
Scl:
A Simple, Uniform and Operational Language

for Component-Oriented Programming
in Smalltalk

Luc Fabresse, Christophe Dony, and Marianne Huchard

Lirmm, UMR 5506 CNRS et Université Montpellier II
161, rue Ada

34392 Montpellier Cedex 5
{fabresse,dony,huchard}@lirmm.fr

http://www.lirmm.fr

Abstract. Unanticipated connection of independently developed com-
ponents is one of the key issues in component-oriented programming.
While a variety of component-oriented languages have been proposed,
none of them has achieved a breakthrough yet.

In this paper, we present Scl a simple language dedicated to
component-oriented programming. Scl integrates well-known features
such as component class, component, interface, port or service. All these
well-known features are presented, discussed and compared to existing
approaches because they vary quite widely from one language to another.
But, these features are not enough to build a component language. In-
deed, most approaches use language primitives and shared interfaces to
connect components. But shared interfaces are in contradiction with the
philosophy of independently developed components. To this issue, Scl

provides new features such as a uniform component composition model
based on connectors. Connectors represent interactions between indepen-
dently developed components. Scl also integrates component properties
which enable connections based on component state changes with no re-
quirements of specific code in components.

Keywords: component-oriented programming, unanticipated composi-
tion, connector, component property.

1 Introduction

Component-based software engineering is widely investigated by research and in-
dustry. This interest is driven by the promise of improving current software devel-
opment practices in significant ways such as reusability and extensibility [23,45].
Although many models, languages and tools have been proposed, it is still dif-
ficult to apply component-oriented programming (COP) in practice. Most of
these languages are not executable and dedicated to software specification such

W. De Meuter (Ed.): ESUG 2006, LNCS 4406, pp. 91–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

92 L. Fabresse, C. Dony, and M. Huchard

as UML 2.0 [21] or architecture description such as Wright [5,4]. COP is cur-
rently carried out using object-oriented languages. These languages do not offer
specific abstractions to ease COP and have to be used in a disciplined way to
guarantee a COP style.

Component-based software engineering needs component-oriented languages
(COL) as well as transformation of models [37,12] into executables or writing
programs by hand [16]. Among the approaches on components, component-
oriented languages have been proposed in order to support COP such as Compo-
nentJ [42], ArchJava [2], Julia/Fractal [8], Lagoona [16], Piccola [1], Picolo [30],
Boxscript [29], Keris [48] or Koala [46]. The contributions of these languages are
new or adapted abstractions and mechanisms that vary quite widely from one
proposal to another such as connection, composition, port, interface, connector,
service, module, message, etc. This is quite normal with such an emerging do-
main, but there is a need for a closer analysis: which mechanisms are essential
(basic) and cannot be removed, which ones are (eventually) redundant? Which
are the key ones to achieve component composition? To a larger extent, all
these questions raise the issue of knowing which constructs and mechanisms are
the main identified features of component orientation (by analogy with object
orientation).

In this paper, we propose Scl that stands for Simple Component Language
which is the result of our study and research of component-oriented program-
ming. Scl is built on a minimal set of concepts applied uniformly in order to
ease the understanding of key concepts of component-oriented programming.
Picolo [30] and BoxScript [29] are two languages that also target this goal of
minimality for simplicity. However, Scl integrates a more powerful and exten-
sible component composition mechanism which is one of the key mechanisms
of COP. In Scl, component composition relies on first-class entities represent-
ing connections, named connectors [43,33]. Connectors offer better decoupling
between the business code inside components and the connection code inside
connectors, and thus increase the reuse of components. Some COL already pro-
pose connectors such as ArchJava [2] or Sofa [6], but Scl connectors offer more
expressiveness by integrating ideas that come from aspect-oriented program-
ming [26]. Scl also proposes the concept of property to externalize component
state without breaking component encapsulation. Properties are the support of
a new kind of component communication that is based on changes of property
state. Properties ease the use of the publish-subscribe communication pattern
without requiring any special code in the publisher or the subscriber. We choose
Squeak, a Smalltalk implementation, to implement Scl because it is a dynamic
language that offers a suitable meta-object protocol that can be easily extended.
Although it is also possible to implement Scl in another language, we choose
to experiment COP in a dynamic context and we want to provide an easily
extensible language.

