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Abstract

Component-oriented programming (COP) is actually a key research track in software engineering. A variety of component-oriented
languages (COLs) have been proposed with new or adapted abstractions and mechanisms to support this new paradigm. However, the
proposed features vary quite widely from one proposal to another. There is a need for a closer analysis and synthesis of these features
to really discover the new possibilities of COP. In this article we present SCL, our proposition of simple language dedicated to COP.
Through the presentation of SCL, we discuss and compare the main features of COLSs such as component class, component, interface,
port, service or connector. But these features are not enough to build a COL. Indeed, unanticipated connection of independently
developed components is one of the key issues of COP. Most approaches use language primitives or connectors and shared interfaces
to connect components. But shared interfaces are in contradiction with the philosophy of independently developed components. The
approach of ScL is to provide a uniform component connection mechanism based on special components called connectors. SCL
also integrates component properties which enable connections based on component state changes with no requirements of specific
code in components.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Component-based software engineering is widely investigated by research and industry. This interest is driven by the
promise of improving current software development practices, such as reusability and extensibility, in significant ways
[1,2]. Although many models, languages, and tools have been proposed, it is still difficult to apply component-oriented
programming (COP) in practice. Most of proposed languages, such as UML 2.0 [3] or WRIGHT [4,5], are not executable
and dedicated to software specification. COP is currently carried out using object-oriented languages which do not
offer specific abstractions to ease COP and have to be used in a disciplined way to guarantee a COP style.

Component-based software engineering needs component-oriented languages (COLs) as well as to transform mod-
els [6,7] into executables or to write programs by hand. A COL must offer specific abstractions or mechanisms to
write component-based programs [8]. Among the approaches on components, some programming languages have

* Corresponding author. Tel.: +33 467418578.
E-mail addresses: fabresse@lirmm.fr (L. Fabresse), dony @lirmm.fr (C. Dony), huchard @lirmm.fr (M. Huchard).
URL: http://www.lirmm.fr (L. Fabresse).

1477-8424/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.c1.2007.05.002


http://www.elsevier.com/locate/cl
mailto:fabresse@lirmm.fr
mailto:dony@lirmm.fr
mailto:huchard@lirmm.fr
http://www.lirmm.fr

L. Fabresse et al. / Computer Languages, Systems & Structures 34 (2008) 130—149 131

been proposed such as Component] [9], ArchJava [10], Julia/Fractal [11], Lagoona [8], Piccola [12], Picolo [13],
Boxscript [14], Keris [15], or Koala [16], in order to support COP. These languages have brought many new or adapted
abstractions and mechanisms such as connection, composition, port, interface, connector, service, module, message but
their interpretation vary quite widely from one proposal to another. This is quite normal with such an emerging domain,
but there is a need for a closer analysis: which mechanisms are essential (basic) and cannot be removed, which ones
are (eventually) redundant? Which are the key ones to achieve component composition? To a larger extent, all these
questions raise the issue of knowing which constructs and mechanisms are the main identified features of component
orientation (by analogy with object orientation).

In this paper, we present SCL that stands for Simple Component Language which is the result of our study and research
about COL. On one hand, SCL is built on a minimal set of concepts applied uniformly in order to ease the understanding
of the key concepts of COP. The main features of SCL come from existing languages but we argue that we chose the
fundamental ones. On the other hand, SCL integrates a new powerful, extensible, and uniform component connection
mechanism that addresses one of the key issues of COP which is the unanticipated connection of independently
developed components. In existing languages, the connection mechanism is either a fixed language primitive such as in
Fractal [11] or relies on first-class entities named connectors [17,18] which represent connections such as in ArchJava
[10] or Sofa[19]. In SCL, a connector is a kind of component dedicated to the adaptation of the communications between
components. The SCL connectors offer better decoupling between the reusable business code inside components and
the gluing connection code inside connectors. The SCL connection mechanism is based on connectors and enables
independently developed components to communicate following different protocols without requiring any special
code in components. For example, we propose connectors that offer some possibilities available in aspect-oriented
programming [20]. SCL also provide connectors to establish communications based on the publish-subscribe protocol
between components without requiring any special code in the publisher or the subscriber component. This is possible
because SCL components are defined using the concept of property to externalize component state without breaking
component encapsulation. Properties are the support of a new kind of component communication based on changes of
property state. We choose Squeak, a Smalltalk implementation, to implement SCL because it is a dynamic language that
offers a suitable meta-object protocol that can be easily extended and because we want to provide an easily extensible
language.

The paper is organized as follows. Section 2 presents the general context of COP. Section 3 discusses if a class-based
or a prototype-based approach is suitable for a COL. Section 4 motivates the choice of the core features of SCL. Section
5 explains the service invocation mechanism. Section 6 describes how components can be connected. Section 7 shows
that separation of concerns is possible in SCL. Section 8 explains why publish/subscribe communications are an issue in
COP and proposes a solution based on properties. Section 9 describes the current implementation of the SCL prototype
in Squeak. Section 10 compares SCL features to those existing ones in various COLs and presents some related work.
Finally, Section 11 concludes and presents future work.

2. COP: what, why and how?

COP is based on the idea stating that a software can be built by plugging pieces of software called components.
The term “component” has different meanings to many different people depending on the perspective taken. For
example, design patterns [21], functions or procedures [22], modules [8], application frameworks [2], object classes
[23], and whole applications [24] can be considered as components. Similarly, there are many different definitions for
the term component given in the literature [2,25,26]. The component definition reached by consensus is: “A software
component is a unit of composition with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to composition by third parties” [2].

Originally, researches on component-based software development (CBSD) have been driven by the will of reducing
software development costs by increasing software reuse. Indeed, instead of developing new components from scratch,
CBSD recommends the reuse of existing components that have already been developed and tested. This idea is expected
to reduce development costs because it reduces the development time. A second motivation for CBSD has emerged,
the will of reducing the evolution cost of a software. This motivation is now more important than the original one
because software are not developed one time, but continuously developed in order to correct bugs (maintenance)
or to add new features (extension). Software evolution is a challenge because of new factors such as the growing
software size or the software distribution. Component-based applications, built out of interconnected components, are
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Fig. 1. A high-level view of component-based software development.

expected to be easier to evolve. This is because the software evolution of component-based software relies on decoupled
components that can evolve independently. This property is named the independent extensibility [2] of component-based
software.

