Component-based Specification of Software Architecture
Constraints

Chouki Tibermacine
LIRMM, CNRS and
Montpellier Il University
France
tibermacin@lirmm.fr

Salah Sadou
VALORIA, Université
Bretagne-Sud, Vannes
France
sadou@univ-ubs.fr

Christophe Dony
LIRMM, CNRS and
Montpellier Il University
France

dony@lirmm.fr

~ Luc Fabresse
Ecole des mines de Douai
France
fabresse@mines-douai.fr

ABSTRACT

Component-based software engineering provides for develop-
ers the ability to easily reuse and assemble software entities
to build complex software. Component-based specification
of software functionality has been and is largely addressed,
however this is not yet the case for what concerns software
non-functionality. In this paper, we propose a new way
to express component-based software non-functional docu-
mentation, and we will focus more specifically on architec-
ture constraints which formalize parts of architecture de-
cisions, as executable, customizable, reusable and compos-
able building blocks represented by components. Checking
of architecture constraints is provided via service invoca-
tion through ports of a special kind of components, called
constraint-components. The signatures of these checking
services can be defined in required interfaces of business
components, to document decisions taken while designing
their architecture. They can also be part of other required
interfaces of constraint components, making it possible to
build higher-level or more complex constraints while reusing
existing ones. We present an example of implementation of
constraint components using, an ADL which is introduced
in this paper. Architecture constraints can then be checked
on the architecture of business components at design-time
using the CLACS tool support, which has been implemented
as an Eclipse plugin.

1. INTRODUCTION: CONTEXT AND MO-
TIVATION

In the last two decades different techniques for architecture
decision documentation have been proposed [28, 14, 25, 13,
16, 26] in the software engineering literature. Several lan-
guages, anthologies and templates have been defined, rang-
ing from text-based solutions to more formal ones. Text-

based techniques [28, 14, 15, 25, 13, 12] are solutions that
better organize architecture decision documentation at the
design phase of the software lifecycle. They propose to de-
velopers to explicit, in a structured way, design decisions
made during architecture description. In contrast, formal
techniques [16, 3, 27] impose to developers to write decision
descriptions as expressions in languages that can be fully
processed by a support tool. These solutions, which ap-
ply particularly to some critical aspects of architecture de-
cisions, provide a documentation less ambiguous and a sup-
port for (among others) automatic checking during architec-
ture changes [26]. A part of such documentation is composed
of architecture constraints. Examples of constraints include
the choice of a particular architectural style or pattern, like
the layered style. In a previous work [27] we presented a
family of languages called ACL based on the Object Con-
straint Language (OCL [19]). These languages allow the
expression of constraints at each phase of the component-
based development process. In contrast to other constraint
languages which work only with the ADL that has been
proposed with [10, 3], ACL is parameterized with the lan-
guage to which it will be associated. Indeed Armani [16]
constraints, for example, are checkable only on architecture
descriptions defined in Acme ADL [10]. ACL constraints can
be associated to different ADLs and checking is supported
through a transformation mechanism.

When defining component-based software architecture de-
scriptions, architecture constraints are generally intended
for the validation of some specific architectural elements
(components, in most cases). This limits their potential
reuse with architectural elements of other architecture de-
scriptions. In addition, this kind of documentation often
includes some parts which can be used individually for doc-
umenting parts of design decisions. Unfortunately, there is
no means to extract these parts, to make them parametrized
entities that can be factorized and used in different reuse
contexts. We defend thus in this paper the idea of defin-
ing blocks of constraints as customizable and reusable enti-
ties. We observed that in the literature, these issues have
not been addressed deeply. To doing so, we turned towards
component-based software development.

It is well known that some of the main “ilities” of component-
based software engineering are reusability, composability and
customizability. Reusability represents the ability for a given
piece of software to be reused by developers. While shifting
from design to implementation, developers are thus able to
concretize a given design element by using a pre-developed
software entity (development by reuse). Within the devel-
opment process, developers are responsible for putting on
shelves the produced software artifacts (components) dur-
ing implementation for future system development (develop-
ment for reuse). The second non-functional characteristic is
inherent to component-based software development. Indeed,
in this development paradigm, software building blocks that
explicit their dependencies with their environment offer a
connection capability of these different pieces of software to
build a complex system. Customizability is the ability for
a software to be changed by developers in order to adapt
it to a given context. There are different methods to reach
customizability. One of the most known techniques used for
this purpose is parametrization. Indeed defining parameters
in the signature of a given software entity allows the devel-
oper to customize the software entity behavior according to
the passed arguments.

The goal of the work presented in this paper is to propose a
way to build basic constraints as checkable entities embed-
ded in a special kind of software components, that can be
reused, assembled, composed into higher-level ones and cus-
tomized using standard component-based techniques. The
purpose is as well to put reusable constraint-component on
shelves (design for reuse) and to produce new constraints
by composition of existing ones (design by reuse) and then
to simplify the expression and definition of constraints (as-
cending design). An additional fundamental goal is to define
a uniform paradigm to develop business and non-functional
(constraint-) components. In synthesis, we aim at proposing
an operational component-based design environment provid-
ing new capabilities to express architecture constraints that
can be executed at design-time to check the conformity of ar-
chitecture designs and in which business components can be
compiled into instructions of a component-based program-
ming language.

The remaining of the paper is organized as follows. In the
following section, we identify and illustrate via an example,
the problems that are tackled in this paper. Section 3 makes
an overview of the contribution of our work. In section 4, we
first present CLACS, the ADL we built for the SCL [8] com-
ponent programming language which has been developed in
our team. We then explain how using this ADL we can de-
scribe constraints as components and how these components
can be connected to other constraint components or business
ones'. In Section 5, we illustrate through an example the ap-
plication of the approach proposed in this paper. Section 6
introduces the prototype tool developed for implementing
our proposals. Before concluding and presenting the future
work at the end of this paper, we make an overview of the
related works.

