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Abstract

Since years, multiple researches studied component-based software development. Nevertheless, most component-
based software systems do not use components at implementation stage. We believe that one of the main causes is a
lack of support for Component-Oriented Programming (COP). Indeed, most of proposed component models such as
Unified Modeling Language (UML), Corba Component Model (CCM), Enterprise JavaBeans (EJB) are only available
at design time. The fact that implementation relies on object-oriented languages which prevent developers from
fully switching to COP. In this paper, we identify five important requirements (decoupling, adaptability, unplanned
connections, encapsulation and uniformity) for COP based on an analysis of the state of the art and the limitations of
existing work. We propose an extended version of the SCL component language that fulfills these requirements. A
prototype of SCL and a concrete experiment validate this proposal.
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1. Introduction

For decades, researches in component-based software
development (CBSD) [McI68, Szy02] promote compo-
nents off-the-shelf (COSTS) as a promising post-object
paradigm. Inspired by the electronics industry, the goal
is to assemble components – which are reusable soft-
ware’s pieces – to create applications. CBSD promotes
standardisation for better reusability. It also rationalises
software engineering by clearly stating roles and activi-
ties. Considering the implementation stage, component-
oriented programming (COP) is at least twofold (cf.
Figure 1): (i) programming reusable components (de-
sign for reuse achieved by a component developer) and
(ii) programming an application by reusing, or con-
necting, or composing components (design by reuse
achieved by an application developer) [Ous05].

Previous work [LW05, CSVC10] have introduced or
adapted concepts such as component, port, architecture,
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Figure 1: The Component-Oriented Programming Duality.

composite and mechanisms such as connection or com-
position. Nevertheless, CBSD is still seldom used in
practice to implement software systems. One of the rea-
sons is that component-orientation has been more stud-
ied at design stage (e.g Architecture Description Lan-
guages (ADL) [SDK+95, MT00]) rather than imple-
mentation stage.

One of the reasons of the object-orientation success is
surely because it brings a continuum between the way
of thinking of designers at design stage and the way
of programming of developers at implementation stage
thanks to object-oriented languages. Analogously, we
believe that component-oriented languages should sup-
port CSBD and provide the same continuum between
design and implementation with components.

Nowadays, there are four approaches to use compo-
nents at the implementation stage:
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1. Using a general purpose programming language
(usually object-oriented) and relying on a set of
conventions (such as Javabeans [Ham97]).

2. Extending an object-oriented framework
(such as Julia/Fractal [BCL+06], EJB1.0 and
EJB2.0 [MH99])

3. Using component specifications to partially gener-
ate OO code. These specifications can be written
in multiple ways such as using ADLs or Java an-
notations as in EJB3.0 [BMH06]. This approach is
related to model transformation because specifica-
tions can be refined iteratively to become more and
more concrete.

4. Using a component-oriented language (COL)
(such as ArchJava [ACN02], Compo-
nentJ [SC00]).

Component related concepts vanish at the implemen-
tation stage when using a general purpose programming
language. Framework-based approaches are better but
also rely on the programmers discipline. Model trans-
formation approaches bypass this limitation. Neverthe-
less, the component related concepts disappear in the
generated code, making debugging problematic. The
best approaches rely on a programming language with
constructs that match concepts used when designing
component-based software. But existing COLs still ex-
hibit some open issues.

The aim of this paper is to propose a usable COL that
provides a continuum between design and implementa-
tion with components.

The contributions of this article are multiple. First,
we propose five requirements for COP based on the
open issues detected in the state of the art. These re-
quirements aim at enforcing properties related to COP
at the implementation level. Second, we propose a re-
vised and extended version of our component language
called SCL [FDH08] to fulfill these requirements. The
first major extension is a uniform solution to manage
self-references. A second important extension is a so-
lution that enforces encapsulation and communication
integrity using an argument passing mechanism based
on automatic bindings.

This article is organized as follows. Section 2 lists
and motivates five requirements we identified for any
COP infrastructure. We provide in Section 3 a study
of the state of the art exhibiting limitations of represen-
tative COP approaches regarding the previous require-
ments. Section 4 describes basic features of the compo-
nent programming language SCL as it was before this

work. Next, Section 5 presents a set of new extensions
to SCL and revisions of some of its core elements. We
show how these extensions and revisions contribute to
make the updated SCL fulfill our five requirements for
COP. Then, we describe in Section 6 some experiments
we made with the updated SCL. Finally, Section 7 con-
cludes this paper by a summary and a presentation of
some future work.

2. Requirements for Component-Oriented Pro-

gramming

In this section, we present five requirements we iden-
tified for component-oriented programming. Each fol-
lowing subsection introduces and motivates one require-
ment to support COP by enforcing component-related
properties at the implementation level.

2.1. Decoupling
To enable reuse, decoupling the components code one

from the other is mandatory. The decoupling princi-
ple aims at avoiding hardwired references. Connections
between components should be deferred until deploy-
ment or execution, as opposite to “traditional” OOP
where connections between objects may be defined at
design-time and hardwired inside constructors or initial-
ization methods. Consider the example of a tcp server
for networking of Figure 2. An initialization method
in the TCPSERVER class directly references the ASYN-
CHRONOUSREQUESTPROCESSOR class to instantiate
it. An instance variable of the class TCPSERVER stores
the reference of the newly created object (instance of
ASYNCHRONOUSREQUESTPROCESSOR). Such a di-
rect reference to ASYNCHRONOUSREQUESTPROCES-
SOR in the source code of TCPSERVER is not desirable
because it prevents reusing TCPSERVER with another
request processor. COP should avoid such undesirable
situation that hampers reuse. Components should never
hold a reference on each other until they get assembled
in a software.