New software development methods dedicated to CBSD, such as Kobra [27] or Catalysis [28], focus on the reuse in the
earlier steps of the development process. Reuse at the design phase can be considered from two different complementary
perspectives: design for reuse or design by reuse. Design for reuse deals with identifying, specifying reusable elements,
and integrating them in a reuse system. Design by reuse aims to define new systems engineering processes and develop
tools supporting systematic reuse of components to build new systems. Fig. 1 shows that these two complementary
concerns are generally targeted by two different actors of the development process: the programmer and the architect.
A COL must offer mechanisms for both of them, without forgetting their respective role: the programmer builds reusable
components (for reuse) and the architect builds applications by reusing components (by reuse).

3. COLs: prototype-based or class-based languages?

In object-oriented languages, the terms “class” and “instance” allow programmers to refer without ambiguity, respec-
tively, to object descriptions in code and to objects themselves as runtime entities. Although many component-based
languages are generally built on a class/instance conceptual model, few of them specify the terms to denote, respectively,
component descriptors (classes) and component themselves (objects). For example, the two keywords component
class in ArchJava and component in Component] both denote a component class which can be instantiated. In
ArchJava, a component class is an extension of the Java class concept used to define a type of component. A few COLs
have been proposed with a prototype-based model (i.e. without descriptors). For example, a prototype-based language
has been proposed [29] on top of Java in order to provide primitives to dynamically build, extend, and compose soft-
ware components from Java objects. We think that the arguments for (or against) the use of classes are similar in the
component and object worlds and that both approaches are worth to be considered [30].

In ScL, we have chosen a class/instance approach but we clearly distinguish these two concepts. A component is
a runtime entity and it is an instance of a component descriptor. Component descriptors are written by the com-
ponent programmer in order to create off-the-shelf reusable pieces of software while the software architect cre-
ates an application by choosing and instantiating some component descriptors and then connecting components
(i.e. instances).

4. Basic component structure

It is largely admitted that a “component can only be accessed through well defined interfaces” [2]. Component
interfaces shield the component from its environment and increase its context independence needed by the design for
reuse. Component-based languages propose different concepts to describe component interfaces such as services, ports,
interfaces, protocols, etc. In different component languages, these words may have different meanings. For example,
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in Fractal [11] or Enterprise JavaBeans [31], the port and interface concept are mixed that is why they only speak
about interfaces. In UML components [32], both port and interface concepts exist such as in ArchJava [10] where
interfaces are called port interfaces. That is why we choose to clearly explain the choices that we made for SCL. In SCL,
a component provides or requires services through ports described by interfaces.

4.1. Services

A component provides functionalities which are named services. Basically, a service is a subprogram defined in a
component, such as a method in the object-oriented model. The main difference between a component and an object is
that a component also expresses the services that it requires from other components in order to provide its own ones.
Thus, a component has two sets of services: its provided services and its required services. For example, a password
manager component may provide services such as generatePwd:, generateALowerCasePwd:, isvValid:
and require a getRandomNumber service.

4.2. Ports

“A component is a static abstraction with plugs” [33]. Ports represent these plugs and are the interaction points [2] of
components. This means that all that is possible on a component, such as service invocation, have to be done through its
ports. The port construct is present in almost all component models but with different semantics. In component models
that support ports, they are either unidirectional or bi-directional. Through unidirectional ports such as in ComponentJ
[9] or Fractal [11], a component provides or requires a set of services through its ports. In ArchJava [10] or UML 2.0
[32], ports are bi-directional and a component both requires and provides services through each of its ports.

Unidirectional ports allow the programmer to group some services in a set and require or provide this set. Two kind
of unidirectional ports are distinguished: required ports through which the component requires a set of services, and
provided ports through which the component provides a set of services. Ports help the programmer to group related
services and then defines view points or security policies. Required ports define view points for the component on
its environment while provided ports define view points on the component for its environment. A port also defines a
security policy because a component that communicates with another component through one of its ports can only
access the services accessible through this port. Grouping some required services on required port is also used by
programmer to express that these services should be provided by the same component. For example, a component that
requires the services: pop and push : through one of its required ports expects that these two services will be executed
by the same component.

Bi-directional ports offer the same capabilities than unidirectional ones but they allow the programmer to define more
complex point of views than unidirectional ports. Indeed, a bi-directional port describes the role that the component
could accomplish in a collaboration. For example, a component may require a get Pwd service and provides open and
close services through the same port. This port expresses that the two services open and close will be provided
to a component that itself provides the get Pwd service. It is possible to express more accurately the dependencies
between services using bi-directional ports.

We choose to integrate unidirectional ports in SCL. On the one hand, this is because they are simpler to understand
and to use. The programmer defines services in the component implementation and chooses to provide some of them
through the provided ports of the component. In SCL, a service may be provided by more than one port. On the other
hand, this is because it is possible to construct bidirectional ports using unidirectional ones as we will see with the
property concept of SCL in Section 8. In SCL, a port has a name (a component cannot have two ports with the same
name). Fig. 2 shows the SCL code needed to create a component descriptor, declare ports and instantiate a component.

It is important to note that SCL uses the Smalltalk syntax but the constructs have not always the same meaning than in
Smalltalk (it will be shown in Section 5). In the above example, a PASSWORDMANAGER is defined with three ports: the
required Randomi zer port through which the component requires a get RandomNumber service, the Generator
and Checker ports that, respectively, provide services for generating passwords and services for checking passwords.
The implementations of the component services are not shown in this example. COMPONENTDESCRIPTORBUILDER is
the bootstrap component of SCL. This component is used to create empty component descriptors by using, for example,
its new: requiredPortNames : providedPortNames: service. A component descriptor can be completed in
order to describe its instances. Finally, the instantiation of a component descriptor is achieved using its new service.
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”A PasswordManager component which generates passwords and
verifies that a password is not too simple”
ComponentDescriptorBuilder new: #PasswordManager
requiredPortNames: ’Randomizer’
providedPortNames: ’Generator Checker’.

