
APE: Learning User�’s Habits to Automate Repetitive Tasks
Jean-David Ruvini

LIRMM �– University of Montpellier
161 rue Ada �– 34392 Montpellier - France

+ 33 4 67 41 86 13

ruvini@lirmm.fr

Christophe Dony
LIRMM �– University of Montpellier

161 rue Ada �– 34392 Montpellier - France
+ 33 4 67 41 85 33

dony@lirmm.fr

ABSTRACT
The APE (Adaptive Programming Environment) project focuses
on applying Machine Learning techniques to embed a software
assistant into the VisualWorks Smalltalk interactive programming
environment. The assistant is able to learn user�’s habits and to
automatically suggest to perform repetitive tasks on his behalf.
This paper describes our assistant and focuses more particularly
on the learning issue. It explains why state-of-the-art Machine
Learning algorithms fail to provide an efficient solution for
learning user�’s habits, and shows, through experiments on real
data that a new algorithm we have designed for this learning task,
achieves better results than related algorithms.

Keywords

Learning Interface Agents, Programming by Demonstration,
Machine Learning, Interactive Programming Environments.

1. INTRODUCTION
Users of interactive environments waste a lot of time performing
similar and repetitive tasks. To decrease the burden of entering
repetitive sequences of commands, interactive tools generally
offer macro or script languages to allow the user to write a
program that can be later on invoked to perform a sequence of
commands automatically. This approach has two limitations:
1. Writing a program require programming knowledge that

many users do not have.
2. Writing or invoking a program requires efforts from the user

and disrupts the user�’s work-flow.
Two kinds of solution have been proposed to overcome these
limitations. Originally inspired by macro recorders, Programming
by demonstration (PbD) [3] systems let the user demonstrate what
the task to automate should do and create a program (containing
variables, iterative loops or conditional branches) from observing
this demonstration. They offer an efficient solution to the first
problem because the user does not have to write code, but they
require efforts from the user to demonstrate the task to automate
or to invoke the created program (second limitation).
Learning Interface Agents (LIA) [5] learn correlations between

situations the user encounters and the corresponding actions he
performs, and assist the user by suggesting to perform
automatically some part of user�’s work. For instance, CAP [6], an
assistant for managing meeting calendars, suggests default values
regarding meeting duration, location, time and day-of-week.
Maes�’s assistants [5] advise users for some application specific
operations like managing mails, scheduling meetings or selecting
articles in news. ClipBoard [8], an interface for Unix, predicts the
next command the user is going to perform. WebWatcher [1], an
assistant for the world wide web, suggests links of interest to the
user. OpenSesame! [2] runs in background on Macintosh, and
learns repetitive tasks in opening and closing files or applications,
emptying trash, rebuilding desktop. Although LIA provide a
solution for the second limitation (repetitive actions are detected
and suggested), existing assistants do not create programs and
suggest only single actions and not sequences of actions.
Eager [3] can be seen as one of the first attempts to bring together
PbD systems capabilities to create programs, and LIA facilities to
predict user�’s actions. When Eager detects two consecutive
repetitions in the last user�’s actions, it assumes they are the first
two iterations of a loop, and proposes to complete the loop (until
�“a condition�” is satisfied or following some typical patterns like
linear sequences of integers or days of the week). Eager
overcomes the two limitations identified above: it is able to replay
sequences of actions (loops) but does not require the user to
program, and it detects and suggests repetitive tasks without any
user�’s intervention. However, it has a limitation: it detects
repetitive tasks and makes suggestions only when repetitions are
consecutive.
The APE project takes on Eager idea to bring together PbD and
LIA, but focuses particularly on designing an assistant able to
replay repetitive sequences of actions even when they are not
consecutive. To achieve this goal, APE employs Machine
Learning techniques to learn user�’s habits. This paper reports
research conducted to address a key issue of this learning task:
designing an assistant which makes �“the right suggestion at the
right moment�” and does not constantly bother the user with
incorrect suggestions. APE is integrated into the VisualWorks 3.0
Smalltalk ObjectShare programming environment. It can be
downloaded at http://www.lirmm.fr/~ruvini/ape.

In the following we present APE. We explain what makes
learning user�’s habits difficult, why existing Machine Learning
algorithms do not have the potential for this learning task. We
briefly present a new algorithm we have designed for this task and
we compare its results when applied to real data, with C4.5 [10].
We finally give perspectives for future research.