+ TcpServer() {
  requestProcessor = new
    AsychnronousRequestProcessor();
}
     ...

TcpServer

+ void processRequest(Request aRequest) 
{
     ...
}

AsynchronousRequestProcessor
requestProcessor

Figure 2: A coupled implementation of a tcp server in OOP

2.2. Adaptability
Adaptability is the ability to revise an assembly (a set

of connected components) at run-time. For instance by
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changing connections between components, adding new
components, or removing existing ones. It eases devel-
oping context-aware applications that change according
to their environment change [DL03, GBV08, GBV06].

+ TcpServer(RequestProcessor processor) {
  requestProcessor = processor;
}
     ...

- requestProcessor : RequestProcessor
TcpServer void processRequest(Request request);

<<interface>>
RequestProcessor

+ void processRequest(Request request) {
     ...
}

AsynchronousRequestProcessor
implements

Figure 3: Constructor injection does not meet the adaptability require-
ment

Not all approaches support adaptation. Consider the
example of Figure 3. The TCPSERVER relies on con-
structor injection [Fow04] to support the decoupling re-
quirement. With this decoupling technique, adaptation
is then impossible because the requestProcessor
instance variable receives a value once for all in the con-
structor of TCPSERVER. Replacing the request proces-
sor of a tcp server after its creation is not possible when
using constructor injection.

2.3. Unplanned Connections

Unplanned connections refer to connections between
components developed in different contexts, or by dif-
ferent component developers. It is the application devel-
oper that decides and connects components. So, com-
ponents that have compatible functionalities should be
connectable, even-though their developers did not plan
such connections. Indeed, it is impossible to a com-
ponent developer to foresee all possible connections to
components he develops. Predicting all connections is
not possible that is why it should not be considered.

COP should support proper compositions by al-
lowing application developers to find out compati-
ble components. Therefore, a component should be
self-documented. There should be a set of contracts
[BJPW99] attached to every component to document
its functionalities. Application developers can rely on
these contracts to select components appropriate to the
application’s needs, and check what they are building.

Most COLs are Java-based and rely on names and
types as discussed above. As shown on Figure 4,
a connection between two components is only possi-
ble if there is an explicit sub-typing relation between
their linked interfaces. This sub-typing relationship is
mandatory even if different people developed these two
components. Therefore, in this context, application de-
velopers should share some ontology and agree about
names and types.

void foo()
I1

I2
void foo()
void bar()

I1 I2
C1 C2

connection

Figure 4: The problematic typing relation of independently developed
components

This hypothesis is not realistic. Even if we assume
the existence of standards. Component developers may
choose different names or types for their components’
functionalities. Still, two components might be com-
patible from the functionalities point of view. Con-
sider simply two methods that have the same name, do
the same processing, but have different parameter or-
ders. They are syntactically different, though they are
semantically equivalent. Therefore, a COL should pro-
vide facilities to application developers handling these
situations and building unplanned connections between
components that might be syntactically incompatible,
though semantically compatible.

(a) Bidirectional Ports (b) Unidirectional Ports

Figure 5: Unidirectional ports better support reuse by enabling un-
planned connections

Another issue related to unplanned connections is the
structure of ports. The UML component model sup-
port bi-directional ports. A bidirectional port can only
be connected to another bi-directional compatible port
as shown on Figure 5(a). This rule constraints the set
of possible connections and goes against the unplanned
connections principle. Indeed, bidirectional ports en-
force the unicity of the connected component. On the
other hand, unidirectional ports offer more reuse oppor-
tunities since they enable multiple possibilities for con-
nections as shown in Figure 5(b).

2.4. Encapsulation and Communication Integrity
One of the properties of components is encapsulation.

A component only knows the contracts of its connected
components. Internal structure of a component is al-
ways hidden. Connections are the only means of inter-
action.

It is important to preserve encapsulation for two rea-
sons. First, the internal structure of components may
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change, possibly at run-time such as in the case of adap-
tive components [GBV08, GBV06, DL03]. Second, a
component may want to enforce some extra-functional
behavior (such as log or authentication) for some of its
functionalities. In this context, communication integrity
stands for ensuring that interactions among components
preserve encapsulation.

The encapsulation problem also reveals an issue
about self-references. How a component should refer-
ence itself when invoking services of other components
(self as a parameter) or when answering some invoca-
tions sent by other components (self as a result)? How
should it invoke its own services? We can draw here a
parallel with work on “composition filters” [AWB+93]
in which multiple layers can wrap an object and filter
incoming or outgoing messages. There exist different
pseudo-variables to reference the current object in its
own computations. Developers make an explicit deci-
sion whether to short-cut the filters or not by choosing
the appropriate pseudo-variable.

2.5. Uniformity

Most of the existing COLs and approaches to COP
rely on object-oriented languages. Some, such as Frac-
tal and EJB allow designers to reason upon components.
But developers still have to deal with objects during
development. Therefore, we end up with a gap be-
tween design and implementation that makes develop-
ment and maintenance difficult as shown in Figure 6.
Indeed, software engineers have to deal with different
abstractions and map components to objects and keep
both representations synchronized. Some component-
based approaches rely on code generation to automatize
this mapping. On the one side, it has the nice prop-
erty of reducing the amount of code typed by devel-
opers. On the other side, it makes debugging difficult
and reverse engineering almost impossible. Contrary to
the use of an object-oriented language or code genera-
tion, a component-oriented language (COL) enables the
programmer to directly manipulate component concepts
(components, connections, . . . ) in the source code. A
COL eases code writing and code generation from ADL
specifications as well as reverse engineering because the
concepts are close enough. Only COLs offer such a con-
tinuum between design, implementation and even run-
time.

