
(∗ Search_empty ∗)
intros until 0 ; intro H ; apply Search_empty .
(∗ Search_inf ∗)
intros until 0 ; intros H1 H2 H3 ; simpl .
apply Search_inf ;

[assumption | apply compare12_sound ; assumption] .
. . . (∗ Search_sup and Search_found ∗)

Save .

where compare12_sound is the soundness lemma for the compare12 function.

3 Code Generation

Our code generation algorithm consists in producing a functional program from
an inductive relation and an extraction mode. In the following, we will borrow
some definitions and notations from [6], and in particular, an inductive relation
will be called logical inductive type. If the extraction is performed from a logical
inductive type d, the definition of d may use other logical inductive types named
di. In this case, extraction modes must be provided for all these types. We
will not deal with mutually recursive definitions, and we will assume that each
dependency w.r.t. di has already been extracted with its extraction mode.

3.1 Logical Inductive Types

The Coq proof assistant relies on the Calculus of Inductive Constructions (CIC
for short) type theory, for which a description can be found in the Coq doc-
umentation [10]. This theory is actually too extensive for the purpose of this
paper, and we will use a subset of CIC to describe logical inductive types. The
subset of CIC that we will consider is very similar to the one used in [6], and
we will only add some restrictions on the form of the terms. An inductive def-
inition is noted Ind(d : τ , Γ), where d is the name of the inductive definition,
τ its type, and Γ the context representing the constructors (their names to-
gether with their respective types). In this notation, two restrictions have been
made: we do not deal with parameters (i.e. the additional arguments which are
shared by the type τ of the inductive definition and the types of constructors
defined in Γ) and mutual inductive definitions. In addition, dependent types,
higher order and propositional arguments are not allowed in the type of an
inductive definition; more precisely, this means that τ has the following form

τ1 → . . . τi → . . . τn → Prop where τi, with i = 1 . . . n, is of type Set or Type,
and does not contain any product or dependent inductive type. Moreover, we
suppose that the types of constructors are in prenex from, with no dependency
between the bounded variables and no higher order; thus, the type of a construc-
tor is ∀x1 : X1, . . . , xn : Xn.T1 → . . . Tj → . . . Tm → d t1 . . . tp where xi 6∈ Xl,
with l > i, Xi is of type Set or Type, Tj is of type Prop and does not contain
any product or dependent inductive type, and tk, with k = 1 . . . p, are terms. In
the following, the terms Tj are called the premises of the constructor, whereas
the term d t1 . . . tp is called the conclusion of the constructor. We impose the
additional constraint that Tj is a fully applied logical inductive type, i.e. Tj is of
the form dj tj1 . . . tjpj

, where dj is a logical inductive type (possibly different
from d), tjk, with k = 1 . . . pj , are terms, and pj is the arity of dj . Additionally,
we put some restrictions on the form of a term ti, which is either a variable or a
fully applied constructor ci ti1 . . . tipi , where pi is the arity of ci. An inductive
type verifying the conditions above is called a logical inductive type. We aim to
propose an extraction method for this kind of inductive types.

In the general case, we aim to extract only deterministic specifications. We
actually distinguish two kinds of determinism. The basic notion of determinism
is when for a given extraction mode, the inputs of the conclusions of constructors
are pairwise non-unifiable. However, there also exists another kind of determin-
ism, where the logical inductive type seems non-deterministic but actually re-
mains deterministic, i.e. where there are overlapping conclusions of constructors,
but where a function can still be extracted (see the example of Section 2). In con-
trary to [6], we propose to also deal with this other kind of determinism in some
specific cases, where using a premise, we can distinguish between the construc-
tors whose conclusions overlap. This requires the use of a specific representation
of logical inductive types, which is introduced in the next subsection.

In the following, we will refer to the constructors using their names. In order
to denote the constructor named C, we will use Γ (C). We will also add the
notation P (C) to denote the set of premises of a constructor named C, and the
notation P (C, i) to denote the ith premise of the constructor C.

