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ABSTRACT 
The APE (Adaptive Programming Environment) project focuses 
on applying Machine Learning techniques to embed a software 
assistant into the VisualWorks Smalltalk interactive programming 
environment. The assistant is able to learn user�’s habits and to 
automatically suggest to perform repetitive tasks on his behalf. 
This paper describes our assistant and focuses more particularly 
on the learning issue. It explains why state-of-the-art Machine 
Learning algorithms fail to provide an efficient solution for 
learning user�’s habits, and shows, through experiments on real 
data that a new algorithm we have designed for this learning task, 
achieves better results than related algorithms. 
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1. INTRODUCTION 
Users of interactive environments waste a lot of time performing 
similar and repetitive tasks. To decrease the burden of entering 
repetitive sequences of commands, interactive tools generally 
offer macro or script languages to allow the user to write a 
program that can be later on invoked to perform a sequence of 
commands automatically. This approach has two limitations: 
1. Writing a program require programming knowledge that 

many users do not have. 
2. Writing or invoking a program requires efforts from the user 

and disrupts the user�’s work-flow. 
Two kinds of solution have been proposed to overcome these 
limitations. Originally inspired by macro recorders, Programming 
by demonstration (PbD) [3] systems let the user demonstrate what 
the task to automate should do and create a program (containing 
variables, iterative loops or conditional branches) from observing 
this demonstration. They offer an efficient solution to the first 
problem because the user does not have to write code, but they 
require efforts from the user to demonstrate the task to automate 
or to invoke the created program (second limitation). 
Learning Interface Agents (LIA) [5] learn correlations between 

situations the user encounters and the corresponding actions he 
performs, and assist the user by suggesting to perform 
automatically some part of user�’s work. For instance, CAP [6], an 
assistant for managing meeting calendars, suggests default values 
regarding meeting duration, location, time and day-of-week. 
Maes�’s assistants [5] advise users for some application specific 
operations like managing mails, scheduling meetings or selecting 
articles in news. ClipBoard [8], an interface for Unix, predicts the 
next command the user is going to perform. WebWatcher [1], an 
assistant for the world wide web, suggests links of interest to the 
user. OpenSesame! [2] runs in background on Macintosh, and 
learns repetitive tasks in opening and closing files or applications, 
emptying trash, rebuilding desktop. Although LIA provide a 
solution for the second limitation (repetitive actions are detected 
and suggested), existing assistants do not create programs and 
suggest only single actions and not sequences of actions. 
Eager [3] can be seen as one of the first attempts to bring together 
PbD systems capabilities to create programs, and LIA facilities to 
predict user�’s actions. When Eager detects two consecutive 
repetitions in the last user�’s actions, it assumes they are the first 
two iterations of a loop, and proposes to complete the loop (until 
�“a condition�” is satisfied or following some typical patterns like 
linear sequences of integers or days of the week). Eager 
overcomes the two limitations identified above: it is able to replay 
sequences of actions (loops) but does not require the user to 
program, and it detects and suggests repetitive tasks without any 
user�’s intervention. However, it has a limitation: it detects 
repetitive tasks and makes suggestions only when repetitions are 
consecutive. 
The APE project takes on Eager idea to bring together PbD and 
LIA, but focuses particularly on designing an assistant able to 
replay repetitive sequences of actions even when they are not 
consecutive. To achieve this goal, APE employs Machine 
Learning techniques to learn user�’s habits. This paper reports 
research conducted to address a key issue of this learning task: 
designing an assistant which makes �“the right suggestion at the 
right moment�” and does not constantly bother the user with 
incorrect suggestions. APE is integrated into the VisualWorks 3.0 
Smalltalk ObjectShare programming environment. It can be 
downloaded at http://www.lirmm.fr/~ruvini/ape. 

In the following we present APE. We explain what makes 
learning user�’s habits difficult, why existing Machine Learning 
algorithms do not have the potential for this learning task. We 
briefly present a new algorithm we have designed for this task and 
we compare its results when applied to real data, with C4.5 [10]. 
We finally give perspectives for future research. 

