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1 Introduction

Entering repetitive sequences of commands (or repetitive
tasks) is a well-known characteristic of human-computer
interaction. To deal with this problem, early works
have associated macro or script languages with interac-
tive environments, for example macros in Excel or Lisp
scripts in Emacs. They allow the user to write a pro-
gram that can be later on invoked to perform a sequence
of commands automatically. The limitation of this ap-
proach is that, generally, users do not want to or can
not spend too much effort on programming: writing a
program often takes longer than performing a sequence
of commands manually, disrupts the user’s work-flow,
and requires programming knowledge that many users
do not have. Recent advances to overcome these limi-
tations came from different correlated field of research :
Programming by Demonstration (PbD), Predictive In-
terfaces and Learning Interface Agents.

PbD systems [Cypher et al., 1993] let the user demon-
strate what the task to automate should do, and create a
program from this demonstration. Macro recorders were
the first examples of PbD systems, but they were limited
because recorded commands are too specific (rote learn-
ing, no parameterization) to be reused. Sophisticated
PbD systems, such as Mondrian [Lieberman, 1993], cre-
ate programs containing variables, iterative loops or con-
ditional branches from observing user’s actions. Al-
though PbD does not require programming knowledge
because the user does not have to write code, demon-
strating a program takes time and disrupts the user’s
work-flow.

Predictive Interfaces [Darragh and Witten, 1991] and
Learning Interface Agents [Maes, 1994] observe the user
while he manipulates the environment, and try to learn,
from the correlations between situations the user has en-
countered and the corresponding commands he has per-
formed, to predict, after each new command what will
be the next one. They assist him by afterwards predict-
ing and suggesting to perform automatically some com-
mands. For instance, CAP [Mitchell et al., 1994], an as-
sistant for managing meeting calendars, suggests default
values regarding meeting duration, location, time and
day-of-week. OpenSesame! [Caglayan et al., 1997] runs

in background on Macintosh system 7, and offers to open
or close files or applications, to empty trash, or to rebuild
desktop on the user’s behalf. WebWatcher [Armstrong
et al., 1995], an assistant for the world wide web, sug-
gests links of interest to the user. Maes’s assistants for
electronic mail, meeting scheduling and electronic news
filtering [Maes, 1994], advise the user for some applica-
tion specific operations like managing mails, scheduling
meetings or selecting articles in news. ClipBoard [Mo-
toda, 1997], an interface for Unix, tries to predict the
next command the user is going to issue. The main ad-
vantages of these systems is that they do not require
programming knowledge nor disrupt the user’s work-flow
because commands are automatically suggested to the
user. However, they do not create programs and, thus,
only suggest single actions and not sequences of actions.
Note furthermore that the set of actions that most of
these systems (expect ClipBoard and WebWatcher), can
suggest is small and known in advance.

Eager [Cypher et al., 1993], is one of the most famous
attempts to bring together Programming by Demonstra-
tion and Predictive Interfaces. Eager is an assistant for
Macintosh Hypercard. When Fager detects two consec-
utive occurrences of a repetitive task in the sequence of
user’s actions, it assumes they are the first two itera-
tions of a loop, and proposes to complete the loop. It is
a PbD system because it is able to infer loops from ob-
serving user’s actions and to replay more than one action
at once; it is a Predictive Interface because it is able to
make suggestions without any user’s intervention. It is
able to perform loop iterations until “a condition” is sat-
isfied, or following some typical patterns like days of the
week or linear sequence of integers. Finally, Fager has an
important characteristic: it makes a suggestion only af-
ter two consecutive occurrences of a repetitive task. As a
consequence, it knows exactly when to make a suggestion
and which suggestion to make. However, this character-
istic is a limitation because in practice such occurrences
are frequently not consecutive but interleaved with other
actions. Familiar (see Paynter’s chapter) takes on Fager
idea and extend it in many ways but does not address
this limitation.