IThe goal of our work in this paper is not to present ACL
as an architecture constraint language parametrized by dif-
ferent ADLs (as indicated previously). The focus is on its
use with CLACS.

2. PROBLEM STATEMENT BY EXAMPLE

The following example uses an existing proposition [27] and
illustrates the problems we want to handle. The constraints
below are defined in ACL (Architecture Constraint Lan-
guage [27]), which is a slightly modified version of the OMG’s
Object Constraint Language. The first constraint role is to
check whether an architecture conforms to the pipeline ar-
chitectural style [24]. The constraint is here applied in the
context of (i. e. applies to) a component named ACS (Access
Control System).

(01) -- Each subcomponent’s port is either input

(02) -- or output

(03) context ACS:CompositeComponent inv:

(04) ACS.subComponent.port->forAll(p:Port |

(05) (p.kind=’Input’) or (p.kind = ’Output’))

(06) and

(07) -- Each connector should define two roles,

(08) a sink and a source role

(09) ACS.configuration.binding.role.connector->asSet()
(10) ->forAll(con:Connector | (con.role->size() = 2)

(11) and ((con.role->exists(r:Role | (r.kind = ’Source’)

(12) or (r.kind = ’Sink’))))

(13) and

(14) -- Each connector should bind two components

(15) -- (input bound to sink and output to source)
(16) ACS.configuration.binding.role.connector->asSet ()
(17) ->forAll(con:Connector|con.role->forAll(r:Role |
(18) ACS.subComponent ->exists(com:Component |com

(19) .port->exists(p:Port|(r in ACS.configuration.binding)

(20) and ((p.kind = ’Input’) and (r.kind = ’Sink’))
(21) or ((p.kind = ’Output’) and (r.kind
(22) and

(23) -- The graph representing the configuration
(24) -- should be connected

(25) ACS.configuration.isConnected

(26) and
(27) -- The graph should contain a number of arcs
(28) -- equal to the number of vertices - 1

(29) ACS.configuration.binding.role.connector->asSet()
(30) ->size() = ACS.subComponent->size()-1

(31) and

(32) -- The graph should represent a list

(33) ACS.subComponent->forAll(com:Component |

(34) (com.port->size() = 2)

(35) and (com.port->exists(p:Port|p.kind = ’Input’))
(36) and (com.port->exists(p:Portl|p.kind = ’Output’)))

We can firstly observe in this example that the constraint is
composed of many “independent” sub-parts that are assem-
bled together via the and logical operator (Lines 06, 13, 22,
26 and 31). All the subparts assembled together represent
the pipeline architecture style; but it is easy to observe that
some of these subparts have their own consistent semantics.
For example, the sub-part in lines 23 to 25 checks that the
set of all ACS subcomponents bindings is a connected graph
and the sub-part in Lines 32 to 36 checks that this graph is
represented by a list. These two sub-parts could meaning-
fully be reused independently from the others either alone or
within another more global constraint to check whether an
architecture configuration is organized as a connected graph
or as a list. They represent reusable entities that can be
named and placed on a repository in order to be checked
out by developers of new architecture descriptions to for-
malize their design choices.

’Source’))))))

On this first example, we can secondly observe that the con-
straint is expressed in a context-independent way : it sim-
ply checks that “all” ACS sub-components, whatever their
number or their names and without referencing them ex-
plicitly, are “pipelined”. This is not always the case. In
many situations, constraints have to make explicit refer-
ences to some attributes, sub-parts or sub-components of
the architecture they control. The example of the listing
below, also written in ACL, illustrates that case; it presents
a constraint that formalizes the facade architecture pat-
tern -with analogy to fagade objects [9]-. The context is
the composite component named ACS. This ACL expres-
sion states that the DataManagement provided port of ACS
must be bound internally to one and only one other port
(Line 06). The latter port corresponds to the provided port
of DataAdminRetrieval component (Line 09). This sub-
component represents the facade element in the architecture.
All communications from clients to ACS data management
services transit by this component.

(01) context ACS:CompositeComponent inv:

(02) let boundToDataManagement:Bag=ACS.port

(03) ->select(p:Portl|p.interface.kind = ’Provided’
(04) and p.name = ’DataManagement’).binding

(05) in

(06) ((boundToDataManagement->size() = 1)

(07) and (boundToDataManagement.interface

(08) ->select(i:Interface|i.kind = ’Provided’).port

(09) .component.name->includes(’DataAdminRetrieval’)))

We can observe that, in contrast to the example of the
first listing, this constraint contains identifiers that refer-
ence specific elements in the architecture description (the
subcomponent DataAdminRetrieval in Line 09 and the port
DataManagement in Line 04). This constraint is therefore not
reusable in other contexts without editing. To give it a syn-
tactic signature and to reference the architecture elements
as parameters in this signature would clearly make this con-
straint more generic and reusable in other contexts.

ACL and existing languages or tools (see related work sec-
tion) for expressing architectural constraints do not give yet
optimal answers to the issues we have identified above. The
proposal described in the following sections aims at propos-
ing a better solution to reach these goals.

3. GENERAL APPROACH

The examples and the discussion of the previous section
bring to the fore the following challenges:

e Reusability: constraints should be specified as reusable
named entities easily referenced from repositories.

e Customizability: to be applicable in different con-
texts, architecture constraints should be parameter-
ized by any elements that constitute architectures. The
constraint in the second example should thus have
two parameters: one of type Port and one of type
Component.

e Composability: the first example showed that com-
plex constraints are beneficially built as combination

of other ones. We argue, more generally, that all archi-
tecture constraints could be embedded in components
that export services for constraint checking and for
composability.