2. GENERAL PRESENTATION
APE is made of three software agents, an Observer, an Apprentice
and an Assistant, working simultaneously in the background
without any user intervention. Table 1 defines our terminology.

Action : intervention of the user on the environment, e.g. window
management, menu item selection, button pressing, entering text,
etc. An action is parameterized by, among other things, the tool
(Browser, Debugger, etc.) on which it has been performed.
Trace : history of user�’s actions.
Task : sequence of actions of the trace.
Repetitive task : task occurring several times in the trace.

Situation : sequence of actions of the trace of a given size n, n
being a parameter of the learning algorithm.
Situation pattern : regular expression matching one or more
situations.
Habit : pair �“situation pattern - repetitive task�” such that the
situation pattern matches all situations preceding the repetitive
task.

Table 1 : Basic definitions

2.1 The Observer
The Observer monitors user�’s actions, reifies them into dedicated
Smalltalk objects and stores them into the trace. The Observer
also sends messages in background to the Apprentice and to the
Assistant to inform them that the user has performed a new action.

2.2 The Apprentice
The Apprentice uses the trace to detect repetitive tasks, to learn
situation patterns in which they are performed, and thus to build a
set of habits. It detects repetitive tasks of the trace using the
classical text searching algorithm KMR [4]. It is able to detect
repetitive sequences of actions as well as correction of repetitive
programming errors or writing of repetitive pieces of code. It uses
a Machine Learning algorithm to learn situation patterns. Let A1,
A2, A3 and lowercase letters from a to d denote actions, let and

 denote action parameters and let "." be a special character (a
wildcard) that matches any single action or action parameter. It is
able to learn 3 kinds of situation patterns:
 Unordered: the order in which actions are performed does

not matter; in such cases, situations such as A1A3A2 and
A2A1A3 can be characterized by the situation pattern
{A1,A2,A3}.

 With wildcards: the situations A1abA2() and A1cdA2() can
be characterized by the situation pattern �“A1..A2(.)�”. The
number of wildcards is not limited.

 Unordered with wildcards: A1A2()A3 and A2()A3A1 can
be characterized by the situation pattern {A1,A2(.),A3}.

2.3 The Assistant
The Assistant exploits what has been learned to automatically
propose to the user, when appropriate, sequences of actions that
he might want to perform again. More precisely, when the
Assistant detects that the last user�’s actions match one or several
learned situation patterns, it displays in the Assistant window the
repetitive tasks of the corresponding habits (see Figure 1). The

user can ignore that window or ignore these suggestions (non-
obtrusive behavior) or mouse-click on one of them to
automatically perform the related actions. The number of
suggestions the Assistant can make is limited to four because
browsing suggestions puts a workload on the user.

2.4 ILLUSTRATIVE EXAMPLE
Figure 1 shows two snapshots of VisualWorks screens, both
including an Assistant window (labeled �“Assistant�”) and the main
APE window (labeled �“Ape Agents�”). A user is testing his
application: a multi-process simulation of the classical ``n-
queens'' problem. In the ``situation before firing a habit'' (top
snapshot), the user selects a Smalltalk expression (arrow 1) in the
�“Workspace window�” whose evaluation (arrow 2) raises an
exception leading to the opening of an �“Exception�” window.
Because, this situation matches a situation pattern learned by the
Apprentice, the Assistant offers to perform the related repetitive
task: �“open, move, resize a debugger and select stack index 5�”.
This repetitive task is exactly what the user intents to do and he
mouse-clicks on the proposition (arrow 3), resulting in a debugger
displaying a user's method (�“situation after a habit has been fired�”
- bottom snapshot). In this example, the Assistant has saved five
actions to the user.