The goal of our work has been to design an assis-



tant operating in a context where the number of possible
user’s actions and possible values for the parameters of
these actions are large, where repetitive sequences are
not known in advance and not consecutive, and able to
replay repetitions composed of several actions, contain-
ing loops or conditional branches. None of the above
quoted works addresses simultaneously all these issues.
In such a context, a key issue is to design an assistant
which makes “the right suggestion at the right moment”:
an assistant who constantly bothers the user with a lot
of wrong suggestions is useless because the user would
rapidly ignore it. Wolber and Myers’s chapter suggests
a solution to this problem in the context of PbD system.
It proposes to allow the user to demonstrate “When” to
make a suggestion as well as “What” to suggest. APE
takes another approach. It employs Machine Learning
techniques to efficiently and rapidly learn when to make
a suggestion, and which sequence of actions to suggest to

the user. As a case study, we present the APE (Adaptive

Programming Environment) project. APE is a software

assistant integrated into the Visualworks Smalltalk pro-

gramming environment. Like Fager and Familiar, APE

is able to detect loops and to suggest repetitive tasks

iteratively. APE is written in Visualworks Smalltalk 3.0

- ObjectShare, Inc, operational and publicly available at

http://www.lirmm.fr/“ruvini/ape.

In the following we describe APE, we demonstrate
what it does and how it can be used. We explain what
kind of repetitive tasks it is able to automate and how it
automates them. We show what makes learning user’s
habits difficult and we describe in detail what and how
APE learns. We compare experimental results of alter-
nate approaches. We finally summarize lessons learned
from this study and give perspectives for future research.

2 Overview of APE

APE is made of three software agents, an Observer, an
Apprentice and an Assistant, working simultaneously in
the background without any user’s intervention. Table 1
defines our terminology and Figure 1 describes the role
of each agent.

2.1 The Observer

The Observer traps user’s actions, reifies them into ded-
icated Smalltalk objects, instances of classes shown in
Figure 2, and stores them in the trace. It then sends
messages in background to the Apprentice and to the
Assistant to notify them that the user has performed a
new action.

For example, when the user selects the dolt command
of a text editor to evaluate an expression, an instance of
the class ActionEditor is created and references to the
involved text editor, the evaluated text and the string
“doIt” are respectively stored in the toolID, text and ac-
tion slots. Table 2 shows an example of a part of a
trace where each line is a simplified textual representa-
tion of an action (for a reason of clarity, we only show the
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Figure 1: The Observers monitors user’s actions and
builds the trace, the Apprentice learns user’s habits and

the Assistant proposes to the user sequences of actions
to replay.

Action : high-level intervention of the user on the
environment (as opposed to low level interventions
such as mouse movements and keystrokes), window
manipulation, menu item selection, button pressing,
text entering, etc. An action is parameterized by,
among other things, the tool (e.g. a Browser, a De-
bugger, a Text Editor, ...) in which it has been per-
formed.

Trace : history of user’s actions.

Task : sequence of actions of the trace.
Repetitive task : task occurring several time in the
trace.

Situation : sequence of actions of the trace of a
given size n, n being a parameter of the learning
algorithms.

Current situation : the last n actions of the trace.
Situation pattern : regular expression matching
one or more situations.

Habit : pair “set of situation patterns - repetitive
task” such that the situation patterns match the situ-
ations in which the user performs the repetitive task.
When-set : set of situation patterns that match the
situations in which the user has performed repetitive
tasks.

What-set : set of habits.

Table 1: Definition of terms used throughout this chap-
ter.



most informative action parameters). There are differ-
ent classes to represent the actions held in the different
tools of the environment (browser, debugger) because
they hold different versions of methods used by the learn-
ing algorithm - which does not handle equally all kinds
of actions.

In this first implementation, trapping users’ actions
has been achieved by directly modifying methods (up
to 170) of the user interface layer in which user’s ac-
tions are fired. This is not very satisfactory and should
be improved in the future versions. This is a conse-
quence of the lack of a standard mechanisms, such as
the “advice/trace” mechanisms of Interlisp [Teitelman,
1978] or such as the Flavors [Moon, 1986] ” wrappers”
mechanisms, in the Smalltalk environment we have used.
Such mechanisms have been developed for Smalltalk, for
example in [Bocker and Herczeg, 1990], but no one has
been integrated in the Smalltalk environment we have
used.