In order to answer these challenges, we propose an approach
where constraints are embedded in a special kind of software
components (see the following section for details about their
specification). These components provide services via ports
for checking these constraints at design time. These com-
ponents do not exist at implementation or execution time.
They are assembled with business (functional?) components
which require the checking of constraints on their internal
architecture description. In the proposed approach, each
time the architect wants to check a given constraint on a
business component, she/he should specify a new kind of
required (non-functional or constraint) port that is removed
when the business component is implemented. This required
port is then connected to a provided port of a constraint
component. The architect can add multiple required con-
straint ports if she/he needs to check several constraints on
the internal architecture of her/his business components.

A provided administration port is integrated automatically
to business components which have required constraint ports.
This port allows to check all the constraints that are con-
nected to these components. Each business component that
has an administration port is instantiated at design time
for using its administration port and thus for checking the
constraints that are associated to the component. We chose
to use a port for the checking of non-functional properties
(structural constraints) of a component in order to ensure
consistency of using components in the design stage.

For the first example we have presented in the previous sec-
tion, we would obtain, using our approach, a set of constraint-
components representing the different parts of this constraint
(see Figure 1). Each component provides a single port for
checking a part of the constraint through a service. On the
other hand, the business components contain one required
port by a non-functional property needed. To meet the
non-functional property (pipeline) of the business compo-
nent from our example, all obtained constraint components
should be organized in a composite constraint component,
which will provide an interface to check that the component
conforms to the pipeline architecture style. Thus, binding
a required port of a business component to a provided port
of constraint component means that the latter is responsi-
ble for checking the validity of the concerned non-functional
property. As for the provided administration port, in busi-
ness components, the ports requiring constraint components
exist only at design-time.

The services provided by constraint components can be para-
metrized by some architectural elements used in the con-
straint. This is illustrated in the bottom of Figure 1. In
this way constraints become more generic and can be reused
in different contexts (with different business components).
Besides this, constraints become a modeling element that
can be connected together to build more complex constraint

2Constraint components can be considered as non-functional
components here.

Unstructured Textual Constraints -------

(01) -- Each subcomponent’s port is either input
(02) -- or output

(03) context ACS:CompositeComponent inv:
(04) ACS.subComponent.port->forAll(p:Port |
(05) (p.kind="Input’) or (p.kind = 'Output'))

(06) and
(07) -- Each connector should define two roles,

(08) a sink and a source role

(09) ACS.configuration.binding.role.connector->asSet()
(10) ->forAll(con:Connector | (con.role->size() = 2)

(11) and ((con.role->exists(r:Role | (r.kind = 'Source’)
(12) or (rkind = 'Sink"))))

(14) -- Each connector should bind two components
(15) -- (input bound to sink and output to source)

(16) ACS.configuration.binding.role.connector->asSet()
(17) ->forAll(con:Connector|con.role->forAll(r:Role |

(18) ACS.subComponent ->exists(com:Component|com
(19) .port->exists(p:Port|(r in ACS.configuration.binding)

v boolean arePortsOfKind(PortKind[] kinds)

boolean areRolesOfKind(RoleKind[] kinds),

“13apnd ——

————————————— » Constraint Components

component

/

constraint
a:A

constraint
b:B

*********************** > | .«—— binding

boolean inToSinkOutToSource() -
constraint

c:C

(20) and ((p.kind = Input’) and (r.kind = 'Sink’))
(21) or ((p.kind = "Output’) and (r.kind = "Source’))))))

(22yand

(01) context ACS:CompositéComponent inv:
(02) let boundToDataManagement:Bag=ACS.port

)
(03) ->select(p:Port|p.interface.kind = 'Provided’
(04) and p.name *.binding
(05) in
(06) ((boundToDataManagement->size() = 1)
(07) and (boundToDataManagement.interface
)
)

(08) ->select(i:Interfaceli.kind = 'Provided"). ort
(09) .component.name->includes)

parameterization
|
\J
boolean isFacade(aPort:Port,aSubComp:Component) -
4 constraint
parameterization ‘ x:X

componentization

Figure 1: Component-based Specification of Constraints

components (as illustrated through the binding at the right
of Figure 1).

4. ARCHITECTURE CONSTRAINTS AS
COMPONENTS

In this section, we present a new constraint component model
as a means to describe customizable, reusable and compos-
able architectural constraints. Our solution is embedded
into an operational software suite (CLACS-SCL) made of an
Architecture Description Language (ADL) called CLACS,
and of a component-oriented programming language named
SCL [8]. CLACS is as a modeling alternative for SCL. SCL
is a pure component-oriented language in which components
are first-class entities, connectors and primitive types are
components too, and argument passing is done using an orig-
inal component connection mechanism [8]. Using that suite,
component-based application architectures can be graphi-
cally composed in CLACS and deployed in SCL for execu-
tion; architecture constraints can be defined, composed and
executed in CLACS. Building that suite has been motivated
by the following considerations:

1. The SCL language is based on a generic component
metamodel. This allows us to implement our solution
in any specific component model.

2. CLACS allows SCL code generation, which is very
helpful to build executable components, in order to
experiment our approach.

4.1 CLACS Component Metamodel

In order to not add (yet-)other constructs for constraint-
component modeling, we chose to use the same constructs
as for business component modeling. SCL Business com-
ponents and CLACS constraint components share most of
their characteristics. Figure 2 shows a metamodel of CLACS
constraint components and SCL business components.