The paper is organized as follows. Section 2 presents basic ideas of component-
oriented programming. Section 3 details main characteristics of the Scl language:
component classes, components, ports, interfaces, connectors and properties.

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 93

Section 4 presents the current implementation of Scl in Squeak. Section 5 dis-
cusses related work. Finally, Section 6 concludes and presents future work.

2 Component-Oriented Programming: What, Why and
How ?

Component-oriented programming (COP) does for decoupling software entities
what object-oriented programming has done for object encapsulation and inheri-
tance, or aspect-oriented programming has done for crosscutting concerns. It
provides language mechanisms that explicitly capture software architecture struc-
tures. COP is based on the idea stating that software can be built by plugging
pieces of software called components. The term “component” means many dif-
ferent things to many different people depending upon the perspective taken on
the development. For example, design patterns [17], functions or procedures [31],
modules [16], application frameworks [45], object-oriented classes [22], and whole
applications [34] are considered as components. Similarly, there are many different
definitions for the term component given in the literature [7,20,45]. In this paper,
we use the following definition : “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to composition
by third parties” [45].

Component-based software development focuses on better reuse and easier
evolution. A component must be independent of one particular context in order
to be reusable. Furthermore, reusing a component is better than creating it
from scratch because it has already been developed and tested. The evolution
and maintenance of a component software architecture may be easier than a
class hierarchy. This is because of the independent extensibility [45] property of
component-based software. Indeed, component-based applications are built out
of interconnected components and each component can evolve independently.

3 The Scl Language

In this section we describe Scl (Simple Component Language). We present and
motivate its main features and discuss the problems that arise when designing
a COL.

3.1 Component Classes and Component Instances

In object-oriented languages, the terms “class” and “instance” allow program-
mers to refer without ambiguity respectively to object descriptions in code and
to objects themselves as runtime entities. Although component-based languages
are generally built on a class/instance conceptual model, few of them spec-
ify the terms to denote respectively component classes and component objects.
Moreover, there is no widely accepted terms in component-oriented approaches
because there is not a unique definition of the component term. For example,

94 L. Fabresse, C. Dony, and M. Huchard

the two keywords component class in ArchJava and component in Compo-
nentJ denote a component class which can be instantiated. Component classes
are at the same time component descriptors, component instantiators and com-
ponent method holders such as in ArchJava. Few COLs have been proposed
with a prototype-based model i.e without descriptors such as in [47] where a
prototype-based language has been proposed on the top of Java in order to pro-
vide primitives to dynamically build, extend and compose software components
from Java objects. We think that the arguments for the use (or not) of classes is
similar in the component and object worlds and that both approaches are worth
to be considered. In Scl, we have chosen a class/instance approach. A compo-
nent is a runtime entity and it is an instance of a component class. Component
classes are written by the component programmer in order to create off-the-shelf
reusable pieces of software while the software architect creates an application by
choosing some component classes and then connecting instances i.e components.
Figure 1 shows the code to create a component class and the code to create a
component using the new message.

SCLComponentClassBuilder c r ea t e : #MyComponent .
. . .
c := MyComponent new .
. . .