3.2 Intermediate Representation for Merging Constructors

As said previously, the work developed in this paper also proposes to relax some
restrictions imposed in [6]. One of them is that constructors do not overlap,
which means that their respective conclusions are pairwise non-unifiable. This
restriction is too strong as it prevents from handling quite common specifications
like the example of Section 2. However, when some conclusions overlap, we can
still generate some code in some cases. The first pattern matching of the gen-
erated function is usually used to distinguish between constructors. To extract
specifications with overlapping conclusions, the idea is to merge them and use
premises to distinguish between constructors. In the example of Section 2, we
have to merge the conclusions of the Search_inf, Search_sup, and Search_found
constructors. These three conclusions will be compiled as the same pattern in the
extracted function. In some cases, it may be also necessary to merge premises.

search
12

Empty n _ search
12

_ _ Not_found

compare
12

n m Inf search
12

t1 n b search
12

_ _ Left b

search
12

(Node t1 m t2) n _ compare
12

n m Sup search
12

t2 n b search
12

_ _ Right b

compare
12

n m Eq search
12

_ _ End_path

Fig. 1. Rel-Tree Representation for the Binary Search Tree Example

Relation-Tree Definition In order to represent the merging of constructors,
we introduce a new intermediate data structure to represent logical inductive
types where constructors can be merged. This new representation is based on
trees, a data structure which eases both the verification of some properties over
the specification and the code generation. Logical inductive types are actually
represented as a forest called a relation-tree, which is defined as follows:

Definition 1 (Relation-Tree). Given a logical inductive type d, it can be rep-
resented by the following relation-tree (or rel-tree for short):

Rel−Tree({(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)})

where Nodesi is either {(Ti1,Nodesi1), . . . , (Tik,Nodesik)} or d ti1 . . . tip.

It should be noted that in this definition, k is always smaller than or equal
to the number of constructors in the logical inductive type d, because there is
at most one node by constructor, and less if there are merged constructors.

Considering the example of the binary search tree of Section 2, it is pos-
sible to represent the inductive relation search by the rel-tree of Figure 1. In
this representation, we use several conventions. The leaves are represented at
the right-hand side. The nodes annotated by a conclusion of the specification
are represented by the boxes with sharp corners, whereas the nodes related to
premises are in the boxes with rounded corners. In these nodes, some arguments
may be hidden with underscores when they are not relevant; for instance, we
hide the output in the root nodes and the inputs in the leaf nodes, because
they are not involved when extracting the code. In addition, in each node, the
extraction mode is mentioned under the considered relation name.

Rel-Tree Properties The main task of the code generation is to build a rel-tree
verifying the three properties described below (the code generation itself is in
turn quite straightforward). In order to describe these three properties, we need
a function to get a path from a rel-tree. In the following, the treepaths function
will return the set of paths that can be built from a rel-tree. For example, if
bst_tree denotes the rel-tree of Figure 1, we have:

treepaths(bst_tree) =
{ [search Empty n _; search _ _ Not_found],
[search (Node t1 m t2) n _; compare n m Inf ; search t1 n b;
search _ _ Left b], . . . }

We also need functions to compute input and output terms according to a
mode, where a mode is a set of indexes which correspond to the arguments of
the logical inductive type used as inputs:

Definition 2 (Functions for Inputs/Outputs). Given a logical inductive
type d, some terms t1 . . . tpd

, and a mode m, we define the following functions:

in(d t1 . . . tpd
,m) , (ti1 , . . . , tim), where m is {i1, . . . , im}

invars(d t1 . . . tpd
,m) , variables(in(d t1 . . . tpd

,m))

out(d t1 . . . tpd
,m) ,

{
if ∃j ∈ 1 . . . pd, j /∈ {i1, . . . , im} then tj
else true

where m is {i1, . . . , im}
outvars(d t1 . . . tpd

,m) , variables(out(d t1 . . . tpd
,m))

where variables(t) returns the set of variables occurring in the term t.

We also define the global environment M, which contains the extraction
modes for all the logical inductive types used in the logical inductive type being
extracted. We can get the extraction mode for the logical inductive type d using
the notation M(d). This notation is extended for the premises as follows: if Ti
is of the form di ti1 . . . tipi

, then M(Ti) = M(di). In the following, d and m
will refer to the logical inductive type being extracted and its extraction mode.