In CLACS and SCL, a component is an instance of a compo-
nent descriptor. A component has ports, which are defined
by three properties: i) a direction (required or provided), ii)
a visibility (internal: the port is private to the component
that owns it and can only be bound internally for example to
delegate to an inner component, or external: the port can be
bound to other external components), and iii) an interface
which specifies the port type. An Interface is either of “busi-
ness” kind or of “constraint checking” kind. Interfaces are a
collection of signatures and a signature describes a service,
its formal parameters and its return type. Standard bind-
ings (or connections) link ports of components of the same
hierarchical level. As in UML, delegation bindings link com-
ponents to their subcomponents. More sophisticated bind-
ings can be defined using connector components that can
be seen as adaptors. A connector receives service invoca-
tions through its source port and transmits them through
its target ports by executing the glue or adaptation code.

The differences between business and constraint components
are expressed via the following elements (see again Figure 2):
the kind meta-attribute in ComponentDescriptor, Interface
and Binding meta-classes. Thus, the kind meta-attribute
takes the value constraint for constraint components, and

definedBy >

Componentinstance < enumeration »
ComponentKind
+name)
+ description + busmes_s
+ constraint
Binding e Port I ComponentDescriptor —_

0.1 « enumeration »
+glue target | + name + name InterfaceKind
+ description + direction: Direction + description + business
+ kind: BindingKind 0.1 + visibility: Visibility + kind: ComponentKind + constraintChecking

definedBy
AssemblyBinding " DelegationBinding v

| |

Argument Interface
+name
+ value + description
+ kind: InterfaceKind
definedBy
V \
Service
Parameter
+name * +name
+ type + returnedType
+ description

* I\ subComponent

—
« enumeration »
Visibility
+ internal
+ external

—
« enumeration »
Direction
+ required
+ provided

—
« enumeration »

Body BindingKind

0..1] *+ language
+ description

+ functional
+ constraintChecking

Figure 2: CLACS Metamodel

business for the other components. In addition, the imple-
mentation of services is different from a constraint compo-
nent to a business one. In the latter case, services represent
traditional operations with a body containing the SCL code
implementing the business logic. In constraint-components,
the body contains the ACL code of the constraint to be
checked. Bindings between components can be of kind “func-
tional” if they connect business components, or of kind “con-
straint checking” if they connect a business component to a
constraint component or if they connect two constraint com-
ponents together.

4.2 Specifying Constraint-Components

When designing a software architecture, the developer can
connect constraint-components to business ones. The bind-
ing used to connect these two model elements makes it pos-
sible to validate the architecture design according to the
constraints embedded in the constraint-component. This
sub-section proposes an example of a constraint-component
definition and the following sub-section an example of such
a connection.

Figure 3 depicts the definition of a simple constraint-component

descriptor. This component allows to check the Facade pat-
tern presented in the previous section. This descriptor can
be instantiated in a given architecture description. Each
extitFacade checker, instance of this descriptor, owns one
provided port named Checking that exports a constraint
checking service having the following signature : boolean
isFacade(aPort:Port,aSubComp:Component). Each extit-
Facade checker can then be connected, through that check-
ing port, to any business component requiring this constraint
service.

When invoked within our modeling environment, a constraint-
component provided service returns true if the architecture

Checking:
ICheckingFacadej

constraint
FacadeChecker

interface ICheckingFacade {
boolean isFacade(aPort:Port,aSubComp:Component);
}

ACL implementation of the isFacade service:

let bindingsToFacadePort:Bag=context.port
->select(p:Port|p.interface kind = 'Provided"

and p.name = aPort.name).binding

in

((bindingsToFacadePort->size() = 1)

and (bindingsToFacadePort.interface
->select(i:Interfaceli.kind = 'Provided').port.component

->includes(c | c.name = aSubComp.name))) /

Example of a primitive Constraint-

Figure 3:
Component

of the business component to which it is connected fulfills the
constraint. When such a connection is established and a con-
straint evaluated, the constraint expressions interpretor au-
tomatically binds the context identifier, used in constraints
expressions (see again Figure 3), to the business-component
to which the constraint will be applied. When compos-
ite constraint-components are built in which a constraint-
component is connected to another one, a transitive clo-
sure is computed on that link until a business-component is
found.

4.3 Connecting Constraints to Business Com-

ponents

Figure 4 presents two connected sub-components: a Pass-

wordGenerator named pg and a FacadeChecker (as defined
in the previous section) named fc. A PasswordGenerator
uses random numbers to automatically generate passwords.
It has a (business) provided port Generation and a (busi-
ness) required port (Randomizing). At design stage, it also
holds another provided port (ConstraintChecking) and an-

The fagade component

Generatiol pg: PasswordGenerator

Randomizing

Checking,

constraint
fc: FacadeChecker

Constraint
Checking

Checking

Figure 4: Example of a Constraint-Component As-
sembled with a Business One

other required (constraint) port (Checking). Through the
latter it is connected to the Checking provided port of the
FacadeChecker constraint component. Both ports are drawn
in gray in the figure, to indicate their temporary nature (ex-
ist only at design-time) comparatively to the other business
ports.

The semantics of the constraint checking binding is that the
PasswordGenerator designer wants to check that the inter-
nal organization of this component conforms to the facade
architecture pattern.

The binding in the graphical representation in Figure 4 is
serialized as shown in the code of the listing below.

(01) <cl:AssemblyBinding glue="false" kind="constraintChecking">

(02) <cl:Source>fc.Checking</cl:Source>
(03) <cl:Target>pg.Checking</cl:Target>
(04) <cl:UsedService name="isFacade">
(05) <cl:Arg>aa</cl:Arg>

(06) <cl:Arg>a</cl:Arg>

(07) </cl:UsedService>

(08) </cl:AssemblyBinding>

Note how are passed the arguments for the isFacade service
of the FacadeChecker, the port aa and the component a
(Lines 05 and 06 in the following code). We can observe in
Figure 4 that component a:A in the modeled architecture
plays the role of a extitFacade (the only sub-component of
PasswordGenerator that is connected by its provided port
to the external ports of its encompassing component).