(PasswordManager port: #Randomizer)

requires: {#getRandomNumber}.
(PasswordManager port: #Generator)

provides: {#generatePwd:. #generateALowerCasePwd:}.
(PasswordManager port: #Checker)

provides: {#isValid:}.

¢ := PasswordManager new.

Fig. 2. Definition and instantiation of a component descriptor in SCL.

4.3. Interfaces

The word “interface” has many different meanings in the object world and the component world. For example, Fractal
[11] distinguishes component interfaces and language interfaces (i.e. Java interfaces) but they only keep the term of
interface which could be misunderstood. The interface concept is almost in all component models but sometimes mixed
with the port concept such as in Fractal [11] or sometimes completely independent such as in UML [32]. Interfaces
vary from informal text descriptions in natural languages to formal descriptions such as in WRIGHT [4]. We distinguish
two kind of descriptions: syntactic and semantic descriptions. Syntactical descriptions are generally represented by a
named type describing a set of method signatures such as Java interfaces [34]. Semantical descriptions are harder to
define and are often based on formal theory, such as CSP in WRIGHT [4] or protocols in Sofa [35]. Protocols allow
component programmers to define the valid sequences of service invocations through regular expressions. For example,
if a port provides three services related to network communications, protocols can be used to describe that the open:
service must be invoked first and one time, then the send : service, and finally the c1ose service must be invoked to
finish the interaction.

Interface compatibility: In ArchJava [36], Component] [9], Fractal [11], a port that requires an interface I can only
be used by a port that provides an interface I, where the type defined by I is a super-type of the one defined by I5.
Validation is achieved through typing rules on interfaces: “[...] types stand for semantical specification. While the
conformance of an implementation to a behavioral specification cannot be easily checked by current compilers, type
conformance is checkable. By simply comparing names, compilers can check that several parties refer to the same
standard specification.” [37]. Using these kind of interfaces implies that independently developed software components
have to be defined using type-compatible interfaces in order to communicate. Depending on the type-compatible relation
between interfaces, it will break the independently developed property of components. It is exactly what happens in
most COLs that are Java extensions because they rely on the Java type system which is a named type system in which
the sub-typing relation of interfaces is explicitly declared in their definition. Structural type systems [38] offer better
decoupling since the subtype relationship is computed from the structure of interfaces. But structural type systems are
less expressive than named type systems (such as Java). For example, expressing that “a component requires a Stack”
is more expressive than expressing that “a component requires two services push: and pop” because it is not sure
in the second case that it is exactly a stack that is needed. In the first case, there is a need for a global stack definition
and the defined component will only be able to communicate with components that have been defined using the same
stack definition such as “a component that provides the stack capabilities”.

In ScL, an interface describes the possible interactions that can be achieved through a given port. Interfaces document
the component and enable the automatic validation (static or dynamic) of the component uses. SCL interfaces can be as
complex as we could imagine in order to capture the semantical aspects of components. The most basic and necessary
interfaces are service signature sets and a programmer defines the interfaces of provided ports in order to choose the
services that he wants to provide through a port. But the interfaces of required ports can be automatically set up on a
component during its instantiation by analyzing the implementation of its provided services. Nevertheless, it is hidden
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¢ : PasswordManager

Interface Provided Ports Required Ports
: "generate a pwd with lower cases and digits" P ‘Generator
i generatePwd: T

Randomizer
"generate a digits only pwd"
N . Checker
© generateADigitsOnlyPwd: "return a random number in [1,26]"
T . getRandomNumber

1, Vié\rlalridrz

Fig. 3. The architect vision of a component c, instance of the component descriptor PASSWORDMANAGER. Ports represented by squares on the
component boundary. Triangles designate the direction of service invocations.

for the architect that only knows the external features of component i.e. its ports and their associated interface as shown
by Fig. 3.

5. Service invocation

In SCL, components communicate by service invocation through their ports. The syntax and semantics of service
invocation it not clearly defined in existing COLSs as the message sending mechanism is in the object world. It is
certainly because COLs are object-oriented language extensions such as ArchJava or ComponentJ and use the message
sending mechanism.

A service invocation is similar to a message, it has a receiver, a selector, and arguments. But the receiver of a service
invocation is a port that indicates through which port the service invocation is done and the selector a service names.
Fig. 4 shows examples of service invocations. Since SCL uses the Smalltalk syntax, the space character is used for
service invocation which is the same as message sending but the mechanism is not the same as it has been explained.
If the receiver port is a required port of a component c (e.g. on line 20 of Fig. 4), the invocation will be treated
by another component that will be known at connection time (cf. Section 6). The invocation of a required service
of a component supposes that this component has been connected to other components that provide this service. If
the receiver is a provided port of a component c, a service with a matching selector and defined on the component
description of c, is executed. For example, the service invocation on line 7 of Fig. 4 will produce the execution of
the provided service 1svValid:. If there is no corresponding service, the doesNotUnderstand: service of c is
executed with the invocation as argument. As all Smalltalk objects respond to the doesNotUnderstand: message,
all SCL components own the doesNotUnderstand: service.

Internal service invocations: How to invoke a service that is defined but not provided by any port of the component
such as the getRandomCharacterWithNumbers : service? We call these kind of services internal services. They
are useful to organize the internal code of a component but cannot be provided. Since these services are not provided
nor required, it is not possible to invoke them through a port. We are not aware that some COLs have raised the question:
What is self in a COL? In SCL, all components have an internal provided port named self. An internal port or
private port cannot be accessed outside of its component. The self port of a component automatically provides all the
services that are defined in its component Descriptor. The invocations on lines 5 and 14 of Fig. 4 are then regular service
invocations.