Object ()
Action (type toolName toolID date display)
ActionApplication (action)
ActionBrowser (parameter textMode selected)
ActionDebugger ()
ActionFileBrowser ()
ActionParcelBrowser ()
ActionChangeList (index plug)
ActionEditor (text index which)
ActionInspector (parameter on)
ActionLauncher ()
ActionParcellist ()
ActionWindow ()
ActionError (error object message)

Figure 2: Smalltalk hierarchy of action classes.

2.2 The Apprentice
The Apprentice activity is twofold.

1. It detects the user’s repetitive tasks.

2. It examines the situations in which repetitive tasks
have been performed and uses two Machine Learn-
ing algorithms to learn situation patterns and build
two sets:

(a) The When-set of situation patterns matching
the situations in which the user has performed
the detected repetitive tasks.

(b) The What-set of user’s habits i.e. pairs “set of
situation patterns - repetitive task” where the
set of situation patterns reflects all the situa-
tions in which a given repetitive task has been
performed.

The Apprentice is able to learn 3 kinds of situation
patterns: situation patterns containing wildcards (i.e. a
special character, noted “.”, that matches any single ac-
tion or action parameter), unordered situation patterns
(the order in which some actions are performed does
not matter), or unordered situation patterns containing
wildcards. The number of wildcards is not limited.

An occurrence of a situation pattern containing a
wildcard is learned when, for example, the user has
examined, in a Smalltalk browser, several methods
named “=” in the testing protocol, for various classes
of the MyGraphics category (see figure 7). The de-
tected repetitive task is “select protocol(testing), select
method(=)" and the learned situation pattern is “select
category(MyGraphics), select class(.)”.

2.3 The Assistant

The Assistant observes the user, it uses the When-set to
determine when to make a suggestion to the user and
if it has to, it uses the What-set to determine what to
suggest. More precisely, as shown in Figure 3, after each
user’s action it inspects the What-set to answer the ques-
tion: “Is the user going to perform a repetitive task?”.
If the last user’s actions match none of the situation
patterns of the When-set, the answer is “no” and the
Assistant makes no suggestion. Otherwise, the answer
is “yes”, and the Assistant inspects the user’s habits
(What-set) to answer the question: “Which repetitive
task is the user going to perform?”. It selects all habits!
with a situation pattern that matches the current situa-
tion. Then, it displays in the Assistant window (cf. Fig-
ure 4), without interrupting the user’s work, the actions
composing the repetitive task of the selected habits. The
user can ignore this window and these suggestions (non-
obtrusive behavior) or mouse-click on one of them. In
the latter case, the Assistant successively performs the
actions and removes the suggestions from its window.

3 Illustrative Examples

This section provides four examples of what APE is able
to learn and to suggest.

Example 1

Repetitive tasks frequently appear while testing appli-
cations. Consider a user testing a multi-process simu-
lation of the classical “n-queens” problem, implemented
by a main class Board. Figure 4 shows two VisualWorks
snapshots both including an Assistant window, labeled
“Asgsistant”, and the main APE window, labeled “Ape
Agents”. The Watch button shows that the three agents
are active. In the top snapshot, labeled “situation before
firing a habit”, the user has selected, in a simple editor
(named Workspace), a Smalltalk expression to create a
board and to initiate the computation, and is about to
select the inspecIt item of that editor menu. Because
the user is not performing this activity for the first time,
a repetitive sequence has been detected and an habit has
been learned, a situation pattern of which matches the
current situation. The Assistant thus fires the habit i.e.
displays in its window a text describing the proposed
repetitive sequence of actions (opening four inspectors

!Browsing through a huge number of suggestions to find
the right one puts a workload on the user. The number of
suggestions the Assistant can make is a parameter of APE.