 

 

 

 

 



2. GENERAL PRESENTATION 
APE is made of three software agents, an Observer, an Apprentice 
and an Assistant, working simultaneously in the background 
without any user intervention. Table 1 defines our terminology. 

Action : intervention of the user on the environment, e.g. window 
management, menu item selection, button pressing, entering text, 
etc. An action is parameterized by, among other things, the tool 
(Browser, Debugger, etc.) on which it has been performed. 
Trace : history of user�’s actions. 
Task : sequence of actions of the trace. 
Repetitive task : task occurring several times in the trace. 

Situation : sequence of actions of the trace of a given size n, n 
being a parameter of the learning algorithm. 
Situation pattern : regular expression matching one or more 
situations. 
Habit : pair �“situation pattern - repetitive task�” such that the 
situation pattern matches all situations preceding the repetitive 
task. 

Table 1 : Basic definitions 

2.1 The Observer 
The Observer monitors user�’s actions, reifies them into dedicated 
Smalltalk objects and stores them into the trace. The Observer 
also sends messages in background to the Apprentice and to the 
Assistant to inform them that the user has performed a new action. 

2.2 The Apprentice 
The Apprentice uses the trace to detect repetitive tasks, to learn 
situation patterns in which they are performed, and thus to build a 
set of habits. It detects repetitive tasks of the trace using the 
classical text searching algorithm KMR [4]. It is able to detect 
repetitive sequences of actions as well as correction of repetitive 
programming errors or writing of repetitive pieces of code. It uses 
a Machine Learning algorithm to learn situation patterns. Let A1, 
A2, A3 and lowercase letters from a to d denote actions, let  and 

 denote action parameters and let "." be a special character (a 
wildcard) that matches any single action or action parameter. It is 
able to learn 3 kinds of situation patterns: 
 Unordered: the order in which actions are performed does 

not matter; in such cases, situations such as A1A3A2 and 
A2A1A3 can be characterized by the situation pattern 
{A1,A2,A3}. 

 With wildcards: the situations A1abA2( ) and A1cdA2( ) can 
be characterized by the situation pattern �“A1..A2(.)�”. The 
number of wildcards is not limited.  

 Unordered with wildcards: A1A2( )A3 and A2( )A3A1 can 
be characterized by the situation pattern {A1,A2(.),A3}. 

2.3 The Assistant 
The Assistant exploits what has been learned to automatically 
propose to the user, when appropriate, sequences of actions that 
he might want to perform again. More precisely, when the 
Assistant detects that the last user�’s actions match one or several 
learned situation patterns, it displays in the Assistant window the 
repetitive tasks of the corresponding habits (see Figure 1). The 

user can ignore that window or ignore these suggestions (non-
obtrusive behavior) or mouse-click on one of them to 
automatically perform the related actions. The number of 
suggestions the Assistant can make is limited to four because 
browsing suggestions puts a workload on the user. 

2.4 ILLUSTRATIVE EXAMPLE 
Figure 1 shows two snapshots of VisualWorks screens, both 
including an Assistant window (labeled �“Assistant�”) and the main 
APE window (labeled �“Ape Agents�”). A user is testing his 
application: a multi-process simulation of the classical ``n-
queens'' problem. In the ``situation before firing a habit'' (top 
snapshot), the user selects a Smalltalk expression (arrow 1) in the 
�“Workspace window�” whose evaluation (arrow 2) raises an 
exception leading to the opening of an �“Exception�” window. 
Because, this situation matches a situation pattern learned by the 
Apprentice, the Assistant offers to perform the related repetitive 
task: �“open, move, resize a debugger and select stack index 5�”. 
This repetitive task is exactly what the user intents to do and he 
mouse-clicks on the proposition (arrow 3), resulting in a debugger 
displaying a user's method (�“situation after a habit has been fired�” 
- bottom snapshot). In this example, the Assistant has saved five 
actions to the user. 