Default port: We add that all components have port named default that provides all the provided services of the
component. The services provided by this port can be restricted. This port is convenient because when a component
is used as the receiver of a service invocation, this is exactly the same as if its default provided port have been used
(e.g. Fig. 5).

6. Component connection

COLs propose one main mechanism for COP: the connection of components. A component ¢ can invoke the services
of another component d, only if ¢ and d are connected. Component communications are possible by component con-
nections. Unanticipated is the key-adjective attached to connection that makes component-based software worthwhile.
Unanticipated means that a programmer defines a component ¢ with a design for reuse goal, and he must make no other
assumptions than what he declares in the interfaces of c¢. The programmer does not know the concrete components
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PasswordManager >>generatePwd: size

2 | 7”Generate a size character long password with lower cases and digits”
| generatedPwd i |

4 ” L. ”

i := self getRandomCharacterWithNumbers: true

6 ” L ”

(Checker isValid: generatedPwd)

8 ifTrue: [ “generatedPwd ]

ifFalse: [ ~“Generator generatePwd: size ]

10
PasswordManager >>generateALowerCasePwd: size
12 | ”Generate size character long password with lower case”
” ”
14 i := self getRandomCharacterWithNumbers: false
” ”
16
PasswordManager >>getRandomCharacterWithNumbers: b
18 | "returns a random character that is a lower case or a digit according to b”
” ”»
20 i:= Randomizer getRandomNumber.
” ”
22
PasswordManager >>isValid: aPwd
24 | returns true if the password is too easy”

” ”

Fig. 4. Partial implementations of the PASSWORDMANAGER services.

c := PasswordManager new.
c isValid: ’aaaa’.
P := c generatePwd: 4.

Fig. 5. Service invocations through the default port of a component.

that will be connected to ¢, later on by the architect. Another mechanism is proposed by COLSs: the composition of
components. Composition is used to create a new component called a composite out of existing components. In this
section, we present these two mechanisms of connection and composition. We also explain that composition is just a
subtle variation of the connection mechanism.

6.1. Connection

The connection mechanism connects components through their ports. It is often said that two components ¢; and
¢y are connected if at least one port of ¢; is connected to one port of ¢». Connecting components require to be able
to connect ports. This could be achieved using language primitives or using first-class entities named connectors.
Connectors are architectural building blocks used to model interactions among components and rules that govern those
interactions [17]. The connection mechanism is provided through various forms and semantics in actual COLs. Let us
examine the two solutions of ArchJava and Fractal that inspired our SCL solution.

ArchJava Aldrich et al. [36] provide a connect primitive that takes a set of bi-directional ports of components.

connect c_l.p_1,c_2.p_2,...,c_n.p_n;

Semantics of this connect primitive is that when a required service of a component ¢; is invoked through its port p;, the
service to be executed is searched in the set of services provided by ports p1, ..., p,. If the connect instruction has not
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a connection

Fig. 6. The general form of a SCL connector.

failed, there is exactly one compatible service. The ArchJava mechanism is useful to easily express n-ary connections.
ArchJava also allows the architect to define its own connector classes that can be used to fix the connection semantics.

connect c_1.p_1, c_2.p_2 with TCPConnector;

Fractal Bruneton et al. [11] provide a binding primitive named bindFc that binds one required port (named a client
interface in Fractal) with one provided port (named a server interface in Fractal).

cl=new C1();
c2 =new C2();
cl.bindFc( "pl ", c2.lookupFc("p2 ")),

More complex connections can be achieved in Fractal by using binding components. ““A binding component is a
normal Fractal component whose role is dedicated to communication between components. Binding components
are also called connectors: hence Fractal does support connectors, although this concept is not a core concept
here, as component or interface.” [11]. In Fractal, n-ary connections require that the architect defines a binding
component with exactly the right number of ports. It seems difficult with this connection mechanism to support
dynamic n-ary connections.

Before presenting the SCL connection mechanism, it is important to note that a connection mechanism must ad-
dress mismatches. Connection mismatches are an identified consequence of unanticipated connections [39]. These
mismatches occur when we want to connect components that semantically fit well but their connection is not possible
because they are not plug-compatible. Mismatches can be solved in whole generality by defining dedicated components
as specified by the adapter design pattern [21]. Another solution is to put glue code in connections (e.g. in connectors) in
order to adapt components communications. A connection mechanism must tackle this issue and makes the definition
of adapters easy or useless thanks to glue code.

In ScL, the connection mechanism relies on connectors. Since we want SCL to be a simple language, we choose that a
connector is a component whose role is dedicated to communication between components such as binding components
in Fractal. SCL connectors help to solve mismatch problems easily and enable the definition of n-ary connections.
All connectors have the same form as CONNECTOR that is shown on Fig. 6. A connector is composed of two sets of
ports named sources and targets, and glue code that uses these ports to establish the connection. All the service
invocations sent through source port will be treated by the glue code of the connector.

Fig. 7 shows an example of binary connection between a PASSWORDMANAGER component and a RANDOMNUMBER
GENERATOR component. This connection satisfies the required service of the PASSWORDMANAGER through its
Randomizer port, using the service rand provided by the RANDOMNUMBERGENERATOR through its Generator
port. Since connectors are regular components, the architect has to define a component descriptor for the connector that
is used to establish the connection. However, SCL proposes simpler syntaxes. For example, by instantiating an existing
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pm : PasswordManager rng : RandomNumberGenerator

Generator

¢ : BinaryConnector
Randomizer Generator

——————— >| gluecode |------

Checker Sources Targets

Fig. 7. A binary connection between two components in SCL.

pm := PasswordManager mnew.
rng := RandomNumberGenerator new.
c := BinaryConnector new

source: (pm port: #Randomizer)

target: (rng port: #Generator)

glue: [ :source :target :serviceInvocation |
“(target rand * 26) asInteger
1.

c connect.

Fig. 8. Connection of two components using a customized BINARYCONNECTOR.

cl := Cl1l new.

c2 := C2 new.

(c1 port: #r1) connectTo: (c2 port: #p2).