Fig. 1. A component descriptor and a component instance

3.2 Component Provisions and Requirements

Component interfaces and services. As stated by Szyperski [45], a compo-
nent can only be accessed through well-defined interfaces. Component interfaces
enforce explicit context-dependencies and a high-level of encapsulation. A com-
ponent interface describes only a service or a group of services provided by a
component to other components. A component provides a lot of services through
different interfaces but its clients can only use those ones defined in the inter-
face which they are connected to. Component interfaces also specify the services
that are required by a component to be able to provide its own services. Basi-
cally, a service is a subprogram defined in a component, such as a method in
the object-oriented model. The term service is used to refer to a high-level func-
tionality. For example, a Network service is at least composed of four methods:
open: to initialize a network connection, close to finish the connection, send:
and receive to respectively send and receive data through an open connection.
Component-based languages propose different concepts to describe component
interfaces such as ports, interfaces, protocols, etc. In Scl, we choose to represent
component interfaces by ports described by interfaces. We argue that these two
concepts are enough to describe component interfaces.

Ports. Ports represent interaction points of a component such as in Arch-
Java [2] or ComponentJ [42]. The port construct has not the same definition and

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 95

characteristics in all COLs. For example in Picolo, ComponentJ or Fractal (ports
are called external interfaces in Fractal), ports are unidirectional because they
provide or require a set of services. In ArchJava or UML 2.0 [11], ports are
bi-directional and the component invokes external services and receives service
invocations through the same port. Required services through a port have to be
provided by the same component. For example, a component that requires a Net-
work service through one of its ports, expects services open: , send:, receive
and close, will be executed by the same component. However, provided services
are accessible to one or many other components. Providing and requiring ser-
vices through one port may result in limiting the use of the provided services
to only one component at a time. Scl integrates two kinds of unidirectional
ports: those ones for accessing required services and those ones for giving access
to provided services. A port has a name. A component can not have two ports
with the same name. A port name is used in the code to specify through which
port a service is invoked. A service is always invoked through a port by message
sending (the same term as in object world is used). Syntactically, the port is the
receiver but in fact, the real receiver of a message is always a component that
will be known at connection time. Note that it is worth to invoke a service that
the component itself defines. All components have a special internal provided
port named self that can not be accessed outside of the component. In this
context, the invocation self foo is equivalent to a service invocation that re-
quires no connection to be achieved and that executes the foo service of current
component. To sum up, an Scl component offers or requires services, receives
or sends service invocation, and can be connected through its ports as we will
see later in Section 3.3.

Interfaces. An interface describes the valid interactions through a port in or-
der to document the component or to enable the automatic validation (static
or dynamic) of the component uses and the connections. In COLs, these de-
scriptions vary from simple ones such as informal texts in natural languages to
complex ones such as formal descriptions. These descriptions are classified in
two categories: syntactic and semantic.

Syntactical descriptions are generally represented using interfaces (such as in
Java). An interface defines a named type describing a set of method signatures.
Validation of the use of a port relies on typing rules. For example, a port that
requires an interface I1 can be connected with a port that provides an interface
I2 where the type defined by I1 is a supertype of the one defined by I2. Using
interfaces implies that independently developed software components have to
refer to a common standard defined by interfaces in order to inter-operate. Other
solutions exist, such as structural type systems [10], that offer better decoupling
between component classes. But structural type systems are less expressive than
named type systems (such as with interfaces) as said in [9], “[...] types stand
for semantical specification. While the conformance of an implementation to
a behavioral specification cannot be easily checked by current compilers, type
conformance is checkable. By simply comparing names, compilers can check that
several parties refer to the same standard specification.”. For example, writing

96 L. Fabresse, C. Dony, and M. Huchard

that “a component requires a stack” is more expressive than writing that “a
component requires two services pop and push:” but in the first case there is a
need for a global stack definition.

Semantical descriptions are harder to define and are often based on formal
theory, such as CSP in Wright [5] or protocols in Sofa [40]. For example, pro-
tocols allow component programmers to define the valid sequences of service
invocations through regular expressions. In our last example of the Network ser-
vice, it is important to describe that firstly the open: service has to be invoked,
then the send: and receive services can be used, and finally the close service
must be invoked to finish the interaction.