2.6. Summary

In summary, we claim that a COP approach should at
least fulfill the five following requirements:

Programming
Code Generation Tests

Maintenance

Reengineering

Architecture Description 
Langages

Component Models

Object-oriented 
Languages (OOLs)

Component-oriented 
Languages (COLs)

Analysis / Design Implementation

Figure 6: The need for Component-Oriented Languages to reduce the
gap between design and implementation.

1. A component must not reference directly another
external component. (R1 - Decoupling)

2. Connecting and disconnecting components must
be possible at run-time. (R2 - Adaptability)

3. Connections between semantically compatible
components must be possible even if they were not
planned by developers. (R3 - Unplanned connec-
tions)

4. Component encapsulation must be ensured espe-
cially by enforcing communication integrity. (R4 -
Encapsulation and Communication Integrity)

5. Only component-related concepts should be used
throughout the software life-cycle from design to
deployment, passing through implementation, and
even runtime. (R5 - Uniformity)

In the next section we present a state of the art of the
main component-based approaches regarding these five
requirements.

3. State of the Art

This section is organized based on the requirements
presented in Section 2. Each subsection discusses one
requirement and how most representative of current
COP practices address it. Contrary to general state of
the art in the component field [LW05, CSVC10], this
section focuses as much as possible on approaches at
the implementation level (cf. Figure 6).

3.1. Decoupling
In approaches such as EJB, Fractal and ArchJava,

decoupling relies on the dependency injection tech-
nique [Fow04]. Figure 7 illustrates this approach in the
context of the Java programming language where an in-
terface acts as a contract specification.

Only interfaces are used as types. So, the class
TCPSERVER only references the interface REQUEST-
PROCESSOR (type of the requestProcessor in-
stance variable and related methods). The developer
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+ TcpServer () { }
+ RequestProcessor getRequestProcessor() { 
   ... }
+ void setRequestProcessor(RequestProcessor proc) { 
   ... }
     ...

- requestProcessor : RequestProcessor
TcpServer void processRequest(Request request);

<<interface>>
RequestProcessor

+ void main (...) { 
     TcpServer server = new TcpServer();
     RequestProcessor processor = 
          new AsychronousRequestProcessor();
     server.setRequestProcessor(processor);
}

app : Application

+ void processRequest(Request request) {
     ...
}

AsynchronousRequestProcessor
implements

Figure 7: A decoupled implementation in OOP based on setter injec-
tion

of the application app may decide to use the ASYN-
CHRONOUSREQUESTPROCESSOR class and connects
an instance of it to an instance of TCPSERVER. This
solution also enables to dynamically change ASYN-
CHRONOUSREQUESTPROCESSOR by another imple-
mentation. Dependency injection mechanisms such as
the setter injection one presented above are heavily used
in component approaches such as in Javabeans and
EJB. But, some other decoupling techniques such as
constructor injection (discussed in Section 2.2), are not
dynamically adaptable as we will see in the next section.

3.2. Adaptability
The Enterprise Javabeans (EJB) and the Corba Com-

ponent Model (CCM) [Gro06] only support static con-
nections and developers have to stop an application to
change its architecture. ArchJava supports dynamically
creating and connecting components. Nevertheless, the
set of possible connections at run-time should be ex-
plicitly described by the application (or the composite
component) developers.

Fractal does support adaptation by providing struc-
tural reflection [BCS02]. Therefore, developers can
build components or applications that reason and act
upon their structure and connections.

3.3. Unplanned Connections
In COP approaches such as EJB, Fractal and Arch-

Java, components provided and required functionalities
are expressed using syntactic contracts [BJPW99]. That
is, they rely on matching types to ensure the validity
of connections between components. Figure 7 provides
an example of such contract in an OOP context. Def-
inition of class TCPSERVER states that it requires an
object compliant with the interface REQUESTPROCES-
SOR. Definition of class ASYNCHRONOUSREQUEST-
PROCESSOR states that every instance is compliant with
the interface REQUESTPROCESSOR. In this example,
the contract is the compliance with the REQUESTPRO-
CESSOR interface.

3.4. Encapsulation and Communication Integrity
Ensuring communication integrity is a challenging

issue. Consider Julia the Java-based implementation
of the Fractal [BCL+06] component model. In Frac-
tal, each component has a content that holds its inter-
nal state and implements its behavior. The component’s
content is wrapped by an envelope consisting of inter-
faces that are the hooks for connections from other com-
ponents. Each Fractal component materializes in the Ju-
lia OO framework, as a set of objects. Each interface is
represented by an object. The component content is rep-
resented by an object too3.

The top part of Figure 8 shows an example of two
Fractal components (C1 and C2) connected thanks to
a binding between their respective client interface IC1
and server interface IS2. The bottom part of Figure 8
shows the object counterparts of components C1, C2 in
Julia. Through the established connection, C1content is
able to make a service invocation through IC1 and IS2
that will be eventually executed by C2content. Assume
that component C2 provides service setX through its
interface IS2. C2content may store the argument it re-
ceives during the execution of its setX service. In this
example, the argument is a reference to the C1content ob-
ject (this has been passed). C2content may use this ref-
erence to directly communicate with the C1content object
later in the program execution. We face here a violation
of the communication integrity since it “short-cuts” the
component interfaces.