(cl port: #r1) connectTo: (c2 port: #p2) glue: [ :s :t :m | t fool.
(cl port: #r1) connectTo: (c2 port: #p2) with: #TCPConnector.

Fig. 9. User friendly definitions of simple connections in SCL.

ScL connector descriptor, such as BINARYCONNECTOR, and adapting it by setting its sources, its targets and the glue
code, as shown in Fig. 8.

Glue code is represented here by a Smalltalk block [40]. The parameters of this block are always the sources, the
targets, and the current service invocation that has been received by a source port and must be transmitted through a
target port. Of course, a BINARYCONNECTOR has only one source and one target. In the glue code of this example, the
result of the rand service is adapted since the getRandomNumber is expected to return a number in the interval
[0, 26] while the rand service returns a number in the interval [0, 1]. Despite the fact that this is a simple example,
it is important to note that connecting independently developed software components must deal with these kinds of
problems. SCL connectors tackle these adaptation issues thanks to glue code that cannot be written in components.
The last line of code activates the connection by invoking the connect service of the connector ¢ which makes him
execute glue code for each invocation received through one of its source ports. Fig. 9 shows some convenient syntax
for simple connections. In the two first connections, a BINARYCONNECTOR is instantiated with the default behavior that
forwards all service invocations coming from the source port to the target port and to return the result back. In the third
connection, a TCPCONNECTOR is used to connect these two ports.

We propose in SCL a small library of connectors based on the taxonomy of software connectors [ 18] that has eight kinds
of connectors that have been identified. For example, the BINARYCONNECTOR is a connector of the call connector family
that is dedicated to service invocation connections. In this family, there is for example, the BROADCASTERCONNECTOR
that broadcasts each service invocation to all targets, or the FIRSTRESULTCONNECTOR that returns the first non-nil result
by sending invocation successively to each target. Of course, new connectors can be defined.
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cl:Cl c2:C2 c3:C3
pl 2 p2 3 p3

—{)

Fig. 10. Three connected components in SCL.

c3:C3

cl:Cl c2:C2

Fig. 11. A composite component.

ComponentDescriptorBuilder new: #C3
requiredPortNames: ’r3’
providedPortNames: ’p3°’.

C3>>init
lcl c2]|
cl := Cl1l new.
c2 := C2 new.
(c2 port: #r2) connectTo: (cl port: #pl).
r3 setPrivate: true.
r3 connectTo: (c2 port: #p2).

Fig. 12. Definition of a composite component descriptor in SCL.

6.2. Composition

The composition mechanism is used in COLs to build composite components out of components and connections.
Composite components are useful to abstract over complex systems, provide bigger reusable software entities that hide
implementation details. All recent component models [9—11] provide a composition mechanism generally based on the
connection mechanism to create composite. This mechanism is provided through various forms in existing languages,
e.g. the compose primitive in ComponentJ [9], composite components in Fractal or aggregation and containment in
(D)COM [24].

Composition is related to encapsulation in the component world. For example, Fig. 10 shows an example of three
connected components ¢y, ¢2 and c3.

If these components were objects, we could say that ¢3 is a composite object that contains ¢;. In the component
world, this is not true because c» may be accessible to other components than c3. The components used in a composite
(also called its sub-components) are internal and exclusive to their composite. In our example, c3 can be considered as
a composite if ¢; and ¢, are internal and exclusively used by c¢3 and if r3 is an internal port of ¢3. According to these
changes, a simple drawing shift shown by Fig. 11 reveals the well known face of composite components.

Fig. 12 shows the SCL code needed to build the composite component c3. The two sub-components c¢; and ¢, are
instantiated and connected in the init service of ¢3. The init service of a component is always invoked after its
instantiation to initialize it. ¢3 has an internal port 73 connected to the port py of ¢>.
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c:C
a:A
pa
- foo
\ﬂwardConnectol‘>> pc
e
b:B g
b ......
P bar
baz
baﬁ

Fig. 13. Service invocation forwarding using a FORWARDCONNECTOR.

ComponentDescriptorBuilder new: #C
requiredPortNames: ’°
providedPortNames: ’pc’.

C>>init
la bl
a := A new.
b := B new.
pc provides: {#bar. #bazl}.
ForwardConnector new
sources: {pc}
targets: {(a port: #pa). (b port: #pb)}
glue: [ :sources :targets :serviceInvoc |
(serviceInvoc selector == #bar) ifTrue:[
“targets first perform: #foo
withArguments: servicelnvoc arguments
] ifFalse: [
(serviceInvoc selector == #baz) ifTrue: [
“targets second perform: servicelnvoc
1 1 1; connect.

Fig. 14. Using a connector to forward services in a composite component.

Figs. 13 and 14 show how a composite exports the services provided by its subcomponents. A FORWARDCONNECTOR
is used to forward service invocations received through a provided port to another one. All mismatch problems (e.g.
name conflicts, adaptation) can be addressed in this regular connector.

7. Separation of concerns in component architectures

Separation of concerns [41] principle states that a software system should be modularized in such a way that different
concerns can be specified as independent as possible in order to maximize understandability and maintainability.
Some concerns are difficult to encapsulate in standard software units (components or objects), such as management
of transactions, logs, security, etc. To tackle the problem of the scattered code of these concerns, aspect-oriented
programming [20] introduces aspects. An aspect is the modularization of a crosscutting concern. Two approaches are
distinguished in AOP. Asymmetric approaches, such as AspectJ [42], HyperJ [43], or JAsCo [44], consider aspects as
different entities from those that compose the base system (objects or components). Symmetric approaches, such as
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pm : PasswordManager

Generator

Randomizer -_ 1: Logger

| FileLogger

<<beforeServicelnvocation>>
Checker i -

| — .
Vv ///’/
¢l : AdviceConnector

Fig. 15. A LOGGER component used as a crosscutting component using an ADVICECONNECTOR.

| pm rng 1 |
2 (7.7
1 := Logger new.
4
cl := FlowConnector new
6 pointcuts:
{(pm port: #Generator) -> #beforeServiceInvocation.
8 (pm port: #Checker) -> #beforeServiceInvocation}
targets: {(1 port: #Logger)}
10 glue: [ :sources :targets :si |
targets first log: ’cl : ’, si receiver, ’ ’, si selector
12 ]; connect.
14 | c2 := FlowConnector new
pointcuts: {(pm port: #Generator) -> #afterServiceInvocation.
16 (pm port: #Checker) -> #beforeServiceInvocation}
targets: {(1 port: #Logger)}
18 glue: [ :sources :targets :si |
targets first log: ’c2 : ’, si receiver, ’ ’, si selector
20 ]; connect.