ActionEditor(anEditor,’anArray stupidMesage’,’dolt’)
ActionError(’doesNotUnderstand’,’stupidMessage’)
ActionDebugger (aDebugger,debug)
ActionWindow(aDebugger, ’move’)
ActionWindow(aDebugger,’resize’)

Table 2: A sample of the trace where the user opens, moves and resizes a debugger to correct an error.

Last user’s actions

A1A2' A

~ =

When-set v What-set
Is the user going to perform E Which repetitive task is he
a repetitive task? S going to perform?
NO Suggestion

W W
No suggestion m

Tl or T2 or T3... T

m

Figure 3: The Assistant inspects the When-set and the What-set to make suggestions.



Situation before firing a habit

The Assistant suggests to open four inspectors...
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The user mouse-clicked on the proposition
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Figure 4: The user has just selected an expression (1) to create and test an instance of class “Board”. The
Assistant detects a known situation and suggests to execute a registered repetitive sequence of actions, displayed in
the Assistant window (2), that evaluates the expressions and open 4 inspectors in cascade, leading to what is shown
in the bottom snapshot.



in cascade to show a particular field of a composed ob-
ject). This repetitive task being exactly what the user
intents to do, he mouse-clicks on that text to perform the
sequence of actions leading to what is shown in the bot-
tom snapshot labeled “situation after a habit has been
fired”. In this case, the user has performed seven actions
in a secure way with a single mouse-click.

Example 2

Repetitive tasks also frequently appear while debugging
applications. Consider the same user now debugging
his “n-queens” application. The user has selected a
Smalltalk expression (cf. Figure 5, top snapshot, ar-
row 1) in the “Workspace” window, the evaluation of
which (arrow 2) has raised an exception leading to the
opening of an “Exception” window (arrow 3). Because,
this situation matches a situation pattern learnt by the
Apprentice, the Assistant offers to perform the related
repetitive task: “open, move, resize a debugger and se-
lect stack index 5”. This repetitive task is exactly what
the user intents to do and he mouse-clicks on the propo-
sition (arrow 4), entailing the creation and correct posi-
tioning of a debugger window, as shown in the bottom
snapshot.

Example 3

This examples shows that APE is able to automate se-
quences of actions iteratively (in a loop), even if the it-
erations are not consecutive. Suppose a user intends
to modify the method “area” of all the classes belong-
ing to a category named MyGraphics. Before working
on a method “area”, he wants to save (back up) it.
He has first selected and saved the area method of the
Circle class by performing the following actions: select
the MyGraphics category (cf. Figure 6a, arrow 1), select
the Circle class of that category (arrow 2), select the
accessing protocol (arrow 3) and the area method of
that protocol (arrow 4), select ”file out as...” item in the
browser menu (arrow 5) to save the method. Later, after
having completed various tasks like the modification of
that area method, the creation of a new Triangle class,
etc., he has selected and saved the area method of the
Diamond class (cf. Figure 6b). At this point, the Appren-
tice has detected two non consecutive occurrences of the
repetitive task “select the accessing protocol, select the
area method, file out as”. The action preceding the first
occurrence of this repetitive task is ”select the Circle
class” and the action preceding the second occurrence
is ”select the Diamond class”. Because classes Circle
and Diamond belong to the MyGraphics category, it in-
fers that the user intends to save the area method of all
classes of MyGraphics category. Hence, it assumes that
these two occurrences are two iterations of the following
loop: “For all classes of the MyGraphics category do se-
lect the accessing protocol, select the area method, file
out as” and learns a habit. As a consequence, as soon as
the user selects the MyGraphics category, and whatever
actions he has performed before, the Assistant predicts
that he is about to save one more method area and of-

fers to complete the loop (cf. Figure 6¢). If the user
mouse-clicks on the suggestion in the Assistant window,
the Assistant saves all methods area not yet saved (not
shown).

Example 4

This last example shows that APE is able to help the
user in the writing of repetitive pieces of code. Suppose
a user has written several similar methods named “=",
for various classes of MyGraphics category, in a browser.
He has just selected the testing protocol (cf. Figure 7,
arrow 1) and is about to write a new method “=”. The
Assistant offers to insert a text template (arrow 2) con-
taining some repetitive code (the asterisks denote non
repetitive code). The user has mouse-clicked the sug-
gestion and the template has been inserted (arrow 3 -
“situation after a habit has been fired” - bottom snap-
shot).