C1 C2setX(T)

IC1 IS2

C1content

IC1

C2content

Fractal

Julia

IS2

Violation

setX(this)

setX(C1content)

setX(C1content)

Figure 8: Violation of the communication integrity in Julia [LCL06]

In [LCL06], they identified this issue and solved it
in Julia by supervision mechanisms at runtime. But it
brings a runtime overhead to check the validity of com-
munications. Archjava uses another solution based on a

3This is true for the primitive components. The content of com-
posite components is a component assembly. Our analysis still hold
for composites but we do not discuss this.
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specific type system named AliasJava [Ald03, ACN02].
This solution ensures that components can communi-
cate only through connections declared by developers
and statically checked. Developers put annotations on
variables to express precisely the expected behavior.
With these annotations, it’s possible in ArchJava to ex-
press properties such as uniqueness (an object can only
be referenced by a unique variable in the system) or
sharing (i.e. an object is shared among different compo-
nents). But this solution then requires static analysis and
validation of the data flow which restricts the run-time
possibilities. A better solution is to add a mechanism
that prevents communication violations by construction
to avoid checking it.

3.5. Uniformity

ArchJava is a step forward since it is a COL
and it bridges the gap between design and imple-
mentation. But it does not address the unifor-
mity issue. Indeed, ArchJava provides concepts re-
lated to both OOP and COP. The following example
shows the code of two component classes: Helloer
and StdInputOutput. An instance of Helloer
named h is then connected to p an instance of
StdInputOuput through their respective ports print-
ing and stdout.

component class Helloer {
public port hello {

provides String sayHello(String name);
}

public port printing {
requires void print(String s);

}

String sayHello(String name) {
printing.print("Hello, " + name);

}
}

component class StdInputOutput {
public port stdout {

provides void print(String s);
}
void print(String s) {...}

}

Helloer h = new Helloer();
StdInputOuput p = new StdInputOutput();
connect h.printing, p.stdout;
h.hello.sayhello("luc");

The main drawbacks of ArchJava come from two
non-uniformities:
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OOL Javabeans + + - - -

Framework
Julia + + - - -
EJB 1&2 - - - - -

Code

Generation

EJB 3 + - - - -
CCM + - - - -
Sofa + + - - -

COL

ArchJava + - - - -
ComponentJ + + - - +
CLIC + + - - +

Table 1: Evaluation of main COP approaches classified by families
for the five identified requirements.

1. A component can be connected, but it cannot be
passed as a parameter

2. An object can be passed as a parameter, but it can-
not be connected

This strict separation between components and ob-
jects is a difficulty for developers that must choose at
design time if a concept should be implemented as a
component or as an object. This decision has a deep im-
pact on design and programming, and it is then difficult
to change it in future software evolutions.

3.6. Summary
Table 1 shows a summary of the evaluation4 of these

five requirements for selected COP approaches classi-
fied in four families (as described in the introduction):

• Using an object-oriented language (OOL). One
of the most powerful component model in this fam-
ily is Javabeans. Javabeans satisfies R1 and R2
because its components connection mechanism re-
lies on the Observer design pattern [GHJV95]. But
it also uses standard OOP and syntactic conven-
tions that do not fulfill R4 and R5. R3 is also not

4+ means that an approach satisfies a requirement and − means
that it does not.
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fulfilled because a Javabean only supports event-
based connections. It leads to a limited expressive-
ness compared to other component models.

• Extending an OO framework. Julia, the imple-
mentation of Fractal, is a popular representative of
this family. We already discussed the drawbacks
of Julia. Another member of this family is EJB.
The first versions of EJB do not enforce decoupling
since a client should reference its provider.

• Using code generation. All approaches based on
code generation cannot fulfill R5. They also have
a limited support for R2 and R3 because adapta-
tion often implies to regenerate the code at run-
time. EJB 3 supports decoupling thanks to depen-
dency injection and Java annotations. Sofa [PBJ98,
BHP06] and CCM are language independent com-
ponent models. Component interfaces are de-
scribed in an abstract Interface Description Lan-
guage (IDL) and then used to eventually generate
partial implementation in some programming lan-
guage such as Java or C++. Sofa also supports
component updating at runtime so it is possible to
replace a composite with another one with a differ-
ent internal architecture.

• Using a component-oriented language (COL).

This family is the most promising regarding R3, R4
and R5. Unfortunately there are few COLs. Arch-
Java does not support R3 and R5. It only proposes
a static solution for R4. ComponentJ [SC00] is a
COL built as a Java extension and CLIC [BF09] is
a symbiotic component model with the Smalltalk
object model. They both give a uniform view to
their developers (R5) but they also do not fulfill
the requirements R3 and R4.

This focused state of the art shows that no
component-based approach in the literature fulfills all
of the five requirements we identified.

Section 4 presents SCL that already partially ad-
dressed some of these requirements such as CLIC.
Then, Section 5 presents some extensions to SCL that
complete it and make it fulfills these five requirements.

4. Presentation of SCL

The design of SCL has originally [FDH08] been
driven by the aim of building a clean COL in an incre-
mental way by adding only features that enable COP.
This section describes some of the core elements of
SCL.