3. THE LEARNING TASK 
3.1 What Makes The Problem Difficult 
Four requirements have conducted the choice of the algorithm 
used to learn situation patterns. These requirements are : 
R1 Low training time : let us call training time the time it takes 
the algorithm to learn situation patterns. The training time must be 
very low to allow the Apprentice to learn habits related to small 
sections of the trace (the corresponding situation patterns have to 
be learned very rapidly from a few situations), as well as habits 
appearing on very long traces and reflecting the general user�’s 
habits. 
R2 Low prediction time : let us call prediction time the time it 
takes to the Assistant to inspect the set of learned habits and to 
make a suggestion. Obviously, it must be very low. 
R3 User intelligible situation patterns : this is not critical but 
would allow the user to inspect or edit the learned habits. 
R4 Low error rate and low generalization : an assistant that 
continuously bothers the user with incorrect suggestions would be 
useless because the user would rapidly ignore it. Our Assistant 
has to minimize the number of incorrect suggestions. This means 
two things: (1) to minimize the number of incorrect suggestions 
when the user is about to perform a repetitive task (i.e. suggesting 
the wrong repetitive task) and (2) to minimize the number of 
suggestions when he is not about to perform a repetitive task (no 
suggestion should be done). To make few error in case (1) the 
algorithm must have a low error rate. In case (2), if some learned 
situation patterns match the last user�’s actions, it will make a 
suggestion. This may occur if the situation patterns are too 
general. As a consequence the Machine Learning algorithm 
employed has, on one hand, to generalize as far as needed to have 
a low error rate (case (1)), and on the other hand, to generalize as 
little as possible to avoid too general situation patterns (case (2)).  



3.2 Existing Algorithms 
Various kinds of algorithms have been proposed in the field of 
Machine Learning. Concept learning and neural networks 
algorithms do not meet requirement R1 (because in our 
application the number of possible actions and possible values for 
the parameters of these actions are large), instance-based 
algorithms do not meet requirement R2, instance-based, statistical 
and neural networks algorithms do not meet requirement R3. 
None of the existing Machine Learning algorithms have been 
designed to generalize as little as possible (requirement R4). 
However, concept learning and decision trees algorithms are more 
suited for learning user�’s habits. Eligible kinds of algorithms are 
decision trees because they miss only one requirement. They have 
notably been used in CAP [6]. The state-of-the-art decision trees 
learning algorithm is C4.5 [10]. Our tests have confirmed (see 
section 4) that C4.5 although fast (incremental versions exist) and 
having a low error rate, produces too general situation pattern, 
leading our Assistant to make too incorrect suggestions. 

Situation after a habit has been fired

The user mouse-clicked on the proposition

1 2

Situation before firing a habit

The Assistant proposes to open a debugger...

3

Figure 1 

3.3 Overview of IDHYS 
IDHYS [11], our new concept learning algorithm is inspired by 
the Candidate-Elimination algorithm (CEA) [7]. 

Learning our situation patterns can be seen as a concept learning 
problem. Concept learning involves acquiring the general 
definition of a concept from training examples labeled either as 
positive or negative examples of this concept. For each repetitive 
task RT (concept), the Apprentice has to induce situation patterns, 
using a set of situations including the situations preceding RT in 
the trace (positive examples) and the situations preceding any 
other repetitive task of the trace (negative examples). 
The CEA learns by building two sets of generalizations of the 
positive examples: the most specific generalizations and the most 
general generalizations. IDHYS builds an approximation of the 
most specific generalizations only. It processes the positive 
examples incrementally. It starts with a very specific situation 
pattern (indeed the first positive example itself) and progressively 
generalizes this situation pattern with the subsequent positive 
examples. IDHYS does not build situation patterns for the 
negative examples which are only used to bound the 
generalization process. This  incremental bottom-up approach  
makes IDHYS not sensitive to actions with large sets of possible 
values for their parameters. As a consequence it has a low 
computing time. Our test (see section 4) shows it also has a low 
error rate and does not over-generalize to build the situation 
patterns. 
During the learning process, IDHYS computes a numerical 
evaluation of the quality of the learned situation patterns using the 
constant time Laplace correction [9]. This allows the Assistant to 
sort by quality the suggestions made to the user. 
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4. USE AND EXPERIMENTAL RESULTS 
APE is implemented, operational and experimentally used by 
ourselves and by a pool of 50 students enrolled in a Smalltalk 
course at the master's level. This section describes technical 
experimental results and analyses the user feedback.  