4 Detecting repetitive tasks

This section explains what kinds of repetitive tasks the
Apprentice is able to detect in the trace and how the
Assistant automates them.

4.1 Repetitive sequences of actions

Detection of repetitive sequences of actions is achieved
using a classical text searching algorithm [Karp et al.,
1972]. “Open, move, resize a debugger and select stack
index 5”7 (cf. Figure 5) is an example of a repetitive
sequence of actions.

To automate a repetitive sequence of actions, the As-
sistant simply replays the actions composing it.

4.2 Loops

Each time the Apprentice detects a repetitive sequence
of actions, it supposes that the corresponding sequence
of actions could be the "body” of a loop and that each
occurrence of the sequence could be an iteration of the
loop. It then searches for relations between the actions
preceding (or following) each iteration to determine the
loop ”variable”. Examples of such relations are: classes
belonging to the same category, methods belonging to
the same class, subclasses of the same class, etc. Exam-
ple 3 in section 3 illustrates this case. The body of the
loop is ”Select the accessing protocol, select the area
method, file out”, the action preceding the first iteration
is ”Select the Circle class” and the action preceding the
second iteration is ”Select the Diamond class”. The re-
lation between these two actions is that classes Circle
and Diamond belong to the same category. Thus the Ap-
prentice then infers that the selected class is the loop
variable and builds the following repetitive task: ”For
all classes x of MyGraphics, select the x class, select the
accessing protocol, select the area method, file out”.

To complete a loop, the Assistant plays the loop body
for all the remaining values of the loop variable.



Situation before firing a habit
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Figure 5: The user has typed (1) and evaluated (2) an expression that raised an exception (3). The Assistant offers
(4) to open, move, resize a debugger and to select the fifth item in the debugger stack, as the user typically does (top
snapshot). The user has mouse-clicked on the proposition and the Assistant has performed these actions, resulting
in a well positioned debugger displaying a user’s method (bottom snapshot).
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Figure 6a : The user saves (“file out as...” command) method area of class Circle.
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Example 3, second part

Figure 6b: After having completed various tasks like the modification of that method area, the creation of a new
class Triangle, etc., he also saves method area of class Diamond.
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Figure 6c¢c: The Apprentice has detected a loop in user’s actions and has learned a habit. The Assistant offers to
complete the loop (to save all method area) as soon as it detects that the user is about to save one more method

area.

4.3 Writing of repetitive pieces of code

To detect these repetitive tasks, the Apprentice com-
pares the methods created by the user, line-by-line, us-
ing a simple stringmatch comparison function. When
it finds a set of methods that share a certain amount
of their respective code in common, it assumes it has
found a repetitive portion of code and create a template
(cf. Figure 7).

To replay a writing of a repetitive piece of code, it
inserts the template in the code window of the browser
(again, cf. Figure 7).

4.4 Repetitive corrections of (simple)
programming errors

The Apprentice compares the methods the user has mod-
ified and the way he did it. When it finds a set of method
in which the user has replaced a portion C with another
portion of code C’, it assumes it has found a repetitive
correction and records the replacement.

To replay a repetitive correction of code, it replays the
recorded code replacement.

5 Learning User’s Habits
5.1 What Makes the Problem Difficult?

We present in this section the requirements that have
conducted the choice of the algorithms employed by the
Apprentice to learn the situation patterns of the When-
set and the What-set. Let us recall that the When-set is
a set of situation patterns that match the situations in
which the user has performed repetitive tasks and that

the What-set is a set of habits i.e. a set of pair “sit-
uation patterns - repetitive task”. Let ALl denote the
algorithm used to build the When-set and AL2 denote
the algorithm used to build the What-set .