The first property describes the relationship between the logical inductive
type and its rel-tree. We must ensure that we find all constructors with their
conclusions and their premises in the rel-tree (up to renaming).

Property 1 (Specification Compliance). The rel-tree r is said to comply with its
logical inductive type d iff it verifies the following property:

SC(r) , ∀C ∈ Γ ,∃!p ∈ treepaths(r),SC′(p, C) ∧
∀p ∈ treepaths(r),∃!C ∈ Γ ,SC′(p, C)

where SC′ is the compliance of a path [T0; T1; . . . ; Tn; Tn+1] for a given
constructor named C defined as follows:

SC′([T0; T1; . . . ; Tn; Tn+1], C) ,
∃σ,∃Π,n = card(P (C)) ∧ ∀i ∈ 1 . . . n, Tj = σ(P (C,Πi)) ∧

out(Tn+1,m) = out(σ(concl(Γ (C))),m) ∧
in(T0,m) = σ(in(concl(Γ (C)),m))

where σ is a variable renaming, Π a permutation of 1 . . . n, and concl a
function which returns the conclusion term of a constructor.

The second property is similar to the mode consistency analysis of [6], but
is performed on the rel-tree instead of the logical inductive type. It verifies that
variables are not used before they are defined in the generated function.

Property 2 (Mode Consistency Analysis). Given a mode m and a rel-tree r of
the form Rel−Tree({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}), m is
said to be consistent w.r.t. r iff the following property is verified:

MCA({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}) ,
∀i, i ∈ 1 . . . n,MCA′(Nodesi, invars(d ti1 . . . tip))

where MCA′ is defined as follows:

MCA′(nodes, S) ,

if nodes is d t1 . . . tp then

outvars(d t1 . . . tp,m) ⊆ S
if nodes is {(T1,Nodes1); . . . ; (Tn,Nodesn)} then
∀i, i ∈ 1 . . . n, invars(Ti,M(Ti)) ⊆ S ∧

MCA′(Nodesi, S ∪ outvars(Ti,M(Ti)))

The third property ensures that we build valid pattern matchings from the
rel-tree, i.e. with exclusive clauses (involving non-overlapping patterns). The
patterns of the same pattern matching will be the outputs of the premise nodes
which are the children of the same parent node.

Property 3 (Non-Overlapping Patterns). Given a mode m and a rel-tree r of
the form Rel−Tree({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}), the
function extracted from r in mode m will only involve non-overlapping patterns
iff the following property is verified:

NO({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}) ,
∀i, i ∈ 1 . . . n,NO′(Nodesi) ∧ ∀j, j ∈ 1 . . . n, j 6= i⇒

in(d ti1 . . . tip,m) and in(d tj1 . . . tjp,m) are not unifiable

where the NO′ property is defined as follows:

NO′(nodes) ,
if nodes is d t1 . . . tp then true
if nodes is [(T1,Nodes1); . . . ; (Tn,Nodesn)] then
∀i, i ∈ 1 . . . n,NO′(Nodesi) ∧ ∀j, j ∈ 1 . . . n, j 6= i⇒

in(Ti,M(Ti)) = in(Tj ,M(Tj)) ∧
out(Ti,M(Ti)) and out(Tj ,M(Tj)) are not unifiable

Due to space restrictions, we do not present the rel-tree generation algorithm
in details here, and we only provide a short description of this algorithm. The
complexity of this algorithm mainly comes from the possible permutations of
premises. The basic idea is to generate all the possible rel-trees from the specifi-
cation and find if there is any rel-tree verifying the three properties introduced

above. However, in order to generate fewer rel-trees (because there are many
permutations of premises), we therefore add some heuristics using the three
properties described above. From the first property, we can deduce a general
form of rel-trees. Each rel-tree must contain one path for each constructor of
the specification. Each path must begin and end with the conclusion. Except
these two nodes, there is one node for each premise. The second property can
be verified independently for each path. Only the third property needs all the
constructors to be present in the rel-tree to be verified, but it can be verified
after each insertion. As a result, we can insert the constructors one by one, and
verify the three properties at each step.