4.1. Structure of a Component

A component is an instance of a descriptor which is
similar to the concept of class in OOP. Each component
has a set of ports which are the only means to inter-
act with other components. Component services (oper-
ations) can be invoked through its provided ports. Sym-
metrically, it can send service invocations to other com-
ponents through its required ports.

Figure 9 shows the declaration of a TCPServer com-
ponent descriptor in SCL5. A TCPServer has two pro-
vided ports (RequestHandling and LifeCycle) and one
required port (RequestProcessing). Each port is de-
scribed by an interface i.e. the set of available services
through this port, described by their signatures.

(Component newDescriptor: #TCPServer)
providedPorts: {

#RequestHandling->#(handle:).
#LifeCycle->#(start stop) };

requiredPorts: {#RequestProcessing->#(process:)}.

(TCPServer new @ #RequestProcessing) bindTo:
(AsynchronousRequestProcessor new @ #Processing)

Figure 9: Example of a TCPServer component descriptor and its
instantiation and binding.

The new primitive of SCL creates a component from
a descriptor. It returns a reference to a special provided
port of the newly created component. Indeed, in SCL,
ports are the only means to handle components. There
exist no other means to reference a component.

SCL supports multi-port to deal with multiple related
connections. A multi-port is an indexed collection of
ports (all required or all provided). multi-port enable to
dynamically and automatically manage grouped ports of
the same kind (required or provided). Indeed, a multi-
port is a collection with unlimited number of ports. New
ports can be added to the collection upon need. The fol-
lowing piece of code propose a revised version of the
TCPServer that has a multi-port to maintain connec-
tions to multiple request processors; each one dealing
with one request at a time.
(Component newDescriptor: #TCPServer)

providedPorts: {
#RequestHandling->#(handle:).
#LifeCycle->#(start stop) };

multiRequiredPorts:{#RequestProcessors->#(process:)}.

Ports are dedicated to support connections and ser-
vice invocations. Connection validation can be checked
using interfaces. Indeed, an interface corresponds to the

5SCL uses a Smalltalk compliant syntax.
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contract of a port. In SCL, we only focus on syntac-
tic contracts [BJPW99]. So, an SCL interface specifies
signatures of services of a given port.

A connection between two ports is valid if their in-
terfaces match. This matching is based on the inclusion
relationship between the sets of service signatures. The
use of unidirectional ports and the set inclusion rela-
tion for interface compatibility contribute to enable un-
planned connections (cf. Section 2.3) in SCL.

4.2. Bindings and Connectors
As stated above, components can only be handled

through their ports and components assembling consists
in connecting their ports. Connections can be achieved
either through bindings or through connectors.

A binding is a directed link from a source port to a
target port. Service invocations that reach the source
port are routed to the target port. The source and the
target of a binding must be compatible ports i.e. their
interfaces match as described in Section 4.1.

A port can be the target of multiple bindings. But it
can be the source of only a single binding. Given a port
p which is the source of an existing binding b1, if we
attempt to make p the source of another binding b2, an
exception is raised. The developer should first explicitly
unbind p before using it as source for b2.

One of the particularities of SCL is that the source and
the target ports can be of any kind. Indeed, ports linked
by a binding can be both required, or both provided.
Alternatively, the source of a binding can be a required
port and the target can be a provided port. Last, the
source of a binding can be a provided port and the target
can be a required port. The possibility to bind ports
of the same kind in SCL allows developers to control
and route service invocations along binding chains. A
binding chain starts from a source port and ends by a
provided port which belongs to a component that will
execute the service corresponding to the invocation.

The last two lines in Figure 9 show the SCL
code to establish a binding. It links a re-
quired port (RequestProcessing) to a provided one
(Processing) of two newly instantiated components.
This binding is the simplest possible form. It ensures
that all service invocations that reach the Request-

Processing port will be redirected to the Process-

ing port. This binding is only possible if the inter-
face of Processing contains at least a service named
handle:.

Bindings correspond to simple communication routes
between two components. Developers can express more
complex interactions involving two or more compo-
nents with the concept of connector. A connector is a

component dedicated to route and adapt service invoca-
tions from components which emit them to components
which process them. A typical use of connectors is for
connecting ports with mismatching interfaces. It plays
the role of an adaptor and converts invocations to fit the
target port interface. A connector should often be hand-
written but it may also be partially generated.

4.3. Service Invocations
Service invocations issued by a component go out

through a required port. The invocation is transmitted
if the required port is the source of a binding. A suc-
cessfully established binding implies that the target port
has a compliant interface with source port interface. So,
only the following cases can happen:

• the target port is a source of a second binding. So,
the invocation is forwarded.

• the target port is not a source of any binding and
it is a provided port. So, the service correspond-
ing to the invocation is looked up in its associated
component and executed.

• otherwise, the invocation fails raising an exception.

4.4. Composites
Composites are components that encapsulate other

components often called subcomponents. Composites
are easily supported in SCL thanks to a visibility prop-
erty associated to ports. Ports are either external i.e. ac-
cessible from outside the code of a component or inter-
nal i.e. only accessible from the implementation of the
component. Figure 10 shows an example of composite
instance of TCPServer. This example shows that inter-
nal ports are similar to instance variables in OOP. They
are encapsulated inside the component and can only be
accessed by the component’s implementation. The ex-
ample also shows that the subcomponent is an instance
of SmallInteger. SCL offers a uniform component-based
view; even primitive types can be connected. Finally, it
also worth noting that in SCL, an assignment is just a
port binding.