4.4 Specifying Constraint-Component Require-

ments

Before detailing in the following subsection how constraint-
components can be assembled, we expose in Figure 5 a
constraint-component (InputSinkOutputSourceRestrictor)
with a required port. This component represents the check-
ing of a part of the constraint that formalizes the Pipleine ar-
chitecture style. In this component descriptor there are two
interface specifications. The first is named IInSinkOutSrc-
Restriction and represents the type of the provided port,
and the second (put in the dashed box in the figure) is named
IPortsRestriction specifies a type for the required port
I0_PortRestriction.

The required port is used in the body of the constraint (see
again Figure 5) to invoke the service arePorts0fKind. We
can observe in Figure 5 (underlined expression) how the ser-

InSiOutSoBindingRestriction:
1InSinkOutSrcRestriction

10_PortRestriction:
IPortsRestriction

constramt
InputSinkOutputSourceRestrictor
interface IInSinkOutSrcRestriction {
boolean inToSinkOutToSource();

| interface IPortsRestriction { |
| boolean arePortsOfKind(PortKind[] kinds); i
I I
! |

ACL implementation of the inToSinkOutToSource():
10_PortRestriction.arePortsOfKind({'Input’,'Output"
and
context.configuration.binding.role.connector->asSet()-
>forAll(con:Connector|

con.role->forAll(r:Role | context.subComponent
->exists(com:Component | com.port

->exists(p:Port|(r in context.configuration.binding)

and ((p.kind ="Input’) and (r.kind = ’Sink’)) or ((p.kind =
\ ’Output’) and (r.kind = ’Source’)))))) /

Figure 5: Example of a Constraint-Component with
a Required Port

vice invocation is associated with the remaining of the con-
straint provided by the constraint-component InputSinkOut-
putSourceRestrictor using an and operator.

4.5 Composing Constraint-Components

A constraint-component can be assembled with (or bound
to) other constraint-components to build more complex ones.
As in UML and many other component models, bindings
can be either of type Delegation or Assembly. Delegation
bindings of kind “functional” are used exclusively between
business components (this is not discussed in this section).
A delegation binding of kind “constraintChecking” is used
for building a composite constraint-component starting from
other constraint-components. This binding allows the com-
posite to delegate the checking of part of the architecture
constraint to its subcomponents. Figure 6 illustrates such a
composition. The composite component (x:X in the Figure)
asks its subcomponents a:A and c:C, which are connected to
it by using internal required ports (see the left part of Fig-
ure 6), to make a constraint checking. The checking results
are used in the service provided by the port xx of the com-
posite component. These can be combined by an and, an or
or any other logical operator in the provided service specifi-
cation. In this service specification we can invoke the service
(serviceA()) provided by the port aa of component a:A and
the service (serviceC()) provided by the port cc of compo-
nent c:C in the same way as stated in the previous subsec-
tion: aa.serviceA() and cc.serviceC(). Arguments are
passed in the binding specification as indicated previously.
A delegation binding can link a required external port of a
subcomponent to a required external port of its composite
component (see the right side of Figure 6). A constraint
checking in this case is expected from another constraint-
component connected with the composite component.

Assembly bindings link a required port of a given component
to the provided port of another component of the same hier-
archical level (for example, the components a:A and b:B). In
Figure 6, we defined two assembly bindings, one between a: A
and b:B, and the other between a:A and d:D. In the same

constraint
xx x:X Yy
22" constraint bb bb constraint 0
aA b:B
aa dd
cc
cc constraint dd constraint
c.C d:D

Figure 6: Example of a Constraint-Component
Composition

way as for delegation bindings, it is in the specification of
the service provided by the component a:A that we define
how the results returned by the other components (b:B and
d:D) are combined. In this example, we consider that a:A
specifies its own constraint (represented by A) which is com-
posed with the constraints provided by B and D. Here, x:X
specifies only a composition of other constraint-components.
It states that the constraint provided by a:A must be re-
spected and the constraint implemented by c¢:C must not.
This is equivalent to: A and (not C).

S. CONSTRAINT-COMPONENTS BY EXAM-

PLE

We show in this section how our approach can be applied.
We demonstrate how constraint-components can be used to
model the example of an architecture constraint introduced
in Section 2. Figure 7 illustrates an assembly of constraint-
components to build a “Pipeline Constraint Checker”: a
component able to check whether an architecture conforms
to the pipeline architectural style.

This assembly contains six components which represent the
different parts of the constraint. These components are con-
nected together using different kinds of bindings. They are
encapsulated in a single composite component Pipeline-
ConstraintChecker. This composite component delegates
first the checking to the component InputSinkQutput-
SourceRestrictor. It then asks the other three components
to check the other parts of the constraint.

The constraint component InputSinkOutputSourceRestrictor

checks first if the ports of the business component (con-
nected to the PipelineConstraintChecker) are of some spe-
cific kind (Input and Output) by requesting the component
PortsKindRestrictor to check this part of the constraint. A
binding is thus defined between InputSinkOutputSource-
Restrictor and PortsKindRestrictor through the ports
I0_PortRestriction. This is an assembly binding, which is
represented by the following description:

(01) <cl:AssemblyBinding glue="false" kind="constraintChecking">
(02) <cl:Source>isisosbr.I0_PortRestriction</cl:Source>

(03) <cl:Target>iopr.I0_PortRestriction</cl:Target>

(04) <cl:UsedService name="arePorts0fKind">

(05) <cl:Arg>Input</cl:Arg>

(06) <cl:Arg>Output</cl:Arg>

(07) </cl:UsedService>

(08) </cl:AssemblyBinding>

As we can observe in this listing (lines 5 and 6), parameters
of the arePorts0fKind () service are initialized by the two
values Input and Output. In this example, we need to check
if ports are only of these two kind®.