3.3 Partial Mode Extraction of Complete Specifications

As said in the introduction, we only consider structurally recursive functions in
this paper. As a consequence, the extracted functions are generated as regular
fixpoints of CIC, which consists of our target language. We actually use the fol-
lowing subset of CIC (we use the notations of the Coq documentation [10]):

t ::= fix f (x1 : τ1) . . . (xn : τn) : τ := t
| f t1 . . . tpf

| c t1 . . . tpc
| let x := t1 in t2 | x

| (match tm with
| c1 x11 . . . x1p1 ⇒ f1 | . . . | cn xn1 . . . xnpn ⇒ fn)

In this language, there is no complex pattern matching. We can only match
one term of type τ and there is one pattern per constructor of the type τ . How-
ever, to simplify the presentation of the code generation, we use more complex
pattern matching expressions (with nested patterns) as follows:

match (tm1, . . . , tmn) with
| p11, . . . , p1n ⇒ t1 | . . . | pk1, . . . , pkn ⇒ tk

where “ p ::= c p1 . . . ppc
| x | _”.

These more complex pattern matching expressions are then compiled into
simpler pattern matching expressions, which conform to the initial language of
the CIC subset considered for the extraction. This compilation is performed
using a specialized version of the algorithm described in [7].

In the following, we describe the code generation for partial modes and com-
plete specifications. A mode is partial iff there is one output (otherwise, when
there is no output, the mode is full). A specification is complete for a given mode
iff its extraction produces a complete function, in which all the pattern match-
ings are exhaustive. The extraction for full modes and incomplete specifications
will be explained later, as evolutions of the algorithm described below.

The code generation of a rel-tree r built from the inductive definition d, of
the form Rel−Tree({(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)}), and
extracted with the mode m = {i1, . . . , im}, is denoted by JrKM and performed
in the following way:

J{(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)}KM ,
fix fd (x1 : τi1) . . . (xm : τim) : τo :=

match (x1, . . . , xm) with
| in(d t11 . . . t1p) ⇒ JNodes1KM
| . . .
| in(d tk1 . . . tkp) ⇒ JNodeskKM

This function generates the outermost pattern matching of the extracted
function, and the generated code for each node is produced as follows:

JNodesKM ,

if Nodes is d t1 . . . tp then out(d t1 . . . tp,m)
if Nodes is {(Ti1,Nodesi1), . . . , (Tik,Nodesik)} then

match JTi1KM with
| out(Ti1,M(Ti1)) ⇒ JNodesi1KM
| . . .
| out(Tik,M(Tik)) ⇒ JNodesikKM

where JTi1KM involves the function extracted from the logical inductive type
upon which Ti1 is built. If Ti1 = dj t1 . . . tpj

then JTi1KM = fdj
in(Ti1,M(Ti1)).

Using the code generation algorithm described above, we obtain the following
function from the binary search tree example introduced in Section 2:

fix search12 (p1 : bst) (p2 : nat) : path :=
match (p1, p2)
| (Empty , _) ⇒ Not_found
| (Node t1 m t2, n) ⇒

(match compare12 n m with
| Inf ⇒ (match search12 t1 p2 with b ⇒ Left b)
| Sup ⇒ (match search12 t2 p2 with b ⇒ Right b)
| Eq ⇒ End_path)

3.4 Extensions of the Code Generation

This section proposes two extensions of the code generation algorithm. The first
one concerns a larger family of non-deterministic specifications, while the second
one aims to deal with full modes and incomplete specifications.

Non-Deterministic Specifications It is possible to accept specifications with
overlapping conclusions where the premises cannot help distinguish between
them, but can be ordered using an order over the patterns defined as follows:

Definition 3 (Pattern Order). Given two patterns t1 and t2, t1 is more gen-
eral than t2, denoted by t1 > t2, iff the following property is verified:

t1 > t2 ⇔ (t1 = v ∧ t2 = cl t1 . . . tpl
) ∨

(t1 = _ ∧ t2 = cl t1 . . . tpl
) ∨

(t1 = cl t
′
1 . . . t′pl

∧ t2 = cl t1 . . . tpl
∧

∃i ∈ 1 . . . pl, t
′
i > ti ∧ ∀i ∈ 1 . . . pl, t

′
i > ti ∨ t′i = ti)

It should be noted that in the generated code, some decisions are made
according to this order, and completeness may therefore be lost, i.e. some possible
outputs w.r.t. the specification cannot be computed by the extracted function.