Requirement R1 : Low training time

We distinguish “long life” and “short life” repetitive
tasks. Short life repetitive tasks are related to specific
issues, appear in a small section of the trace and the
corresponding situation patterns have to be learned very
rapidly from a few situations. Long life repetitive tasks
can reflect the general user’s habits and can require a
very long trace to be detected. Thus, the Apprentice is,
on the one hand, able to learn situation patterns very
rapidly on small section of the trace in order to capture
short life tasks and, on the other hand, can also consider
very long traces corresponding to several work sessions.
Let us call training time the time required by a Machine
Learning algorithm to learn situation patterns. AL1 and
AL2 must have a low training time.

Requirement R2 : Low prediction time

Of course, the Assistant is able to decide when to make
a suggestion and which suggestion to make very rapidly.
Let us call prediction time the time it takes to the As-
sistant to inspect a set of situation patterns and to de-
termine which ones match the current situation. The
prediction time depends on the way AL1 and AL2 rep-
resent the learned situation patterns. This prediction
time must be very low to allow the Assistant to make
suggestions (or to decide to not make a suggestion) after
each user’s actions.
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Figure 7: The user has written several similar methods named “=”, for various classes of MyGraphics. He has just
selected the testing protocol (1) and is about to write a new method “=” for class Square. The Assistant offers to
insert a template (2). The user has mouse-clicked the suggestion and the template has been inserted (3).



Requirement R3 : user intelligible situation
patterns

We want the Apprentice to represent situation patterns
in a human understandable way. This is not a critical
requirement but allows the user to inspect or edit the
learned habits. Comprehensible and controllable inter-
faces give the user the sense of power and control.

Requirement R4 : AL1 - Low error rate

Finally, to be viable our Assistant has to make the “right
suggestion at the right moment”. This means that it has
to correctly determine when to make a suggestion. AL1
is said to “make” an error in two cases: (1) when one
of the situation patterns it has learned matches the cur-
rent situation whereas the user is not about to perform
a repetitive task, or (2) when none of its situation pat-
terns matches the current situation whereas the user is
about to perform a repetitive task. In case (1), the As-
sistant makes suggestions whereas no suggestions should
be done; in case (2), it makes no suggestion whereas sug-
gestions would benefit the user. AL1 must have a low
error rate.

Requirement R5 : AL2 - Low error rate and low
generalization

The Assistant also has to correctly determine what to
suggest. AL2 is said to “make” an error in two cases:
(1) when a situation pattern of an habit matches the
current situation whereas the user is not about to per-
form the repetitive task of that habit, or (2) when a
situation pattern of one of the habits matches the cur-
rent situation whereas AL1 has made an error? and the
user is not about to perform a repetitive task. In case
(1) the Assistant suggests the wrong repetitive task; in
case (2) it makes suggestions whereas no suggestion is
expected. Case (2) may occur if the situation patterns
of the habits are too general. A too general situation
pattern will be matched by too many situations and the
corresponding task proposed too frequently. AL2 must
have a low error rate to make few errors in case (1), but
also has to generalize as little as possible to avoid too
general situation patterns in case (2).

5.2 Which Algorithms?

Various kinds of algorithms have been proposed in the
field of Machine Learning. Concept learning, neural net-
works and reinforcement learning algorithms do not meet
requirement R1, instance-based algorithms do not meet
requirement R2, instance-based, statistical, neural net-
works and reinforcement learning algorithms do not meet
requirement R3.

Eligible kinds of algorithms are decision trees algo-
rithms because they miss none of the requirements R1,

*Whatever algorithm is used to build the When-set, it
may sometimes make errors: Machine Learning algorithms
with a null error rate have not been discovered yet, and even
do not exist for most of the learning tasks.

R2 and R3. Decision trees algorithms, like most of the
Machine Learning algorithms, have a low error rate and
meet requirement R4. Although they have not been de-
signed to generalize as little as possible, they are better
suited for requirement R5 than instance-based or statis-
tical algorithms.