In the same way, a binding is defined between InputSinkQOut-
putSourceRestrictor and RolesKindRestrictor in order
to ask the latter component to check if the roles of connec-
tors of the business component (connected to this constraint
component) are of kind Source and Sink. The passed ar-
guments to the service areRoles0fKind () are thus Source
and Sink*.

Then, the constraint component InputSinkOutputSource-
Restrictor ends the execution of its provided service by
checking the constraint stating that the input port of all sub-
components of the business component should be connected
to sink roles and output ports to source roles. This is shown
in the component at the high left corner of Figure 7. We
note the presence in the implementation of the service pro-
vided by this component, the invocations to the services pro-
vided by PortsKindRestrictor and RolesKindRestrictor
(see the underlined expressions).

The delegation bindings are defined between the composite
component PipelineConstraintChecker and its subcompo-
nents. In Figure 7, there are four delegation bindings. As
the constraint provided by PipelineChecker combines the
different subcomponents with an and logical operator, all
the constraints have to be checked for a true value.

As described, the constraint component, presented in this
section, can be reused by any other composite component to
check that its internal structure conforms with the pipeline
architectural style.

6. TOOL SUPPORT FOR CONSTRAINT COM-

PONENT MODELING & CHECKING

We have developed an operational software suite, called CLACS-

SCL, together with an Eclipse plugin which provides the
following functionalities:

1. modeling architectures of business components in CLACS;

2. checking the architectural validity of these descrip-
tions;

3. modeling constraint-components in CLACS;
4. checking constraint-components;

5. generating SCL code starting from these descriptions
and loading it in its running environment;

In order to implement these functionalities, we have used
some existing Eclipse plugins, which are: the EMF[5] (Eclipse
Modeling Framework) module which allowed us to define an

3In other contexts, we may need to check if they are of kind
InputOutput, for example.
4With other business components, the parameters of this
constraint can be initialized by other values, like Trigger
and Listener for example.

ecker
InSiOutSoBindingRestriction:
lInSinkOutSrcRestriction

Pipelin,

constraint
isisosbr: InputSinkOutputSourceRestrictor

nsi ‘ interface lInSinkOutSrcRestriction {

boolean inToSinkOutToSource();

|
jinterface IPortsRestriction {]

I
} boolean arePortsOfKind(PortKind[] kinds);s).‘
N i

OfKind(...

10_Port

\IPonsReslriction

10_PortRestriction:
IPortsRestriction

constraint

P&)elineConstraintChecker
&

striction:

constraint
iopr: PortsKindRestrictor

boolean arePortsOfKind(
PortKind([] kinds);

interface IPortsRestriction {

constraint

sosirr: RolesKindRestrictor

)

boolean areRolesOfKind(
RoleKind[] kinds);
}

interface IRolesKindRestriction {

arePortsOfKind() service:
context.subComponent.port
->forAll(p|(p.kind=kinds[0])
or (p.kind=kinds[1])

ACL implementation of the

ACL implementation of the
areRolesOfKind() service:

.connector->AsSet()
->forAll(con:Connector|

and
context.configuration.binding.role.connector-
>asSet()->forAll(con:Connectorl
con.role->forAll(r:Role | context.

subCompot i

| com.port->exists(p:Portl(r in
context.configuration.binding) and ...

ConnectedGraph: IConnectedGraph

0SiRo

iction:

|RolesKindRestriction

(con.rol ize() = 2) and

((con.role kind = kinds[0]) or

context.configuration.binding.role

(con.role kind = kinds[1])))
SoSiRolesRestriction:

IRolesKindRestriction

csNumRestrictor: IArcsCounter

ListGraph: IListGraph
ListGraph:
IListGraph

constraint
listGraph: ListGraphConstrainer

interface IListGraph {
boolean isAList();

ACL implementation of the
isAList() service:
context.subComponent
->forAll(com:Component |
(com.port->size() = 2) and

ArcsNumRestrictor:
IArcsCounter

constraint
arcRestrictor: ArcsCountRestrictor

interface IArcsCounter {
boolean restrictNumAres();

ACL implementation of the
restrictNumArcs() service:
context.configuration.binding.role
.connector->asSet()->size() =
context.subComponent->size()-1

ConnectedGraph:
IConnectedGraph

constraint
cGC: C

raphChecker

interface IConnectedGraph {
boolean isConnectedGraph();

ACL implementation of the
isConnectedGraph() service:
context.configuration
.isConnected

(com.port->exists(p:Port |

p.kind =Input’)) and
(com.port->exists(p:Port |
p.kind = "Output’)))

N~/

-

J

Figure 7: Example of a Constraint-Component Assembly

Ecore metamodel of CLACS to generate an editor, and the
GMF6] (Graphical Modeling Framework) plugin to give a
graphical dimension to the editor. By parsing the files gen-
erated for a given architecture description, this editor allows
an architect to check (item 2 above): 1) if the referenced in-
terfaces in port definitions exist (in the same file or in an
external one imported in the same directory), ii) if the ref-
erenced component descriptors in component instances ex-
ist (in the same file or in an external one imported in the
same directory); and iii) if the specified bindings link exist-
ing ports of existing component instances.

At architecture design stage, the interpretation of constraint-
components is built upon the Eclipse OCL interpreter plu-
gin[7]. Based on the XML-based CLACS architecture de-
scriptions, this interpretation returns the (boolean) evalu-
ation result of the architecture constraints encapsulated in
constraint-components.