4.1 Experimental results 
Concerning technical results, APE correctly works and makes the 
suggestions we expected it to. It also makes many suggestions we 
did not think of. We report here experiments conducted on 10 
traces of 2000 actions long, collected during real usage of the 
software by the students. 
The percentage of correct suggestions (Figure 2) is the amount of 
repetitive tasks the Assistant has correctly suggested. Figure 2 



shows that IDHYS achieves a higher percentage than C4.5. The 
percentage of excessive suggestions (Figure 3) denotes the 
amount of user�’s actions for which the Assistant has made a 
suggestion whereas no suggestion was expected (i.e. the user did 
not performed a repetitive task). IDHYS achieves a lower 
percentage than C4.5, particularly when learning from few 
situations (on small sections of the trace).  
For a given student trace, these percentages have been evaluated 
by cross-validation as follow: we have trained the Apprentice on a 
part of the trace and we have then tested the Assistant on another 
part of the trace to see how often one of its suggestions coincides 
with user�’s actions. This process has been repeated for a situation 
length varying from 1 to 10 and the resulting percentages 
averaged. IDHYS achieves best results when the Apprentice 
learns user�’s habits every 100 actions and for a situation length of 
3 actions (i.e. when the Assistant uses the 3 last user�’s actions to 
predict repetitive tasks). For these values, the Assistant correctly 
suggests 64% of the repetitive tasks and makes undesirable 
suggestions for 22% of the user�’s actions. Concerning training 
time, the Apprentice learns user�’s habits on a 1000 action trace 
(corresponding to one our of user�’s work) in 25 seconds.  
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4.2 User Feedback 
Concerning user feedback, let us recall that our users are 
Smalltalk beginners. About 70% of our students have considered 
the Assistant window during 10 minutes approximately and have 
forgotten it, this was quite disappointing. Fortunately, results from 
the remaining 30% have been very interesting. The main reasons 
invoked by those who have not used the suggestions are: (1) the 
burden of looking at the Assistant window since nothing, except a 
modification inside this window, indicates when a suggestion is 
made, (2) the difficulty to read the suggestions presented as 
sequences of actions. This indicates that there is a great deal of 
work to do in that direction, namely, how to gently alert people 
and how to provide a better visualization of what the Assistant 
suggests? The interesting point is that those who have made the 
effort to use the tool have rapidly learned how to use it efficiently. 
After a while, those users have learned which suggestions are 
regularly made and which ones interest them, and when the 
suggestions are made. In other words, they have learned to give a 
look at the Assistant window when they are about to perform a 

repetitive task and when they do know that the suggestion will be 
made. 

5. FUTURE WORKS 
As discussed in this paper, minimizing the number of incorrect 
suggestions is a critical issue in APE. Although it makes incorrect 
suggestions for only 22% of the user�’s actions, it would be more 
reliable if this amount could be reduced further. A solution to this 
problem we are currently investigating is to learn not only user�’s 
habits but also to predict whether or not the user is about to 
perform a repetitive task. 
User tests reported in this paper have shown that APE would be 
even more attractive is the presentation of its suggestions were 
improved. Programming by demonstration studies have addressed 
the problem of creating a graphical representation of a program or 
a sequence of actions, and offer a direction for future research. 
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