Ports and Interfaces in Scl. We choose to decouple component classes and
avoid global definitions such as named interfaces. This is the reason why inter-
faces are service signature sets in Scl and not named interfaces. But, it is possible
to extend Scl to support more sophisticated interfaces as protocols. Figure 2
shows an example of component class with ports and Figure 3 shows the Scl code
needed to declare it. PasswordManager is a component class created by the
bootstrap method SCLComponentBuilder>>create: that creates an empty component
class. In its internal service named init, the PasswordManager is composed
of three ports: Randomizing is a required port since it is used to invoke exter-
nal services of the component; Generating and Checking are required ports
because they offer some services of the component and receive service invoca-
tions from third parties. Since we do not focus on static or dynamic validation
of connections, it is not mandatory to specify interfaces of required ports. The
same situation happens in dynamically-typed languages when method param-
eters are not described by a static type. However, interfaces of provided ports
are needed because they specify which services of the components are provided
through the port.

Interface

Generating "..."
i := Randomizing generateNumber.

"..."

Randomizing

generateADigitsOnlyPwd: size

generatePwd: size

PasswordManager

"..."
isValidPwd: aPwd

Checking

isValidPwd:

generatePwd:
generateADigitsOnlyPwd:

generateNumber

Required PortsProvided Ports

Fig. 2. A Scl component. Ports are represented by squares on the component boundary
and triangles designate the direction of service invocations. Ports are described by
interfaces which are service signature sets.

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 97

SCLComponentClassBuilder c r ea t e : #PasswordManager .

PasswordManager>> i n i t
s e l f addPort : (Sc lPort newNamed : #Randomizing r e qu i r e s :

(S c l I n t e r f a c e new with : {#generateNumber })) .
s e l f addPort : (Sc lPort newNamed : #Generating prov ides :

(S c l I n t e r f a c e new with : {
#generatePwd : .
#generateADigitsOnlyPwd :

})) .
s e l f addPort : (Sc lPort newNamed : #Checking prov ides :

(S c l I n t e r f a c e new with : {#isValidPassword : })) .

PasswordManager>>generatePwd : s i z e
” . . . ”
i := Randomizing generateNumber .
” . . . ”

Fig. 3. A component class declaration

3.3 Component Composition

There are two main mechanisms for unanticipated composition of components:
connection and composition1. Unanticipated is the key-adjective attached to
composition or connection that makes component-based software worthwhile.
To be composable, a component definition should only state what it provides
and what it needs and should make no assumption about which other concrete
components it will be composed with later on.

Connection. As said in [36], “a component is a static abstraction with plugs”.
In Scl, plugs of components are their ports. The connection is the mechanism
that connects component ports. The connection mechanism is provided through
various forms in actual COLs, e.g. the connect primitive and connectors in
ArchJava [3], the plug primitive in ComponentJ [42], connectors in Picolo [30]
or bindings in Fractal [8]. Connections are the support for the communication
between components and they enforce the decoupling between components which
can not communicate if they have not been connected.

Connection mismatches are identified consequences of unanticipated connec-
tions [41]. These mismatches occur when we want to connect components that
semantically fit well but their connection is not possible because they are not
plug-compatible. Mismatches can be solved in whole generality by defining ded-
icated components as specified by the Adapter design pattern [17]. There is a
need for glue code in connections to adapt components. A connection mechanism
must be flexible to make the definition of adapters useless.

Connecting components could be achieved using language primitives such as
plug in ComponentJ [42]. Other component models propose connections as first-
class entities named connectors such as Sofa [6] or ArchJava [3] and most of
Architecture Description Languages [32], such as Wright [5,4]. Connectors are

1 The term composition is used here for a mechanism that creates a new component
out of existing ones.

98 L. Fabresse, C. Dony, and M. Huchard

architectural building blocks used to model interactions among components and
rules that govern those interactions [43]. Unlike components, connectors may not
correspond to compilation units or deployment units. In Scl, SclConnector is
the most general form of connectors which is composed of two sets of ports named
sources and targets and glue code that only uses these ports to establish the
connection. SclCallConnector is the general connector dedicated to service
invocation connections as shown in Figure 4.