For more information about this tool, the reader is invited to
visit the following website: http://code.google.com/p/clacs/

7. RELATED WORK

Different existing ADLs embed constraint languages. Acme [10]

and Wright [3] are two representative examples of them.
Wright is an ADL used to formalize architecture descriptions
and more particularly connector specifications. This lan-
guage provides the necessary language constructs for defin-
ing architecture constraints. The following example states
in Wright that the architecture description should have a
star topology.

Jeenter : Components e

Ve : Connectors e 3r : Role;p : Port | ((center,p), (¢,T)) €
Attachments

AVc : Components e Jen : Connectors;r : Role;p : Port

| ((¢,p), (cn,r)) € Attachments

The first predicate indicates that there should exist one com-
ponent (center) which is attached to all connectors of the
architecture. The second predicate states that all compo-
nents should be attached to a connector. This global con-
straint checks that every component in the architecture is
connected to a single component representing the star’s cen-
ter.

Acme integrates Armani [16], a first-order predicate lan-

guage which allows the description of architecture constraints:
invariants and heuristics. Invariants should not be violated,

while heuristics should be observed but can be selectively

violated. The following example shows an invariant and a

heuristic in Armani.

Invariant Forall ci1,c2
Exists conn : connector in sys.Connectors |
Attached(cl,conn) and Attached(c2,conn);

Heuristic Size(Ports) <= 5;

The invariant states that all components should be con-
nected together. The set of bindings forms thus a connected
graph. The heuristic indicates that the total number of ports
should be less than or equal to 5.

component in sys.Components |

As we can observe in the previous examples, constraints
in Acme and Wright do not represent first-class entities
for composition. Assembling Armani or Wright constraints
is not straightforward, because there are no language con-
structs provided for this goal. In fact, these languages were
not originally designed for this aim. In addition, the expres-
sions presented above are generic examples of constraints.
They do not apply to a specific context of a given architec-
ture description. They represent fixed expressions, which
cannot be parameterized to reference a part of the architec-
ture description (with identified components). As presented
in the previous sections, CLACS implements a customizabil-
ity feature at the architecture constraint description level,
which allows designers to define reusable constraints. Being
embedded in components, these constraints can be easily
assembled to extend existing architecture constraint specifi-
cations.

Design pattern schemas [11] and component specification
patterns [2] are descriptions which allow the generation of
OCL constraints in a given context (for class models in the
first paper and for software component specifications in the
second). These descriptions define templates of OCL con-
straints with some parameters which are fixed during the
instantiation of the templates. As in our work, constraints
are parameterized with model elements and are used as li-
brary modules. However, model elements (parameters) in
our case are architectural elements and constraints target
structural descriptions, whereas, in [11], model elements are
UML class entities and in [1] constraints target the func-
tional (behavioral) aspect of components.

Our proposal should also be compared with existing works
on Quality of Service (QoS) specification and composition in
the context of service-oriented architectures. [23] describes
RBSLA, a language for describing service level agreements
(SLAs). This language is based on RuleML® and allows the
definition of predicates on the required QoS of a given ser-
vice. As architectural constraints in CLACS, SLAs in this
language formalize some descriptions that are usually spec-
ified as text documents. They can be composed to build
more complex expressions in predicate logic. In addition,
SLAs are saved as XML documents in the same way as
our constraint-components are serialized in XMI format [20].

Other similar interesting languages include SLAng® and IBM’s

WSLA". In SLAng, QoS constraints are defined in OCL.

SLAng constraints apply on service models defined in EMOF [17]

and limit the possible behaviors of services. In WSLA, QoS
contracts can be specified as XML documents. The focus
in this language is on the automatic monitoring of SLAs.
In the same vein, SCA (Software Component Architecture)
specification [22] proposed the SCA Policy Framework [21]
as a way to describe constraints and QoS expectations from
component designs. These are called policies and specify
conditions under which service components run and inter-
act. Originally, the constraint language presented in our
paper has been designed to document architectural choices
that answer to component’s quality requirements [26]. Simi-

®The Rule Markup Initiative: http://ruleml.org/

5The SLAng SLA Language:
http://uclslang.sourceforge.net/
"Web Service Level Agreements Project:

http://www.research.ibm.com/wsla/

larly, in RBSLA, WSLA, SLAng and the SCA specification,
constraints are related to services’ quality. Nevertheless, the
kinds of quality attributes addressed in these languages are
not the same. QoS deals with runtime attributes (availabil-
ity, confidentiality and performance, for example), however
in our work we address static attributes (such as for ex-
ample the portability attribute for the facade pattern and
the maintainability attribute for the pipeline style of the
examples of Section 2). In addition, these two kinds of non-
functional documentation (SLAs and policies from one side
and component-constraints from the other side) have not the
same uses. SLAs and policies are contracts between service
requestors and service providers. Constraint-components
are contracts between component architects and component
evolvers [26].

8. CONCLUSION AND FUTURE WORK
According to the OMG’s Reusable Assets Specification [18],
“reusable assets” are artifacts that provide a solution to a
recurrent problem in a given context. In this paper, we pre-
sented architecture constraints as recurrent non-functional
solutions to recurrent documentation problems, to address
the customizability and reusability challenges presented in
the introduction. Architecture constraints are “white-box”
assets that can be customized for a given application con-
text. “Variability points” represent the architectural ele-
ments to be constrained. “Rules for usage” represent com-
ponent assembly principles, which are based in this work
on binding construction and thus on traditional interface
matching.