Decision trees learning algorithms have notably been
used in CAP [Mitchell et al., 1994]. The state-of-the-
art decision trees learning algorithm is C4.5 [Quinlan,
1993]3. C4.5 has low computing time (incremental ver-
sions of C4.5 exist) and is suited to learn the When-set
(AL1). However, our tests (cf. Experimental Results)
have shown that it learns too general situation patterns
and is not suited to learn the What-set (AL2). Hence,
APE employs C4.5 to learn the When-set and a new
algorithm we have designed to learn the What-set.

5.3 A New Algorithm

Our new algorithm, named IDHYS, is a concept learn-
ing algorithm inspired by the Candidate-Elimination
[Mitchell, 1978).

Inductive concept learning consists in acquiring the
general definition of a concept from training examples of
this concept, each labeled as either a member (or positive
example) or a non-member (or negative example) of this
concept. Concept learning can be modeled as a problem
of searching through a hypothesis space (set of possible
definitions) to find the hypothesis that best fits the train-
ing examples [Mitchell, 1982]. Learning user’s habits is
a concept learning problem. All the situations preced-
ing a repetitive task 7' can be seen as positive examples
of the concept “Situations in which the user is going to
perform repetitive task T”. The situations preceding any
other task can be considered as negative examples of this
concept. The searched definition is a set of situation pat-
terns that match the situations in which the repetitive
task T has been performed.

IDHYS searches the hypothesis space of the conjunc-
tions of three situation patterns, one for each kind of
situation pattern defined in Section 2: containing wild-
cards, unordered, or unordered containing wildcards. It
learns by building hypotheses that are the most specific
generalizations of the positive examples. It processes
the positive examples incrementally. It starts with a
very specific hypothesis (indeed the first positive exam-
ple itself) and progressively generalizes this hypothesis
with the subsequent positive examples. IDHYS does not
build hypotheses for the negative examples which are
only used to bound the generalization process. This in-
cremental bottom-up approach makes IDHYS not sensi-
tive to actions with large sets of possible values for their
parameters. As a consequence it has a low computing
time. Our test (cf. next section) shows it also has a
low error rate and does not over-generalize to build the
situation patterns.

3A commercial version of C4.5, called C5.0, is now avail-
able.



Description of an earlier version of IDHYS can be
found in [Ruvini and Fagot, 1998], and a more complete
in [Ruvini, 2000].

6 Use and Experimental Results

APE, as described in the above section, is implemented
and experimentally used by ourselves and by a pool of
50 students enrolled in a Smalltalk course at the mas-
ter’s level. This section first analyses user feedback. It
then describes and analyses the technical experimental
results.

Concerning user feedback, let us recall that our users
are Smalltalk beginners. We do not have yet feed-
back from experienced programmers. About 70% of our
students have considered the Assistant window during
10 minutes approximatively and then have forgotten it.
Fortunately, results from the remaining 30% have been
very interesting. The main reasons invoked by those who
have not used the suggestions are :

e the burden of looking at the Assistant window since
nothing, except a modification inside this window,
indicates when a suggestion is made,

o the difficulty to read the suggestions presented as a
sequence of actions.

This indicates that there is a great deal of work to do in
that direction, namely, how to gently alert people and
how to provide a better visualization of what the As-
sistant suggests? Besides, the interesting point is that
those who have made the effort to use the tool have
rapidly learned how to use it efficiently and have taken
advantages of its capabilities. After a while, those users
have learned :

e which suggestions are regularly made and which
ones interest them,

e when the suggestions are made.

In other words, they have learned to give a look at the
Assistant window when they are about to perform a
repetitive task and when they do know that the sug-
gestion will be made. The students have been able to
anticipate APE’s suggestions because APE has a low
excess rate and makes few wrong suggestions.

Concerning technical results, APE correctly works and
makes the suggestions we expected it to. It also makes
many suggestions we did not think of. We report here
experiments conducted on 10 traces of 2000 actions long,
collected during students’ usage of the software.

How well does APE assist its users in practice? One
way to answer this question is to train APE on a part
of a trace (called the train trace) and then to test it
on another part (called the test trace) to see how of-
ten one of its suggestions coincides with user’s actions®.