4.5. Evaluation
Table 2 shows the evaluation of SCL regarding the

five requirements we identified in Section 2 for COP.
On the one hand, SCL fully satisfies R1, R2 and R5

because:

R1 (Decoupling). In SCL a component description
only references declared ports. Contracts of ports
are expressed as interfaces.
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 :SmallIntegerRequestHandling

srv : TCPServer

ListeningPortNumber

LifeCycle

initialize
  ...

handle: aRequest
  ...

start
  ...

stop
  ...

handle:

start
stop

RequestProcessing

arp : AsynchronousRequestProcessor

Figure 10: Example of composite with external and internal ports.

Requirements SCL

R1 (Decoupling) +
R2 (Adaptability) +
R3 (Unplanned connections) -
R4 (Encapsulation and

Communication Integrity) -

R5 (Uniformity) +

Table 2: Requirements evaluation for SCL

R2 (Adaptability). It is possible to dynamically bind
and unbind ports in SCL. Furthermore, it is possi-
ble to dynamically create connectors and connect
multiple components if they have compatible in-
terfaces.

R5 (Uniformity). SCL is a COL where only compo-
nent related concepts where introduced. Main con-
cepts are: port, binding, connector and component.
Moreover every entity is considered as a compo-
nent including basic entities such as numbers.

On the other hand, SCL does not fulfill R3, R4 be-
cause:

R3 (Unplanned connections). Adding a component as
a new participant in a connection at run-time im-
plies dynamically creating a binding. But estab-
lishing such a binding at runtime still requires that
ports interfaces match. Therefore this connection
should be planned at design time.

R4 (Encapsulation and Communication Integrity).

As in Fractal (cf. Section 3.4), it is possible
in this version of SCL to break the integrity of
communication passing an internal port as an
argument.

5. Extending SCL to fulfill COP requirements

We present in this section a set of SCL extensions and
revisions to make it satisfy all the five requirements we

identified for COP.

5.1. Optional Interfaces and High-Level Connectors

Previously, a port had to be described by one inter-
face. This constraint restricts the adaptability of the
connectors at runtime because each connector’s port
should be statically described by an interface. It also
forbids unplanned connections because it requires inter-
face conformance between bound ports.

To better support R3, we enable having ports with-
out interface. Now, a port accepts bindings to any other
port, regardless of the interface of the latter. It is typ-
ically useful to write and reuse high-level connectors
without specifying the sources and targets interfaces as
shown in Figure 11. All connectors are now of the
same high-level form. They all have two multi-ports.
The sources multi-port contains provided ports through
which the connector receives invocations. A connector
intercepts incoming invocations thanks to glue services
(defined hereafter). These special services adapt invoca-
tions and transmit them through the targets multi-port.

s1: TCPServer

t1 : RequestProcessor

Sources

c : Connector

Targets

provided port 

Caption

required port 

provided 
multi port 

required 
multi port 

s2: SecureTCPServer

t2 : SecureRequestProcessor

t3 : RequestProcessor

glueServices

Figure 11: General Form of a Connector

With optional interface, interface conformance is not
enforced anymore. So, a port may receive any ser-
vice invocations. We introduce glue services to pro-
cess unplanned service invocations. A glue service is
analogous to the doesNotUnderstand: method in
Smalltalk but, it is specific to a single provided port.
The glue service associated to a port is automatically ex-
ecuted each time an invocation is received through this
port and the component does not define the correspond-
ing service. A component is therefore able to deal with
service invocations it receives even though it does not
have a directly matching implementation.
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5.2. Service Invocations
Service invocations issued by a component still go

out through a required port. The invocation is trans-
mitted if the required port is the source of a binding.
Otherwise, the invocation fails raising an exception.

For provided ports, the invocation handling is now
more complex. Four prioritized rules determine how the
invocation is processed.

1. The rule of highest priority corresponds to the sit-
uation where the provided port is the source of a
binding. In this case, the invocation is routed to
the port that is the target of the binding.

2. The pre-condition of second rule is checked if the
provided port that receives the invocation is not the
source of any binding. The second rule is applica-
ble if the component that owns the provided port
implements a service that matches the invocation.
This matching is based on the service name and the
number of its arguments.

3. Then the third rule pre-condition is checked if none
of the above rules apply. The third rule is applica-
ble if the component that owns the provided port
implements a glue service for this port.

4. The rule of lowest priority consists in raising an ex-
ception to signal invocation failure. It is performed
if none of the three previous rules apply.

5.3. Internal Ports and Self-References
In SCL, every service invocations is achieved through

a port. In our former work on SCL, it was possible to
violate the encapsulation by passing an internal port as
argument or a result for an invocation.

We extended SCL to improve encapsulation and com-
munication integrity (R4) by introducing an extra con-
straint on service invocation. Only external ports can
be passed as arguments of service invocations that go
outside a component. Therefore, references to internal
ports can never be accessed by external components6.
This applies to the special internal port Self .

Self is an internal port available in every component.
It allows the component to invoke its own services even
if they are not available to the outside through any exter-
nal port. Through Self , a component provides all ser-
vices it implements. Figure 12 shows that the internal
kill service can be invoked through the Self port.

6Internal ports can still be connected to ports of sub-components
of a composite.

RequestHandling

srv : TCPServer

ListeningPortNumber

LifeCycle

initialize
  ...

handle: aRequest
  ...

start
  ...
  Self handle: receivedReq

stop
  ...
  Self kill
  ...

kill
   ...

handle:

start
stop

RequestProcessing

Self

Figure 12: Some uses example of Self port.

