Software Architecture Constraints as
Customizable, Reusable and Composable
Entities

Chouki Tibermacine!, Christophe Dony', Salah Sadou?, and Luc Fabresse?*

L LIRMM, CNRS and Montpellier University, France
2 VALORIA, Université Bretagne-Sud, Vannes, France
3 Université Lille Nord de France, France
1 Fcole des Mines de Douai, France
{t ibermacin, dony}@lirmm .fr,sadou@univ-ubs.fr,luc.fabresse@mines-douai.fr

Abstract. One of the major advantages of component-based software
engineering is the ability for developers to reuse and assemble software
entities to build complex software. Whereas decomposition of software
into components has been and is largely addressed for what concerns
the business (functional) part of applications, this is not yet the case
for what concerns their documentation (non-functional) part. In this pa-
per, we propose a new and original solution to express component-based
software non-functional documentation, and we will focus more espe-
cially on architecture constraints, which formalize parts of architecture
decisions, as executable, customizable, reusable and composable build-
ing blocks represented by components. Component-based applications
using business and constraint components can be modeled with CLACS,
a dedicated ADL which is also introduced in the paper. Architecture
constraints can be executed at design-time within CLACS. CLACS is
implemented as a plugin in the Eclipse IDE.

1 Introduction: Context and Motivation

Architecture constraints play an important role in design decision documentation
and architecture validation. These constraints are often specified either textu-
ally or formally, but no means are proposed to customize them for their reuse
in different contexts or to compose them in order to define complex constraints.
The goal of the work presented in this paper is to propose a way to build archi-
tecture constraints as checkable entities embedded in a special kind of software
components that can be reused, assembled, composed into higher-level ones and
customized using standard component-based techniques. The purpose is as well
to put reusable constraint-component on shelves (design for reuse) and to pro-
duce new constraints by composition of existing ones (design by reuse) and then
to simplify the expression and definition of constraints (ascending design). An
additional fundamental goal is to define a uniform paradigm to develop busi-
ness and non-functional (constraint-) components. We aim thus at proposing an
operational component-based design environment providing new capabilities to



express architecture constraints that can be executed at design-time to check
the conformity of architecture designs and in which business components can be
compiled into instructions of a component-based programming language.

The remaining of the paper is organized as follows. In the following section,
we first introduce CLACS, the ADL we built for the SCL [4] component pro-
gramming language which has been developed in our team. We then explain
how using this ADL we can describe constraints as components and how these
components can be connected to other constraint components or business ones.
Before concluding and presenting the future work at the end of this paper, we
make an overview of the related works.

2 Architecture Constraint-Components

Our solution is embedded into an operational software suite (CLACS-SCL)
made of an architecture description language (ADL) called CLACS (Constraint
Language for Architectures of Component-based SCL-like software), and of a
component-oriented programming language named SCL (Simple component lan-
guage [4]). CLACS is a modeling alternative for SCL.

2.1 Constraint-Components vs. Business Components

In order to not add (yet-)other constructs for constraint-component modeling,
we chose to use the same constructs as for business component modeling. SCL
business components and CLACS constraint components share most of their
characteristics. The difference between them is expressed in the implementa-
tion of services. In business components, services represent traditional opera-
tions with a body containing the SCL code implementing the business logic.
In constraint-components, the body contains the code of the constraint to be
checked (specified in ACL [7] which is an adaptation of OCL).

2.2 Constraint-Component Specification in CLACS

Suppose we define a constraint-component which checks the Facade pat-
tern. The descriptor of this component can be specified in CLACS and
instantiated in a given architecture description. Each Facade checker, in-
stance of this descriptor, owns one provided port named Checking that
exports a constraint checking service having this signature : boolean
isFacade (aPort:Port,aSubComp:Component). Each Fa¢ade checker can then
be connected, through that checking port, to any business component requiring
this service i.e. having a corresponding required interface.

2.3 Connecting Constraints to Architectures

When designing a software architecture, the developer can connect constraint-
components to business ones. The binding used to connect these two model
elements makes it possible to validate the architecture design according to the
constraints embedded in the constraint-component. When invoked within our
modeling environment, a constraint-component provided service returns true if
the architecture of the business component to which it is connected fulfills the



constraint. When such a connection is established and a constraint evaluated,
the constraint expressions interpretor automatically binds the context identi-
fier, used in constraints expressions, to the business-component to which the
constraint will be applied. When composite constraint-components are built in
which a constraint-component is connected to another one, a transitive closure
is computed on that link until a business-component is found.