3. THE LEARNING TASK
3.1 What Makes The Problem Difficult
Four requirements have conducted the choice of the algorithm
used to learn situation patterns. These requirements are :
R1 Low training time : let us call training time the time it takes
the algorithm to learn situation patterns. The training time must be
very low to allow the Apprentice to learn habits related to small
sections of the trace (the corresponding situation patterns have to
be learned very rapidly from a few situations), as well as habits
appearing on very long traces and reflecting the general user�’s
habits.
R2 Low prediction time : let us call prediction time the time it
takes to the Assistant to inspect the set of learned habits and to
make a suggestion. Obviously, it must be very low.
R3 User intelligible situation patterns : this is not critical but
would allow the user to inspect or edit the learned habits.
R4 Low error rate and low generalization : an assistant that
continuously bothers the user with incorrect suggestions would be
useless because the user would rapidly ignore it. Our Assistant
has to minimize the number of incorrect suggestions. This means
two things: (1) to minimize the number of incorrect suggestions
when the user is about to perform a repetitive task (i.e. suggesting
the wrong repetitive task) and (2) to minimize the number of
suggestions when he is not about to perform a repetitive task (no
suggestion should be done). To make few error in case (1) the
algorithm must have a low error rate. In case (2), if some learned
situation patterns match the last user�’s actions, it will make a
suggestion. This may occur if the situation patterns are too
general. As a consequence the Machine Learning algorithm
employed has, on one hand, to generalize as far as needed to have
a low error rate (case (1)), and on the other hand, to generalize as
little as possible to avoid too general situation patterns (case (2)).

3.2 Existing Algorithms
Various kinds of algorithms have been proposed in the field of
Machine Learning. Concept learning and neural networks
algorithms do not meet requirement R1 (because in our
application the number of possible actions and possible values for
the parameters of these actions are large), instance-based
algorithms do not meet requirement R2, instance-based, statistical
and neural networks algorithms do not meet requirement R3.
None of the existing Machine Learning algorithms have been
designed to generalize as little as possible (requirement R4).
However, concept learning and decision trees algorithms are more
suited for learning user�’s habits. Eligible kinds of algorithms are
decision trees because they miss only one requirement. They have
notably been used in CAP [6]. The state-of-the-art decision trees
learning algorithm is C4.5 [10]. Our tests have confirmed (see
section 4) that C4.5 although fast (incremental versions exist) and
having a low error rate, produces too general situation pattern,
leading our Assistant to make too incorrect suggestions.

Situation after a habit has been fired

The user mouse-clicked on the proposition

1 2

Situation before firing a habit

The Assistant proposes to open a debugger...

3

Figure 1

3.3 Overview of IDHYS
IDHYS [11], our new concept learning algorithm is inspired by
the Candidate-Elimination algorithm (CEA) [7].

Learning our situation patterns can be seen as a concept learning
problem. Concept learning involves acquiring the general
definition of a concept from training examples labeled either as
positive or negative examples of this concept. For each repetitive
task RT (concept), the Apprentice has to induce situation patterns,
using a set of situations including the situations preceding RT in
the trace (positive examples) and the situations preceding any
other repetitive task of the trace (negative examples).
The CEA learns by building two sets of generalizations of the
positive examples: the most specific generalizations and the most
general generalizations. IDHYS builds an approximation of the
most specific generalizations only. It processes the positive
examples incrementally. It starts with a very specific situation
pattern (indeed the first positive example itself) and progressively
generalizes this situation pattern with the subsequent positive
examples. IDHYS does not build situation patterns for the
negative examples which are only used to bound the
generalization process. This incremental bottom-up approach
makes IDHYS not sensitive to actions with large sets of possible
values for their parameters. As a consequence it has a low
computing time. Our test (see section 4) shows it also has a low
error rate and does not over-generalize to build the situation
patterns.
During the learning process, IDHYS computes a numerical
evaluation of the quality of the learned situation patterns using the
constant time Laplace correction [9]. This allows the Assistant to
sort by quality the suggestions made to the user.

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

R
ep

et
iti

ve
 ta

sk
s

(%
)

Trace length

Percentage of correct suggestions

C4.5
C4.5 pruning

IDHYS

Figure 2

4. USE AND EXPERIMENTAL RESULTS
APE is implemented, operational and experimentally used by
ourselves and by a pool of 50 students enrolled in a Smalltalk
course at the master's level. This section describes technical
experimental results and analyses the user feedback.

4.1 Experimental results
Concerning technical results, APE correctly works and makes the
suggestions we expected it to. It also makes many suggestions we
did not think of. We report here experiments conducted on 10
traces of 2000 actions long, collected during real usage of the
software by the students.
The percentage of correct suggestions (Figure 2) is the amount of
repetitive tasks the Assistant has correctly suggested. Figure 2