Likewise other ports, the Self port can be bound (i.e.
be the source of a binding) or can even have a glue ser-
vice attached to it. Figure 13 illustrates these two situa-
tions by showing the code of the initialize service of two
composite components. In Composite1, Self is bound
and all invocations made through Self in the Compos-
ite1 code (such as in the doit service invocation made
in the foo service) will be treated by the subcomponent
bound to the internal port Sc1. In Composite2, a glue
service is attached to Self . In this example, if Compos-
ite2 implements a matching service, it will be executed,
otherwise the invocation is delegated to the subcompo-
nent.

These examples show that the developer is able to
control service invocation flow with bindings. Using
connectors, even more complex examples can be set up.

5.4. Argument Passing by Connection

In Section 5.3, we introduced a solution to avoid ex-
posing the internals (internal ports and subcomponents)
of a component to other components. We modified the
SCL service invocation to prevent connections from in-
ternal ports to external components received as param-
eters or invocation result. This modification completes
our encapsulation enforcement and ensures communi-
cation integrity.

Our extension relies on the connection mechanism.
Every component is equipped with a multi-port of re-
quired ports called “Args” to which the service argu-
ments will be automatically bound before the execution
of a service. The names used in the code for arguments
are transparently aliased to Args ports. All Args ports
are unbound at the end of a service execution.

Figure 14 shows an example. Initially, the
TCPServer component is executing its handle: ser-
vice. The argument named aRequest is an alias to the
first port in its multi-port Args. The first step shows that
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Sc1

: Composite1

Self

initialize
   Sc1 bindTo: OtherComponent new.
   Self bindTo: Sc1

foo
   ...
   Self doit "must be provided by OtherComponnent"
   ...

:OtherComponent

Sc1

: Composite2

Self

initialize
   Sc1 bindTo: OtherComponent new.

glueSelf: si
   ^ Sc1 perforrm: si
   
foo
   ...
   Self doit "must be provided by OtherComponnent"
   ...

:OtherComponent

Figure 13: Self port can be delegated or even attached to a glue service.

this TCPServer invokes a process: service through
its required port RequestProcessing passing the aRe-
quest as an argument. The second step shows that in-
vocation is transmitted through the binding of the Re-

questProcessing port. The third step applies before
executing the process: service implemented by the
ASynchronousRequestProcessor component. All
arguments passed in the service invocation are bound7

to the Args ports of this component. The service is then
executed in the fourth step before unbinding the Args

ports.
This argument passing mechanism is uniform with

the SCL model. It prevent programmers to store refer-
ences to third party ports because they only manipulate
Args ports that belong to the current component.

The SCL interpreter deals with situations such as re-
cursive invocations and concurrency by managing a col-
lection of argument bindings. When a component re-
ceives an invocation of a service before returning the
result of previous ones. Upon the reception of a new in-
vocation, the interpreter stores the Args bindings, next
it unbinds the Args port, then it binds it with the new
arguments before performing the the latest invocation.
The interpreter restores the bindings of Args of the pre-
vious service invocation once the latest invocation re-
turns. A similar solution enables dealing with concur-
rency.

5.5. Summary
We introduce multiple enhancements and extensions

in this revised version of SCL such as: optional inter-
faces, service invocation handling, and argument pass-
ing by connection to name a few. With these new fea-
tures, SCL now fulfills R3 and R4.

R3 (Unplanned connections). Connecting compo-
nents semantically compatible but with different
interfaces is now easier with high-level connectors

7Arguments are always ports in SCL.

thanks to optional interfaces. A port without
interfaces accepts bindings to other ports with
any interface. Last, ports may be provided with
glue services, those are services that are called
when no matching implementation is found for an
incoming service invocation.

R4 (Encapsulation and Communication Integrity).

Two major features in SCL enforce this require-
ment. On the one hand, SCL forbids passing
internal ports as invocation arguments, thus
avoiding connections from the outside to the
internals of a component. On the other hand,
invocation arguments are referenced through a
multi-port (the Args collection of ports) which is
unbound after the invocation returns. Therefore,
SCL prevents connecting a component’s internal
ports to external components.

6. Prototype and Experimentation

SCL has been initially prototyped in
Squeak [IKM+97] which is an open-source Smalltalk
implementation. Thanks to the powerful meta-object
protocol of Smalltalk [Duc99, BD06], writing and ex-
tending the SCL prototype has been much simpler than
writing a parser and a complete interpreter. The main
drawback of this implementation is on the performance
side. But our aim with this prototype is to demonstrate
that it is possible to implement a COL that fulfills all
the requirements we identified.

Figure 15 shows the general architecture of the ex-
tended SCL prototype [scl]. This architecture has four
layers.

1. The top most layer contains the Smalltalk kernel
classes (OBJECT and OBJECT CLASS) that have
been extended.

2. The second layer contains the classes of the im-
plemented SCL model. It would have been better
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handle: aRequest
  "aRequest aliased to (Args at: 1)"
  ...
  RequestProcessing process: aRequest
  ...

 : Request

Args

process: aRequest
  "alias aRequest to (Args at: 1)"
  ...