To illustrate this extension of the code generation algorithm, let us consider
an improvement of the binary search tree example introduced in Section 2, which
consists in adding two constructors (in bold font) in the search logical inductive
type in order to correctly propagate the Not_found value as follows:

Inductive search : b s t → nat → path → Prop :=
| Search_empty : f o ra l l n , search Empty n Not_found
| Search_found : f o ra l l n m t1 t2 , compare n m Eq→

search (Node t1 m t2) n End_path
| Search_inf : f o ra l l n m t1 t2 b , search t1 n b →

compare n m In f → search (Node t1 m t2) n (Le f t b)
| Searchinf_nf : forall n m t1 t2, search t1 n Not_found →

compare n m Inf → search (Node t1 m t2) n Not_found
| Search_sup : f o ra l l n m t1 t2 b , search t2 n b →

compare n m Sup → search (Node t1 m t2) n (Right b)
| Searchsup_nf : forall n m t1 t2, search t2 n Not_found →

compare n m Sup → search (Node t1 m t2) n Not_found .

As can be observed, the conclusions of Search_inf and Searchinf_nf overlap,
and the two premises search t1 n b and search t1 n Not_found as well, but these
premises can be ordered: b is more general than Not_found.

Considering this new kind of specifications requires some modifications in
the rel-tree representation and consequently in the three related properties. The
rel-tree representation is adapted to allow this ordering, and a rel-tree is defined
by using lists of nodes instead of sets of nodes.

Definition 4 (Rel-Tree with Lists). Given a logical inductive type d, it can
be represented using the new following definition of rel-tree:

Rel−Tree([(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)])

where Nodesi is [(Ti1,Nodesi1), . . . , (Tik,Nodesik)] or d ti1 . . . tip.

The previous properties SC, MCA, and NO must be adapted according to
this new definition of rel-trees. In particular, in the property NO, we have to
change the “not unifiable” statements by a new relation defined as follows:

Definition 5 (Pattern Relation). Given two patterns t1 and t2, t1 is more
general than t2 or non-unifiable with t2, denoted by t1 � t2, iff the following
property is verified:

t1 � t2 ⇔ t1 > t2 or t1 and t2 are not unifiable

As for the code generation algorithm from a rel-tree, it remains unchanged.
Regarding the new specification of the binary search tree, the extracted function
is then obtained as follows:

fix search12 (p1 : bst) (p2 : nat) : path :=
match (p1, p2)
| (Empty , _) ⇒ Not_found
| (Node t1 m t2, n) ⇒

(match compare12 n m with
| Inf ⇒
(match search12 t1 n with
| Not_found ⇒ Not_found
| b ⇒ Left b)

| Sup ⇒
(match search12 t2 n with
| Not_found ⇒ Not_found
| b ⇒ Right b)

| Eq ⇒ End_path)

Full Modes and Incomplete Specifications In the code generation described
previously, we only consider partial modes and complete specifications. We are
also able to deal with full modes and incomplete specifications. In the case of
a full mode, the output of the extracted function is a boolean: true when the
relation between the arguments is verified, false otherwise. The code generation
follows the same algorithm than previously. In addition, for each case where a
constructor is not defined, we add to the generated function the default case
“ | _ → false”. Regarding incomplete specifications, if we follow the previous
code generation algorithm, it produces a partially defined function, which is not
supported by the CIC type theory. The algorithm has therefore to be adapted
to extract a function whose result type is an option type of T , where T is the
type of the output. The code generation then follows the same algorithm than
previously, but for each case where a constructor is not defined, we add to the
generated function the default case “| _ → None”, where None is the empty
constructor of the option type.