Fig. 16. ScL code of connections that uses the ADVICECONNECTOR.

Fractal-AOP [45] or FAC [46], try to use the same entities to model the base system and aspects. This second approach
is better for reusability because if aspects are modeled as components, they can be used as regular components as well
as aspects. A lot of approaches try to merge aspect-oriented and component-oriented approaches in a symmetric way
to benefit from the modularity properties of both approaches.

In SCL, we support some aspect-oriented features in a symmetric way. Aspects are regular components and weaving is
entirely determined by connections established using special connectors and port characteristics. The joint points—well
defined points in the execution of a program where aspects can be woven—are generally [42,44-46] method calls,
method call receptions, method executions or attribute accesses. All the joint points that are available in aspect-oriented
languages built on the top of object-oriented languages are not suitable for a COL. For example, in Aspect], it is possible
to specify joint points on private features of a class such as attribute accesses. Since encapsulation is key property of
COLs, we only integrate in SCL the joint points that do not break this property. We choose to support the following joint
points: before/after/around service invocation receptions by a port or before/after/around the connection/disconnection
of a port. Fig. 15 shows an example that uses an ADVICECONNECTOR and a regular component 1 to log the service
invocations received by our PasswordManager component.

In an ADVICECONNECTOR, each source port is coupled with a keyword (beforeServicelnvocation, beforeConnection,
...). At execution time, when a service invocation arrives on a port, this invocation is transmitted to each of its
connected ADVICECONNECTOR according to the standard order (around, before, after). A port is able to order its
connected connectors since they declare which joint point they are interested in with a keyword. Fig. 16 shows the SCL
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(pm port: #Generator) generatePwd: 10.
(pm port: #Checker) isValid: ’aabbcc’.

7The resulting log file contents :
cl : #Generator #generatePwd :

c2 : #Generator #generatePwd :

c2 : #Checker #isValid :

cl : #Checker #isValid:”

Fig. 17. Two service invocations and their result that illustrate the execution path.

code needed to create the connector ¢ represented on Fig. 15 and also shows the code of a connector ¢;. Thanks to ¢,
the 1og service of the LOGGER is executed before service invocations through Generator and Checker. Thanks to
¢z, the 1og service of the LOGGER is executed after service invocations through Generator and before those through
Checker. There is a conflict because multiple glue codes shall be executed before a service invocation on the same
port (e.g. on lines 8 and 16). To prevent these conflicts, we introduce a priority rule stating that the glue code of the
last connected connector will be executed first. This priority rule is illustrated in Fig. 17 that shows the results given
by two provided service invocations of our connected PASSWORDMANAGER. These service invocations supposes that
the Randomizer port of the PASSWORDMANAGER has been connected as previously described in Fig. 7.

8. Publish/subscribe communication between components

Triggering operations as a consequence of state changes in a component is related to observer design pattern [21]
or procedural attachments [47]. In frame languages, it is possible to attach procedures to an attribute access which is
then executed each time this attribute is accessed. These kinds of interactions are particularly used between “views”
(in the MVC sense [48]) and “models”. More generally, the publish/subscribe [49] communication protocol is a very
useful communication pattern to decouple software entities as said in [50]: “The main invariant in this style is that
announcers of events do not know which components will be affected by those events”. In component-based languages,
this must be done in an unanticipated way and with strict separation between the component code and the connection
code to enable components reuse. However, existing proposals fail to solve these two main constraints. Connecting
components based on event notifications always require that component programmers add special code in components.
We identify the two following problems.

Publishers have to publish events: The component programmer has to add special code such as event signaling
in components. For example, in the JavaBean model, the programmer has to manage explicitly the subscribers list
(add and remove subscriber methods). In the CCM (corba component model) [51], the component programmer has to
manage the event sending by adding a special port to his component that is called an event source, and sends events in
the component code through this port. In ArchJava, the component programmer declares broadcast methods (required
methods that return void) and invokes them in the component code to signal events. This method is then connected by
the architect to multiple provided methods of subscriber components that receive the events. In all cases, the architect
cannot reuse a component if its programmer has not added special code in the component to signal the event that he
needs.

Emitters have to receive events: In the CCM, the component programmer has to provide its components with event
sinks that are special ports to receive events. An event sink can be connected by the architect with one or more event
sources if they share a compatible event type. This mechanism is more limiting than the ArchJava or the JavaBeans
one where the subscriber components have only regular methods that are invoked using connections.

In ScL, there are already two ways to enable publish/subscribe connections:

(1) The component programmer integrates the event signaling in the component code. Event signaling in SCL can be
done, similarly as in ArchJava, by invoking a required service in the publisher component and regular connections
between publishers and subscribers. This solution supposes that the programmer has signaled specific events in
the component.

(2) If no event signaling has been integrated by the programmer in the component code, ADVICECONNECTORS may
be used by the architect to detect the events that he needs. For example, if the architect wants to detect when a
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Counter

Counting ) - |- -, Count

nac:value:oldValue:
-+ -!  nbc:value:oldValue:

Fig. 18. A COUNTER component with a value property.

ComponentDescriptorBuilder new: #Counter

2 requiredPortNames: ’°
providedPortNames: ’Counting’
4 propertyNames: ’Count’.

6 | Counter>>init
Counting provides: {#dec. #incl.

8 self addAttribute: #value.
Count read: [ “value ] write: [ :nv | value := nv].
10 (self accessPort0Of: #Count) setValue: O.