shows that IDHYS achieves a higher percentage than C4.5. The
percentage of excessive suggestions (Figure 3) denotes the
amount of user�’s actions for which the Assistant has made a
suggestion whereas no suggestion was expected (i.e. the user did
not performed a repetitive task). IDHYS achieves a lower
percentage than C4.5, particularly when learning from few
situations (on small sections of the trace).
For a given student trace, these percentages have been evaluated
by cross-validation as follow: we have trained the Apprentice on a
part of the trace and we have then tested the Assistant on another
part of the trace to see how often one of its suggestions coincides
with user�’s actions. This process has been repeated for a situation
length varying from 1 to 10 and the resulting percentages
averaged. IDHYS achieves best results when the Apprentice
learns user�’s habits every 100 actions and for a situation length of
3 actions (i.e. when the Assistant uses the 3 last user�’s actions to
predict repetitive tasks). For these values, the Assistant correctly
suggests 64% of the repetitive tasks and makes undesirable
suggestions for 22% of the user�’s actions. Concerning training
time, the Apprentice learns user�’s habits on a 1000 action trace
(corresponding to one our of user�’s work) in 25 seconds.

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

U
se

r’s
 a

ct
io

ns
 (%

)

Trace length

Percentage of excessive suggestions

C4.5
C4.5 pruning

IDHYS

Figure 3

4.2 User Feedback
Concerning user feedback, let us recall that our users are
Smalltalk beginners. About 70% of our students have considered
the Assistant window during 10 minutes approximately and have
forgotten it, this was quite disappointing. Fortunately, results from
the remaining 30% have been very interesting. The main reasons
invoked by those who have not used the suggestions are: (1) the
burden of looking at the Assistant window since nothing, except a
modification inside this window, indicates when a suggestion is
made, (2) the difficulty to read the suggestions presented as
sequences of actions. This indicates that there is a great deal of
work to do in that direction, namely, how to gently alert people
and how to provide a better visualization of what the Assistant
suggests? The interesting point is that those who have made the
effort to use the tool have rapidly learned how to use it efficiently.
After a while, those users have learned which suggestions are
regularly made and which ones interest them, and when the
suggestions are made. In other words, they have learned to give a
look at the Assistant window when they are about to perform a

repetitive task and when they do know that the suggestion will be
made.

5. FUTURE WORKS
As discussed in this paper, minimizing the number of incorrect
suggestions is a critical issue in APE. Although it makes incorrect
suggestions for only 22% of the user�’s actions, it would be more
reliable if this amount could be reduced further. A solution to this
problem we are currently investigating is to learn not only user�’s
habits but also to predict whether or not the user is about to
perform a repetitive task.
User tests reported in this paper have shown that APE would be
even more attractive is the presentation of its suggestions were
improved. Programming by demonstration studies have addressed
the problem of creating a graphical representation of a program or
a sequence of actions, and offer a direction for future research.

6. REFERENCES
[1] R. Armstrong, D. Freitag, T. Joachims, and T.

Mitchell. Webwatcher: A learning apprentice for the
world wide web. In AAAI Spring Symposium on
Information Gathering, 1995.

[2] A. Caglayan, M. Snorrason, J. Jacoby, J. Mazzu, and
R. J. and. K. Kumar. Learn sesame: a learning agent
engine. Applied Artificial Intelligence, 11:393-412,
1997.

[3] A. Cypher, D. C. Halbert, D. Kurlander, H.
Lieberman, D. Maulsby, B. A. Myers, and A.
Turransky, (eds). Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1993.

[4] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid
identification of repeated patterns in strings, trees and
arrays. In 4th Annual ACM Symposium on Theory of
Computing, pages 125-136, May 1972.

[5] P. Maes. Agents that reduce work and information
overload. Communications of the ACM, Special Issue
on Intelligent Agents, 37(7):31-40, July 1994.

[6] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and
D. Zabowski. Experience with a learning personal
assistant. Communications of the ACM, Special Issue
on Intelligent Agents, 37(7):81-91, July 1994.

[7] T. M. Mitchell. Version Spaces: An Approach to
Concept Learning. PhD thesis, Electrical Engineering
Dept., Stanford University, 1979.

[8] H. Motoda. Machine Learning Techniques to Make
Computers Easier to Use. In Proceedings of IJCAI�’97.
Morgan Kaufmann Publishers, August 23-29, 1997.

[9] T. Niblett. Constructing decision trees in noisy
domains. In I. Bratko and N. Lavraec, editors, Progress
in Machine Learning, pages 67-78, Wilmslow, 1987.
Sigma Press.

[10] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[11] J.-D. Ruvini and C. Fagot. IBHYS: a new approach to
learn users habits. In Proceedings of ICTAI'98, pages

200-207. IEEE Computer Society Press, 1999