Sometimes, defined manually (from scratch) this kind of ar-
chitectural decisions’ documentation is complex, error-prone
and time-consuming. Having a means to define such docu-
mentations by hierarchical composition of constraints is ben-
eficial for two accounts: First, by decomposing the models of
architecture constraints in several small interfaced documen-
tation parts, a common repository of reusable (parametrized)
assets is provided for software architects; and second, this is
a logical way of doing in the continuum of artifact develop-
ment in component-based software engineering®. The devel-
opment process obtained in this work starts with component
architecture design and documentation with CLACS, and
ends with component implementation and execution with
SCL and its runtime environment.

Our aim in the future is to build a repository of classified ar-
chitecture constraints, and make it available for component-
based software architects. At the conceptual level, we plan
to enrich constraint-components with the other parts of ar-
chitecture decision documentation. This will help to in-
crementally build complex non-functional documentations
by composition and thus get the advantages of component-
based software engineering. In addition, we are investigat-
ing the proposition of a model of introspection components.
Introspection capabilities, such as getting the list of sub-
components or the ports of the business components, can be
generated from the ADL’s metamodel. These components
can be customized by developers by adding checking services

8In the same spirit, the Eiffel language has been proposed
for, at the same time, programming applications’ business-
logic and formalizing functional constraints (contract pro-
gramming with assertions).

for architecture constraints, as explained in this paper. This
model will be enriched with some reflection capabilities, such
as adding new ports or bindings to support dynamic archi-
tecture reconfiguration.

At the tool level, we plan in the near future to work on the
creation of a component repository for constraint-components.
This can be achieved by extracting information provided
in CLACS descriptions to build some high-level documents
which could be processed by existing indexation techniques
in order to build access points for constraint-components.

9. REFERENCES

[1] J. Ackermann. Formal description of ocl specification
patterns for behavioral specification of software
components. In MODELS Workshop on Tool Support
for OCL and Related Formalisms - Needs and Trends,
2005.

[2] J. Ackermann and K. Turowski. A library of ocl
specification patterns for behavioral specification of
software components. In Proc. of CAiSE’06, pages
255-269. Springer-Verlag, 2006.

[3] R. Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, USA, May 1997.

[4] Eclipse. Java emitter templates (jet). Eclipse Board
Web Site :
http://www.eclipse.org/modeling/m2t/?project=jet#jet

[5] Eclipse. Eclipse modeling framework (emf). Eclipse
Board Web Site :
http://www.eclipse.org/modeling/emf/

[6] Eclipse. Graphical modeling framework (gmf). Eclipse
Board Web Site :
http://www.eclipse.org/modeling/gmf/

[7] Eclipse. Object constraint language plugin. Eclipse
Board Web Site :
http://www.eclipse.org/modeling/mdt/

[8] L. Fabresse, C. Dony, and M. Huchard. Foundations of
a Simple and Unified Component-Oriented Language.
Journal of Computer Languages, Systems &
Structures, 34/2-3:130-149, 2008.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Sofware. Addison-Wesley Professional
Computing Series. Addison Wesley Longman, Inc.,
1995.

[10] D. Garlan, R. T. Monroe, and D. Wile. Acme:
Architectural description of component-based systems.
In G. T. Leavens and M. Sitaraman, editors,
Foundations of Component-Based Systems, pages
47-68. Cambridge Univ. Press, 2000.

[11] M. Giese and D. Larsson. Simplifying transformations
of ocl constraints. In Proc. of MODELS’05), Montego
Bay, Jamaica, October 2005.

[12] A. Jansen, P. Avgeriou, and J. S. van der Ven.
Enriching software architecture documentation.
Journal of Systems and Software, 82(8):1232-1248,
20009.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

27]

28]

A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Proc. of
WICSA’05, 2005.

P. Kruchten. An ontology of architectural design
decisions in software intensive systems. In Proceedings
of the 2nd Groningen Workshop Software Variability,
pages 54—-61, 2004.

P. Kruchten, R. Capilla, and J. C. Duenas. The
decision view’s role in software architecture practice.
IEEE Software, 26(2):36-42, 2009.

R. T. Monroe. Capturing software architecture design
expertise with armani. Technical report, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, 2001.

OMG. Meta object facility (mof) 2.0 core specification.
OMG’s Website: http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-15.pdf

OMG. Reusable asset specification, v2.2. OMG’s
Website:
http://www.omg.org/cgi-bin/doc?formal /2005-11-02
OMG. Object constraint language specification,
version 2.0. OMG’s Website:
http://www.omg.org/cgi-bin/apps/doc?formal /06-05-
01.pdf

OMG. Meta object facility(mof) 2.0 xmi mapping
specification, version 2.1.1. OMG’s Website:
http://www.omg.org/cgi-bin/doc?formal /07-12-01.pdf
OSOA. Open soa. sca policy framework v1.00.
http://osoa.org/display /Main/Service+Component
+Architecture+Specifications

OSOA. Open soa. service component architecture
specifications.

http://osoa.org/display /Main/Service+Component
+Architecture+Specifications

A. Paschke. Rbsla a declarative rule-based service
level agreement language based on ruleml. In Proc. of
CIMCA-TAWTIC’06, pages 308-314. IEEE CS, 2005.
M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

A. Tang, M. A. Babar, I. Gorton, and J. Han. A
survey of the use and documentation of architecture
design rationale. In Proc. of WICSA’05, Pittsburgh,
Pennsylvania, USA, November 2005. IEEE CS.

C. Tibermacine, R. Fleurquin, and S. Sadou.
On-demand quality-oriented assistance in
component-based software evolution. In Proc. of
CBSE’06, pages 294-309, Vasteras, Sweden, June
2006. Springer LNCS.

C. Tibermacine, R. Fleurquin, and S. Sadou. A family
of languages for architecture constraint specification.
In Journal of Systems and Software (JSS), Elsevier,
2010.

J. Tyree and A. Akerman. Architecture decisions:
Demystifying architecture. IEEE Software,
22(2):19-27, March/April 2005.