12 | Counter >>count
“(self accessPort0f: #Count) getValue
14
Counter >>count: v
16 “(self accessPortOf: #Count) setValue: v

18 | Counter >>inc
self count: (self count + 1)
20
Counter >>dec
22 self count: (self count - 1)

Fig. 19. A Counter component class with a property.

stack becomes empty (an EmptyStackEvent), he can use an AFTERCONNECTOR on the port that provides the pop
service and test in the glue code if the stack still contains elements to detect such situation.

If any of the above solution are available, it is not possible for the architect to establish a publish/subscribe connection
without modifying the source code of the component. To prevent this issue, we integrate properties in SCL that export
the state of a component. This property concept enhances the idea of property of the JavaBeans component model [23]
with strict separation between the component code and the connection code. For example, a COUNTER component has
a property named count. This means that it is possible to get and set a value to the count property of the COUNTER.
An example of component with a property is depicted on Fig. 18 and the corresponding SCL code is shown on Fig. 19.

When a programmer declares a property, the component is automatically equipped with two ports: an access port and
anotifying port. The property access port is a provided port that provides, at least, getter and setter services using the two
blocks given during the property declaration (e.g. on line 9 in Fig. 19). The notifying port is a required port, which is used
to invoke services during property accesses. These services are defined in the SCL component model. For example, the
servicenac :value:oldvValue: (nacisanacronym for Notify After Change) is invoked after a property is modified
with the new and the old value of the property as parameters. Another service, the nbc : value:newValue: (nbcis
an acronym for Notify Before Change) service, is invoked before the property is modified with the current value and
the next value of the property as parameters. In fact, all defined services have two main characteristics: when they are
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gui := Label new.
counter := Counter new.
cl := BinaryNACConnector new

source: (counter notifyPortOf: #Count)
target: (gui port: #Displaying)
glue: [ :source :gui :si |

gui displayText: (si arguments second).
]; connect.

c2 := (counter property: #Count) on: #notifyAfterChange
targets: {gui port: #Displayingl}
glue: [:s :t :si | t first displayText: (si arguments second) ]

Fig. 20. A connection based on property notifications.

invoked (before or after the property modification) and what a connected component is able to do (nothing, prevent the
modification or change the property value). Fig. 20 shows the SCL code of two connections ¢ and ¢, based on properties
notifications. The first connector c; is created using the general syntax form and a BINARYNACCONNECTOR. This
connector filters incoming service invocations on the source port and only focuses on the nac:value:oldvalue
service. After each modification of the value property of the counter, the glue code of the connection is executed and
the GUI component is refreshed with the new value (the second parameter of the nac:value:oldvalue service).
c2 achieved the same connection as c¢; with a less verbose syntax.

ScL provides different kinds of connectors such as BINARYNACCONNECTOR, BINARYNBCCONNECTOR,
PROPERTYBINDERCONNECTOR ensuring that the value of the target property is always synchronized with the value
of the source property. To sum up, component properties are a useful means for component programmers to directly
express the external state of components instead of using syntactical conventions and for architects that can use them
to connect components.

9. The ScL implementation

The actual prototype of SCL is implemented in Squeak [52]. Squeak is an open and highly portable implementation
based on the original Smalltalk-80 system [40]. We choose Smalltalk because prototyping is easier and faster than
in statically typed languages. It is recognized that dynamic languages offer a lot of advantages [53]. Smalltalk is
also a powerful reflective language that enables deep language modifications using message interceptions, addition or
modification of meta entities, etc. We also choose Smalltalk because most existing COLs are Java extensions. Using
Smalltalk could reveal that existing COLs are more constrained by Java than by the component paradigm.

9.1. The SCL bootstrap

The bootstrap of SCL is done with the ComponentDescriptor and Component classes. In the first version,
we would like to implement SCL without extending the class concept since we do not want to have some class features
(superclass, class organization, ...) in our component descriptors. We created a new bootstrapping kernel by defining
Component and ComponentDescriptor as Object subclasses. We succeed to set ComponentDescriptor
as the metaclass of Component. It was also necessary to implement our new method (basicNew is defined in the
Behavior class). The problem was that all Squeak tools (code browsers, test runner, ...) were not usable with our
component descriptors since they were not classes. In the actual prototype, we extend classes to support additional
features of component descriptors. We do not use (it is just for squeak compatibility) the features that should not be in
component descriptors.

9.2. The implementation of the SCL model

Fig. 21 shows a simplified scheme reflecting the current implementation of SCL. A component descriptor
is represented by a class whose subclass is Component. Component descriptors are instances (indirect instances
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*********** =| Object class Slqueak
. classes

describes » [ — owns
Interface Port Component [~~~ =~~~ 7~ =| Component class
1 * *
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‘ProvidedPort ‘ ‘RequiredPorl ‘

- Scl
. Implementation

‘SelfPort ‘ ‘DefaultPort ‘

Generator

Randomizer Source Generator Default

Scl
Component
Descriptors
Checker BinaryConnector RandomNumberGenerator DefaultComponent
PasswordManager /:\ A DescriptorBuilder
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| | 7 ’
| | 7/ /7
: ; Scl
pm c mg ComponentDescriptorBuilder Components

Fig. 21. Overview of the current implementation of ScL.

because of the Smalltalk parallel hierarchy) of the class named Component class. ComponentDescriptor
Builder is a component, an instance of DEFAULTCOMPONENTDESCRIPTORBUILDER. All component descriptors are
created using the ComponentDescriptorBuilder component which hides that classes are generated. Other
features such as ports, interface, property are regular Smalltalk classes. It is not a problem since it is hidden to SCL
programmers.

9.3. Discussion on issues in the current implementation

The first issue is related to Smalltalk that always enable the programmer to break object encapsulation by using the
meta-level. If the SCL programmer uses Smalltalk methods, he is able to circumvent the SCL mechanisms. However,
because we do not implement SCL with an interpreter or a compiler but directly with Smalltalk constructs, it is easier
to change and evolve the implementation. This issue could be solved by creating an interpreter for SCL.