4This is similar to the Machine Learning cross-validation
process.

Figure 8 plots this data. The horizontal axis gives the
size of the train traces and the test traces used. APE
employs C4.5 to learn the When-set and “IDHYS” to
learn the What-set. This is denoted by “C4.5-IDHYS”
in Figure 8. However, as a comparison, we also report
results when the Apprentice employs C4.5 to build both
the When-set and the What-set, this denoted by “C4.5-
C4.5”, and when it learns the What-set only (and not the
When-set) with C4.5 and IDHYS, respectively denoted
by “C4.5” and “IDHYS”.The percentage of correct sug-
gestions (top graph) is the percentage of repetitive tasks
correctly suggested by the Assistant. The percentage of
excessive suggestions (bottom graph) is the percentage of
actions of the test trace not preceding a repetitive task
for which the Assistant has made a suggestion. These
percentages have been evaluated for a situation length
varying from 1 to 10, and Figure 8 presents average re-
sults. This Figure shows that:

e The use of the When-set decreases the amount of ex-
cessive suggestions without decreasing the amount
of correct suggestions.

¢ Employing IDHYS to learn the What-set leads the
Assistant to make less excessive suggestions and to
suggest correctly more repetitive tasks.

e The percentage of excessive suggestions increases
with the trace size (see “C4.5-IDHYS”).

Both the percentage of correct suggestions and the
percentage of excessive suggestions increase with the sit-
uation lentgh (not shown here). This shows that there is
a tradeoff to find between an assistant which makes few
but correct suggestions (and perhaps misses some repet-
itive tasks) and an assistant which constantly bothers
the user with suggestions. Practically, we have chosen a
learning frequency of 100 actions and a situation length
of 3 actions. In this case, APE correctly suggests 63% of
the repetitive tasks and makes an excessive suggestion
for only 18% of user’s actions. The average size of the
repetitive tasks suggested by the Assistant during this
experiment was 7 actions (minimum 3, maximum 10).

Another important question is how long it takes APE
to learn user’s habits. In practice, it takes APE 15
seconds (measured on a PC with a 133 Mh processor)
to learn user’s habits (i.e. both the When-set and the
What-set) from a trace containing 100 actions. A 100
actions trace corresponds to about 6 minutes of user’s
works. In other words, every 6 minutes of user’s work,
APE spends 15 seconds to learn new habits. This is quite
satisfactory. Note finally that the Assistant makes sug-
gestions (i.e. inspects the When-set and the What-set)
in a matter of milliseconds.

7 Conclusion and Prospects

APE is one more step towards assistants which bring to-
gether Programming by Demonstration and Predictive
Interfaces. It works and operates in a context where the
number of possible actions and possible values for the
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parameters of these actions are large, where repetitive
sequences are not known in advance and not consecu-
tive. It is able to replay repetitions composed of several
actions and containing loops. The lessons learned from
this work are:

e Minimizing the amount of wrong suggestions is an
important issue. The system has to suggest the “re-
playing” of the right repetitive task at the right mo-
ment.

e Learning when to make a suggestion as well as what
to suggest decreases the amount of incorrect sugges-
tions.

e The system must not learn too general habits. We
have shown that our new Machine Learning algo-
rithm designed to learn habits reduces the amount
of incorrect suggestions without degrading the qual-
ity of these suggestions.

e It is possible to learn user’s habits to anticipate
repetitive tasks. Experimental tests have shown
that APE is usable and efficient: it learns user’s
habits in a matter of seconds and anticipates 63%
of the repetitive tasks. It makes irrelevant sugges-
tions for only 18% of the user’s actions.

Concerning future work, it is clear that one of the
main remaining issue is to present the suggestions made
by the Assistant in a more attractive way. Programming
by Demonstration studies have addressed the problem
of creating a graphical representation of a program or
a sequence of actions, and offer a direction for future
research.

Although the integration of APE into a programming
environment is an originality, it is not restrictive. APE
could be integrated in other interactive environments like
Microsoft Windows, X window system or Apple MacOS.
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