<<SclCallConnector>>

Required Provided
Ports

glue code

Sources Targets

Ports

Fig. 4. The general form a Scl connector

In a SclCallConnector, sources are required ports and targets are provided
ports. It is possible to define specialized connectors that provide a general pur-
pose glue code or restrict sources and targets. Among the various existing con-
nector types, there is one, SclBinaryConnector that restricts itself to one
source and one target. Figure 5 shows an example of binary connection between a
PasswordManager component and a RandomNumberGenerator compo-
nent. This connection satisfies the required service of the PasswordManager

through its Randomizing port, using the service generateNumber provided
by the RandomNumberGenerator through its Generating port. Figure 6
shows the code to establish this connection.

The glue code of a SclCallConnector is a Smalltalk block whose parameters
are the set of sources, the set of targets and the current service invocation (which
includes the source port, the selector and parameters) that has to be performed.
In the glue code of this example, the result of the rand service is adapted since the
generatedpassword is expected to return a number in the interval [0, 26] while
the rand service returns a number in the interval [0, 1]. Despite of the fact that
this is a simple example, it is important to note that connecting independently
developed software components must deal with these kinds of problems. The glue
code in connectors is a good place to tackle these adaptation problems. If no glue
code is specified in a SclBinaryConnector, the default behavior is to forward
all services that come from the source port to the target port and to return
the result. This is the same as the Fractal bind primitive or the ComponentJ
plug primitive.

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 99

PasswordManager

Checking
Sources Targets

Generating

Generating

Randomizing

RandomNumberGenerator

glue code

<<SclBinaryConnector>>

Fig. 5. A Scl connection of two components

Like the SclBinaryConnector, it is possible to build reusable connectors,
such as BroadcasterConnector, that broadcasts each service invocation to
all targets, or FirstResultConnector that returns the first non-nil result by
sending invocation successively to each target.

spm := PasswordManager new .
srng := RandomNumberGenerator new .
SclBinaryConnector new

source : (spm port : #Randomizing)
t a r g e t : (srng port : #Generating)
g lue : [: source : t a r g e t :message |

ˆ(t a r g e t rand ∗ 26) a s In t e g e r
] ;

connect .

Fig. 6. Connecting two components

Composition. Composition is the mechanism that builds a composite compo-
nent out of components and connections. Encapsulated components are generally
called sub-components of the composite. Composite components are useful to
abstract over complex systems and provide a new reusable software entity that
hide implementation details. This mechanism is provided through various forms
in existing languages, e.g the compose primitive in ComponentJ [42], composite
components in Fractal or aggregation and containment in (D)COM [34].

Figure 7 and Figure 8 show the architecture and the code of a simple com-
posite in Scl. A composite component c instance of the component class C

encapsulates two components a and b and one connection. Each instance of C

forwards the provided port pb of its subcomponent b for external uses. This
example is quite simple and more complex ones require the use of SclForward-

Connector s. These kinds of connectors are used to forward externalize services
of sub-components in a composite component. The sources and targets are all
required or provided ports and the glue code can be used to solve problems
such as name conflicts, etc. Figure 9 and Figure 10 shows this situation with a
composite component that provides two services on a same port but provided
by two different sub-components.

100 L. Fabresse, C. Dony, and M. Huchard

b

pb pbpa rb

a

c

Fig. 7. A composite component that forwards a port

3.4 Separation of Concerns in Component Applications

Separation of concerns [38] principle states that a software system should be
modularized in such a way that different concerns can be specified as inde-
pendent as possible in order to maximize understandability and maintenability.
Some concerns are difficult to encapsulate in standard software units (compo-
nents or objects), such as management of transactions, logs, security, etc. To
tackle the problem of the scattered code of these concerns, aspect-oriented pro-
gramming [26] introduces aspects. An aspect is the modularization of a crosscut-
ting concern. Two approaches are distinguished in AOP. Asymmetric approaches
consider aspects as different entities from those ones that compose the base sys-
tem (objects or components), such as AspectJ [25], or JAsCo [44]. Symmetric
approaches try to use the same entities to model the base system and aspects.
This second approach is better for reusability because if aspects are modeled as
components, they can be used as regular components as well as aspects. A lot
of approaches try to merge in a symmetric way aspect-oriented and component-
oriented approaches to benefit from the modular properties of both approaches,
such as Fractal-AOP [14] or FAC [39].