 : AsynchronousRequestProcessor

RequestHandling

: TCPServer

 Args

RequestProcessing

LifeCycle
1

2

3

4
 Args

Figure 14: The four steps of arguments passing by automatic connection.

to implement SCL component descriptors by di-
rectly inheriting from OBJECT. However if com-
ponent descriptors were not classes they would
have been incompatible with standard Smalltalk
tools (class browser, versioning tool, ...). That is
why component descriptors (COMPONENT CLASS
in Figure 15) have been implemented by subclass-
ing OBJECT CLASS. It is at this level where we
introduced the new features presented in Section 5.

3. The third layer contains all available SCL com-
ponent descriptors that are automatically imple-
mented as subclasses of COMPONENT.

4. The fourth layer contains components instances of
descriptors.

SCL developers only deal with SCL descriptors and
components present in layers 3 and 4. They never work
at the level of layers 1 and 2.

Bindings and Service invocations. Service invocations
in SCL use the same syntax as message sending in
Smalltalk. But in SCL, the syntactic receiver of
a service invocation is always a port. Port ob-
jects in the implementation can then intercept all ser-
vice invocations for their components thanks to the
doesNotUndestand: Smalltalk method. Port ob-
jects implement the routing algorithms of service invo-
cations described previously and it is also possible to
automatically bind and unbind arguments.

The TCPServer example. We implemented the
TCPServer as described previously. Figure 16 shows
the declaration of three components. The component
TcpServerApp describes an application and connect
a TcpServer to a RequestProcessor. This example
shows the binding of two ports with mismatching
interfaces. Indeed, TcpServer invokes a service

named handle: through its port RequestHandler .
But RequestProcessor provides a service named
process: through its port RequestProcessing.
This example uses bindTo:withAliases: to
bind and easily adapt mismatching interfaces of the
ports. It is just syntactic sugar to not write a specific
BinaryConnector.

(Component newDescriptor: #TcpServer
category: ’Scl-Examples-TCPServer’)
requiredPorts: #(#RequestHandler);
providedPorts: {

#RequestHandling->#(#handle:).
#Lifecycle->#(#start #stop)}.

TcpServer>>handle: aRequest
RequestHandler handle: aRequest

(Component newDescriptor: #RequestProcessor
category: ’Scl-Examples-TCPServer’)
requiredPorts: {};
providedPorts: {#RequestProcessing->#(#process:)}.

(Component newDescriptor: #TcpServerApp
category: ’Scl-Examples-TCPServer’)
requiredPorts: {};
providedPorts: {#RequestHandler->#(#handle:);
internalRequiredPorts: #(#pServer #pProcessor);
internalProvidedPorts: {}}.

TcpServerApp>>init
pServer bindTo: TcpServer new.
pProcessor bindTo: SclRequestProcessor new.
pServer @ #RequestHandler

bindTo: pProcessor @ #RequestProcessing
withAliases: { #handle: -> #process: }.

TcpServerApp new start

Figure 16: The TCPServer example in SCL

Requirements discussion. This example shows that
the declared components RequestProcessor and
TCPServer are decoupled (Requirement R1). The
only admitted couplings are between a composite (e.g.
TcpServerApp) and its sub-components (e.g. Re-
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Figure 15: Overview of the extended SCL prototype

questProcessor and TCPServer). This makes sense
because the developer of a composite makes fixed deci-
sions about internal details. These details are encapsu-
lated to third parties that are only able to access external
ports of the composite. This example also illustrates re-
quirements R2 and R3. First, the connection between
TcpServer and RequestProcessor is unplanned (Re-
quirement R3). Indeed, their connected ports have mis-
matching interfaces. Second, the connector is built at
runtime. And it can also be adapted later during the
program execution (Requirement R2). Besides, SCL
ensures that the connected components will be able to
share data (requests) without violating communica-
tion integrity (Requirement R4). Finally, this exam-
ple illustrates that only components-related concepts are
used. Therefore, SCL also fulfills the uniformity re-
quirement R5.

7. Conclusion and Perspectives

The contribution of this paper is twofold. First,
we identified five requirements to fully support
Component-Oriented Programming (COP): decoupling,
adaptability, unplanned connections, encapsulation and

uniformity. The study of the state of the art shows that
no existing work addresses all these requirements. Un-
planned connections is often an issue, since most ap-
proaches rely on typing to check components compat-
ibility. Therefore, component developers must know
about types used in other components to enable direct
connections. Another major issue is a lack of commu-
nication integrity. Components should be able to in-
teract while preserving their encapsulation. Last, non-
uniformity is a frequent criticism of existing work. We
often find COP concepts superposed with the OO ones
either at the implementation-level or even at the model-
level. We advocate that only COP concepts should be
used from design to implementation.

The second contribution of this article is a
Component-Oriented Language (COL) that satisfies re-
quirements mentioned above. We started from our pre-
vious work called SCL which we extended to make it
fully compliant with COP requirements. SCL was first
thought as a uniform language for COP. It thus satis-
fies the uniformity requirement. We show that the ex-
tended SCL also satisfies the other requirements. An
important evolution of SCL results in enforcing encap-
sulation and communication integrity. It ensures that no
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connection can be set from/to the internals of a com-
ponent to/from external components. This is achieved
by forbidding outgoing service invocations that refer-
ence internal ports and by aliasing parameters of incom-
ing service invocations. Aliasing consists in referencing
parameters through a dedicated external port on every
component.

Regarding future work, we plan to study the merge
of SCL with our other work CLIC [BF09]. The idea
is to enable component-based programming while still
taking advantage of Smalltalk tools and libraries. One
possible direction would be to use Helvetia [RGN10]
to embed a component language in Smalltalk without
breaking tools.
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