4 Soundness Proof Generation

In the previous section, we have explained how to extract functions from log-
ical inductive types. In addition, we want to automatically provide proofs of
soundness for these functions. In the following, we will only consider proofs of
soundness for extractions of complete specifications with partial modes. How-
ever, the principle of soundness proof generation can be generalized to the other
cases. The theorem of soundness has the following form:

∀p1, . . . , pn, fd p1 . . . pn−1 = pn → d p1 . . . pn

where fd is the name of the extracted function from the logical inductive
type d with the mode {1, . . . , n− 1}.

We prove the previous theorem by automatically providing a Coq proof script,
which performs a functional induction using the extracted function [1]. Actually,
for any function, Coq generates a functional induction scheme, which follows
precisely the execution paths of the function (see the scheme search12_ind gen-
erated for the function search12 in Section 2). When applying the induction
scheme to the goal representing the theorem of soundness to be proved, we get
a subgoal for each execution path of the extracted function. It should be noted
that in the code generation described previously, we only use a high-level pat-
tern matching, which is automatically compiled into a low-level pattern match-
ing. This compilation may introduce some code duplication, and some “ let-in”
constructs are introduced to avoid the duplication of recursive calls. In the fol-
lowing, we will consider extracted functions where this compilation will have
been performed, and which will be allowed to involve “ let-in” expressions.

4.1 Annotated Execution Paths

Before generating the proof script, we compute, from the generated code, the
annotated execution paths, which correspond to the different cases of the func-
tional induction scheme. An execution path is very similar to the target language
used for the code generation, but it contains only one branch for each pattern
matching. In the following, C will refer to the name of a constructor of a logical
inductive type, while c will refer to a constructor of an inductive data type.

Definition 6 (Annotated Execution Path). An annotated execution path is
defined as follows:

b ::= t | letl x := t in b
| match t with c x1 . . . xp ⇒l b

where t is a term and l is an annotation which is either a set of constructor
names {C1, . . . , Cn}, or a set of premise positions {(C1, i1), . . . , (Cn, in)},
in which (Ci, ik) denotes the ithk premise of constructor Ci.

This representation will help us generate the proof script because it contains
information on both the generated code (and therefore the subgoal) and the
specification (through the annotations). An annotation indicates the parts of
the specification from whence the generated code comes. Thus, if (C, j) appears
in the annotation l of a matching clause “c x1 . . . xp ⇒l b”, then the constructor
c appears in the premise P (C, j). These annotated execution paths are generated
from the extracted code, which is also annotated. The code generation algorithm
is adapted to produce the annotations, which are initially computed from the
specification and embedded in the rel-tree representation.

4.2 Proof Script of the Soundness Proof

As seen previously, we know that applying the functional induction scheme gen-
erates one subgoal per execution path of the extracted function. Each execution
path is associated with one constructor in the specification, that we call C. One
or more execution paths may be associated with the same constructor (due to
the compilation of pattern matchings). Finally, it should be noted that we have
an association between a constructor, an execution path, a case in the induction
scheme, and a subgoal of the proof (once the induction scheme has been applied).

Each subgoal has the following form:

∀−→v ,∀−→v1 ,−→a1 → H1 → . . . ∀−→vk,−→ak → Hk → . . . ∀−→vj ,−→aj → Hj → d t1 . . . tp

where −→v , −→vk, with k in 1 . . . j, are lists of variables, j the number of premises
of the associated constructor C, −→ak a list of equalities or “ let-in” expressions
corresponding to the associated annotated execution path, andHk the soundness
hypothesis if the logical inductive type involved in the premise, dk, is d or an
equality of the form fk w1 . . . wu = r, where fk is the extracted function for dk.
We assume that the extraction has been already performed from dk, and as a
consequence, the theorem of soundness related to fk and dk is available.

Each subgoal is transformed by applying successive introductions and rewrit-
ings using the several aki, leading to a goal which is the conclusion of the con-
structor C (up to renaming), and where each premise is present in the con-
text. When aki is a “ let-in” expression, it is transformed into an equality, and
a rewriting is performed. The annotated execution paths are used to determine
from which premise the equalities and “ let-in” expressions of the subgoal come
from. Thanks to this information, we know how to rewrite the goal. Finally, we
apply the constructor C and this nearly finishes the proof of the subgoal: the
arguments of the constructor are either present in the hypothesis context, or
must be proved using the theorems of soundness related to the logical inductive
types (other than d) used in the constructor (like in the example of Section 2).