2.4 Constraint-Component Composition

A constraint-component can be assembled together with other constraint-
components to build more complex ones. We have defined one kind of binding
for each logical operator (and, or, xor and implies). Delegation bindings linking
constraint-components can be of kind “affirmative” or “negative”. In the
first case, if the constraint-component is bound to a business-component, this
means that the architecture of the latter component should respect the constraint
embedded in the former component. However, in the second case (negative del-
egation binding), the architecture of the business component should not respect
the architecture choice formalized within the constraint-component.

2.5 Constraint Checking

Architectural constraint checking is performed at design time. Thus, constraint-
components are interpreted at this stage contrarily to business-components
which are executed after their deployment. The constraint checking is imple-
mented by a simple function. Depending on the kind of constraint-components
(composite or primitive), the local evaluation corresponds to a delegation to an-
other sub-component or to an ACL interpreter. The propagation of the context
within the different constraint-components is done during constraint checking.
This allows the evaluation of the constraints on the appropriate business com-
ponent.

3 Related Work

Different existing ADLs embed constraint languages. Acme [5] and Wright [2]
are two representative examples of them. Constraints in Acme and Wright do
not represent first-class entities for composition. In addition, constraints in these
languages are fixed expressions, which cannot be parameterized to reference a
part of the architecture description (with identified components). As presented
in the previous sections, CLACS implements a customizability feature at the ar-
chitecture constraint description level, which allows designers to define reusable
constraints. Being embedded in components, these constraints can be easily as-
sembled to extend existing architecture constraint specifications.

Design pattern schemas [6] and component specification patterns [1] are de-
scriptions which allow the definition of templates of OCL constraints with some
parameters which are fixed during the instantiation of the templates. As in
our work, constraints are parameterized with model elements and are used as
library modules. However, model elements (parameters) in our case are archi-
tectural elements and constraints target structural descriptions, whereas, in [6],
model elements are UML class entities and in [1] constraints target the functional
(behavioral) aspect of components.



4 Conclusion and Future Work

Sometimes, defined manually (from scratch) architectural decisions’ documen-
tation is complex, error-prone and time-consuming. Having a means to define
such documentations by hierarchical composition of constraints is beneficial for
two accounts: First, by decomposing the models of architecture constraints in
several small interfaced documentation parts, a common repository of reusable
(parametrized) assets is provided for software architects; and second, this is a
logical way of doing in the continuum of artifact development in component-
based software engineering®.

We implemented CLACS as a prototype in the Eclipse IDE by using some
existing plugins [3]: the EMF (Eclipse Modeling Framework) module which al-
lowed us to define an Ecore metamodel of CLACS to generate an editor, and
the GMF (Graphical Modeling Framework) plugin to give a graphical dimen-
sion to the editor. SCL code generation feature in this editor allows to generate
SCL code starting from EMF models. This has been done using the JET (Java
Emitter Templates) Eclipse plugin [3]. At the conceptual level, we plan to enrich
constraint-components with the other parts of architecture decision documenta-
tion. This will help to incrementally build complex non-functional documenta-
tions by composition and thus get the advantages of component-based software
engineering. In addition, we are investigating the proposition of a model of re-
flective components. At the tool level, we plan in the near future to work on
constraint-component code generation. This will help to check architecture con-
straints at the evolution stage on implementation artifacts (SCL code). Our aim
in the future is also to build a repository of classified architecture constraints.

References

1. J. Ackermann and K. Turowski. A library of ocl specification patterns for behav-
ioral specification of software components. In Proc. of CAiSE’06, pages 255-269.
Springer-Verlag, 2006.

2. R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, May 1997.

3. Eclipse. Eclipse Modeling Project. Eclipse Board Web Site
http://www.eclipse.org/modeling/

4. L. Fabresse, C. Dony, and M. Huchard. Foundations of a Simple and Uni-
fied Component-Oriented Language. Journal of Computer Languages, Systems
& Structures, 34/2-3:130-149, 2008.

5. D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. In G. T. Leavens and M. Sitaraman, editors, Foun-
dations of Component-Based Systems, pages 47-68. Cambridge Univ. Press, 2000.

6. M. Giese and D. Larsson. Simplifying transformations of ocl constraints. In Proc.
of MODELS’05), Montego Bay, Jamaica, October 2005.

7. C. Tibermacine, R. Fleurquin, and S. Sadou. A family of languages for architecture
constraint specification. In Journal of Systems and Software (JSS), Elsevier, 2010.

® In the same spirit, the Eiffel language has been proposed for, at the same time, pro-
gramming applications’ business-logic and formalizing functional constraints (con-
tract programming with assertions).