The second issue is close to the former one. Since we use the Squeak interpreter, service invocation is achieved using
the message sending mechanism. This causes problems when a service invocation is sent through a port. If the service
selector of the invocation corresponds to selector of one of the methods defined on the Port class, it is the method
that will be executed and not the service of the connected component.

Another potential issue is the efficiency since we have reified all entities of SCL, and also because we do not
focus this property. The execution path of a service invocation is the following: (1) the service invocation is received
by the port of sending component and transmits it to the connector (it may have more than one connector), (2) the
connector executes its glue code and transmits the service invocation to the port of the receiver component, (3) this
port transmits the invocation to its component, (4) the component executes the method, (6) the result goes back
through the same way. It is surely non-efficient but it is necessary if the glue code does some adaptation. A little
optimization is possible if the default glue code (that simply transmits the invocation) is used. In this case, no connector
is instantiated and the port of the sending component directly transmits the invocation to the port of the receiver
component.
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composite component (Scl, Archjava, Fractal, Component])

component (Scl) port (Scl, Archjava, UML 2.0)
primitive component (Fractal) external interface (Fractal)
part (UML 2.0)
g connection (Scl) .1. delegation connector (UML 2.0)

connection (CCM) connector (Scl, Archjava) interface (Scl, UML 2.0)

binding (Fractal) binding component (Fractal) port interface (Archjava)
assembly connector (UML 2.0) adapter (Javabeans)

Fig. 22. Graphical comparison between ScL features and existing abstractions in some component models.

10. Synthesis and related work

Short summary of SCL features: An SCL component provides and requires services, receives, and sends service
invocations through its ports which are described by interfaces. An interface is attached to a port and specifies which
services are invokable through this port and the constraints that govern their invocations (service signature compliance,
contracts, protocols, ...). Components must be connected through their ports using connectors in order to satisfy their
required services. A connector is a component whose role is dedicated to communication between components. There
are different kinds of connectors such as advice connectors that enable using components as a crosscutting concerns.
Components properties represent externalized state of a component and they are the support of connection based on
value changes.

ScCL is inspired from many existing features of COLs or models such as ArchJava [10,36], Fractal [11], CCM [51],
JavaBeans [23], FAC [46], Fractal-AOP [45], Component] [9], and others [8,13,14] SCL also integrates older ideas
such as procedural attachments [47]. Fig. 22 shows a graphical synthesis (adapted from [54]) of the main SCL features
compared to architectural elements available in some existing models.

The work presented in this paper is related to many different research topics.

Component-oriented programming (COP): Many propositions have been done to support COP using object-oriented
frameworks or object-oriented language extensions. SCL tries to go a step further with new language with its own
abstractions and control structures. There is few work with the same goal but Lagoona [8] can be considered as one
of the first language designed with this objective. Lagoona is based on the idea that modules that contain classes and
message definitions are components. Lagoona proposes a new mechanism called generic message forwarding that can
be put in relation with service invocation in SCL. However, Lagoona lacks basic component-oriented features (such as
port, connector, etc.) and is therefore more restrictive than SCL.

Understanding or teaching COP: COP is not much used compared to object-oriented programming which is actually
the dominant paradigm. Although most of COLs are still research prototypes, there is a need to explain, teach, and
demonstrate what is COP using simple and uniform languages as Picolo [13], BoxScript [14] or SCL. Picolo and
Boxscript are frameworks, respectively, written in Python and Java.

Software architecture: Expressing software architecture in terms of connected components is the main objective of
architecture description languages (ADLs) [55]. Most of actual features such as component, port, interface, connector
have been originally proposed by ADLs. However, most of ADLs are not programming languages. For example,
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WRIGHT [4] is an ADL based on the formal language called CSP. Although a WRIGHT description is formally defined,
it is not executable and must be re-written using a programming language.

Separation of concerns: Separate concerns in different modularity entity is important on one hand for reuse (a well
modularized concern can be reused) and on the other hand for software architecture evolution (there is no scattered
code). Separating concerns is difficult either in object-oriented languages and COLs. Aspect-oriented languages, such
as Aspect] [42] or HyperJ [43] provide a suitable solution to tackle this issue by integrating some new features (aspect,
advice, . . .) in existing object-oriented language such as Java. COL extensions have also been proposed. Symmetrical
approaches, such as FAC [46] or Fractal-AOP [45] seem to be more interesting than others because aspects are regular
components. The specificity of SCL is that nothing is written in a component (no special interface has to be implemented).
The architect decides to use a component as an aspect component and uses the special connector ADVICECONNECTOR.
ScL does not support all AOP features because we think that some of them break the component encapsulation.

11. Conclusion and future work

COP will be only possible if new languages are proposed with concepts and mechanisms that enable the unanticipated
connection of independently developed software components. In this paper, we have presented SCL a simple, uniform,
and concrete COL. The SCL core results from a study of existing languages and of a selection of features that seemed
fundamentals. SCL also proposes its own mechanisms such as a general connection mechanism based on connectors.
Connectors are useful to solve component connection problems. In SCL, it is possible to create a wide variety of
connections: standard required/provided connections, “aspect-like” connections and “publish/subcribe” connections
without requiring any code in components thanks to component properties. Properties are declared by the programmer
and represent external state of components. A software architect is then able to express connections based on properties
notifications.

Ongoing researches on SCL are focused on three areas. First, extending the component model of SCL. For example,
what is exactly a port composed of other ports (also known as composite ports or multi-ports)? The answer to this
question is important because it could simplify the actual property model and connectors that have sources and target
ports. Second, we plan to provide a faster and more complete version of the prototype of SCL. For example, we are
wondering if it is necessary to write an interpreter in order to allow syntax changes between SCL and Smalltalk. In the
new version, we want to integrate tools dedicated to COP such as a visual component editor. And finally, developing
large-scale applications using SCL will certainly show us interesting results about the usability of SCL compared to
object-oriented languages and the few existing COLs. This comparison would be interesting but it requires to code the
same application in different languages.
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