5 Implementation

We have implemented the extraction of logical inductive types within the Coq
proof assistant as a plugin (not yet distributed, but available on demand by
sending a mail to the authors). For information, another plugin (distributed
since Coq version 8.4) allows the user to extract ML code from logical inductive
types. In the short term, we plan to merge these two plugins.

With the current implementation, it is possible to extract specifications in-
volving several logical inductive types, but there are some restrictions. First, the
definitions must not be mutually recursive, and the extracted functions must rely
on structural recursion. Moreover, logical inductive types must contain neither
logical connectives (∧, ∨, or ¬), nor equality symbols. Finally, regarding proofs
of soundness, we are only able to generate them for complete functions extracted
with partial modes. These restrictions should be relaxed in the near future.

6 Conclusion

We have presented an operational approach allowing the extraction of computa-
tional content written as a Coq function from a Coq inductive specification. This
extracted function is accompanied by a proof of soundness establishing that the
result of the function complies with the specification. Future work will consist in
completing the proof generation: generating soundness proof for the other kinds
of modes and specifications, and also (when it is relevant) producing complete-
ness proofs. The former is just an adaptation of the approach presented here (i.e.
a functional induction exploiting annotations produced during the code gener-
ation), while the latter requires a different proof generation scheme. The next
step will be to address inductive specifications embedding a general recursion. Fi-
nally, we could also try to extract functions from non-terminating specifications
(e.g. the semantics of a language featuring a while loop), expressed as mixed
inductive-coinductive definitions (see [8] for some examples). A simple approach
would consist in adding to the extracted function a non-negative integer counter
which bounds the depth of the computation (as done in CompCert [5]).

References

1. G. Barthe and P. Courtieu. Efficient Reasoning about Executable Specifications
in Coq. In Theorem Proving in Higher Order Logics (TPHOLs), volume 2410 of
LNCS, pages 31–46, Hampton (VA, USA), Aug. 2002. Springer.

2. S. Berghofer, L. Bulwahn, and F. Haftmann. Turning Inductive into Equational
Specifications. In Theorem Proving in Higher Order Logic (TPHOLs), volume 5674
of LNCS, pages 131–146, Munich (Germany), Aug. 2009. Springer.

3. S. Berghofer and T. Nipkow. Executing Higher Order Logic. In Types for Proofs
and Programs (TYPES), volume 2277 of LNCS, pages 24–40, Durham (UK), Dec.
2000. Springer.

4. Y. Bertot, V. Capretta, and K. Das Barman. Type-Theoretic Functional Semantics.
In Theorem Proving in Higher Order Logics (TPHOLs), volume 2410 of LNCS,
pages 83–98, Hampton (VA, USA), Aug. 2002. Springer.

5. S. Blazy and X. Leroy. Mechanized Semantics for the Clight Subset of the C
Language. Journal of Automated Reasoning (JAR), 43(3):263–288, Oct. 2009.

6. D. Delahaye, C. Dubois, and J.-F. Étienne. Extracting Purely Functional Con-
tents from Logical Inductive Types. In Theorem Proving in Higher Order Logics
(TPHOLs), volume 4732 of LNCS, pages 70–85, Kaiserslautern (Germany), Sept.
2007. Springer.

7. F. Le Fessant and L. Maranget. Optimizing Pattern-Matching. In International
Conference on Functional Programming (ICFP), SIGPLAN, pages 26–37, Florence
(Italy), Sept. 2001. ACM.

8. X. Leroy and H. Grall. Coinductive Big-Step Operational Semantics. Information
and Computation (IC), 207(2):284–304, Feb. 2009.

9. F. Pfenning and C. Schürmann. System Description: Twelf - A Meta-Logical Frame-
work for Deductive Systems. In Conference on Automated Deduction (CADE),
volume 1632 of LNCS, pages 202–206, Trento (Italy), jul 1999. Springer.

10. The Coq Development Team. Coq, version 8.4. INRIA, Aug. 2012.
http://coq.inria.fr/.