In Scl, we adopt a symmetric approach with limited aspect-oriented features
which are provided through special connectors and ports characteristics. The join
points – well defined points in the execution of a program where aspects can be
woven – are generally method calls, method call receptions, method executions
or attribute accesses. The supported joint points in Scl are: before/after/around
a service invocation or connection/disconnection on a port. Figure 11 shows an
example that uses an SclFlowConnector and a regular Logger component
to add the logging support to a component c through its port pc.

In a SclFlowConnector, all source ports are coupled with a keyword (be-
foreServiceInvocation, beforeConnection, ...) that specifies when the glue code
has to be executed. At execution time, when a service invocation arrives on a
port, glue code of attached connectors are executed in the same order as in AOP
(around, before, after). Conflicts are possible, for example if multiple glue codes
have to be executed before a service invocation on the same port, the glue code
of the last connected connector will be executed first. This rule lets the architect
deal with potential weaving problems.

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 101

SCLComponentClassBuilder createComposite : #C .

C>> i n i t
s e l f addSubComponent : A new named : a .
s e l f addSubComponent : B new named : b .
s e l f forwardPort : (b port : #pb) .

SclBinaryConnector new
source : (b port : #rb)
t a r g e t : (a port : #pa) ;
connect .

Fig. 8. Declaration of a composite component class

c

b

a
pa

bar

foo

foo
bar

pc

pb

Fig. 9. Port forwarding using a connector

SCLComponentClassBuilder createComposite : #C .

C>> i n i t
s e l f addSubComponent : #A named : a .
s e l f addSubComponent : #B named : b .
s e l f addPort : (Sc lPort new : #pc

prov ides : (S c l I n t e r f a c e new with : {#foo . #bar }) .

SclForwardConnector new
source s :{ s e l f port : #pc}
t a r g e t s :(b port : #pb) .

(a port : #pa)}
g lue : [: s ou r c e s : t a r g e t s :message |

(message s e l e c t o r == #foo) i fTrue : [
ˆ t a r g e t s f i r s t perform : message

] i f F a l s e : [
(message s e l e c t o r == #bar) i fTrue : [

ˆ t a r g e t s second perform : message
] .

] .
] ;
connect .

Fig. 10. Using a connector to forward services in a composite component

102 L. Fabresse, C. Dony, and M. Huchard

l := Logger new .

SclFlowBinaryConnector new
source : ((c port : #pc) b e f o r eS e rv i c e I nvo ca t i on)
t a r g e t :(l port : #Logging)
g lue : [: source : t a r g e t :message |

t a r g e t l og : ’The ’ , message s e l e c t o r , ’ message w i l l be sent to a ’
] ;
connect .

Fig. 11. Modify the control flow using a connector

3.5 Component Properties and Publish/Subscribe Connections

Triggering operations as a consequence of state changes in a component is re-
lated to Observer design pattern [17] or procedural attachments [35]. In frame
languages, it is possible to attach procedures to an attribute access which is
then executed each time this attribute is accessed. These kinds of interactions
are particularly used between “views” (in the MVC sense [27]) and “models”.
More generally, the publish/subscribe [13] communication protocol is a very
useful communication pattern to decouple software entities as said in [18]: “The
main invariant in this style is announcers of events do not know which com-
ponents will be affected by those events”. In component-based languages, this
must be done in an unanticipated way and with strict separation between the
component code and the connection code to enable components reuse. However,
existing proposals fail to solve these two main constraints. Connecting compo-
nents based on event notifications always require that component programmers
add special code in components. We identify the two following problems:

Publishers have to publish events. The component programmer has to add
special code such as event signaling in components. For example, in the
Java Bean model, the programmer has to manage explicitly the subscribers
list (add and remove subscriber methods). In the CCM (Corba Component
Model), the component programmer has to manage the event sending by
adding a special port to his component that is called an event source, and
sends events in the component code through this port. In ArchJava, the
component programmer declares broadcast methods (required methods that
return void) and invokes them in the component code to signal events. This
method is then connected by the architect to multiple provided methods of
subscriber components that receive the events. In all cases, the architect can
not reuse a component if its programmer has not added special code in the
component to signal the event that he needs.

Emitters have to receive events. In the CCM, the component programmer
has to provide its components with event sinks that are special ports to
receive events. An event sink can be connected by the architect with one or
more event sources if they share a compatible event type. This mechanism is
more limiting than the ArchJava or the Javabeans one where the subscriber
components have only regular methods that are invoked using connections.

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 103

In order to increase the component reuse, we have to decouple the connec-
tion code from the business code written by the component programmer. The
programmer has to focus on the business code and the design of the component
i.e what it requires and what it provides. In Scl, there are three ways to enable
publish/subscribe connections:

1. The component programmer integrates the event signaling in the compo-
nent code. Event signaling in Scl can be done, similarly as in ArchJava,
by invoking a required service in the publisher component and using regular
SclCallConnector to link publishers and subscribers.

2. The component programmer does not integrate the event signaling in the
component code and SclFlowConnectors can be used by the architect
to detect the events that he needs. For example, if the architect wants to
detect when a stack becomes empty (an EmptyStackEvent), he can use an
AfterConnector on the port that provides the pop service and test in the
glue code if the stack still contains elements to detect such situation.

3. The component programmer has declared properties. This property concept
enhances the idea of property of the Javabeans component model [22] with
strict separation between component code and connection code. A property
is an external state of a component. For example, a Counter component
has a property named count. This means that it is possible to get and set
a value to the count property of the Counter. Figure 12 shows the Scl

code for this declaration.

SCLComponentClassBuilder c r ea t e : #Counter .

Counter>> i n i t
s e l f addAttr ibute : #value .
s e l f addPort : (Sc lPort new : #Counting

prov ides : (S c l I n t e r f a c e new with : {#dec . #inc }) .
s e l f addProperty : #Count read : [ˆ value] wr i t e : [: nv | value := nv] .

C>>i nc
s e l f count : (s e l f count + 1)

C>>dec
s e l f count : (s e l f count − 1)

Fig. 12. A Counter component class with a property

When a programmer declares a property, the component is automatically
composed of two ports: an access port and a notifying port. The property ac-
cess port is a provided port that provides, at least, getter and setter services
using the two blocks given during the property declaration. The notifying port
is a required port, which is used to invoke services during property accesses.
These services are defined in the Scl component model. For example, the service
nac:value:oldValue: (nac is an acronym for Notify After Change) is invoked

104 L. Fabresse, C. Dony, and M. Huchard

nbc:value:oldValue:

count:

nac:value:oldValue:

inc

dec

...

...

Counter

Counting Count

count

Fig. 13. A counter component with a value property

gui := Label new .
counter := Counter new .

SclBinaryNACConnector new
source : (counter not i fyPortOf : #Count)
t a r g e t : (gui port : #Displaying)
g lue : [: source :gui :message |

gui d i sp layText : (message arguments second) .
] ; connect .

Fig. 14. A state changes connection based on a component property

after a property is modified with the new and the old value of the property as
parameters. Another service, the nbc:value:newValue: (nbc is an acronym
for Notify Before Change) service, is invoked before the property is modified
with the current value and the next value of the property as parameters. In
fact, all defined services have two main characteristics: when they are invoked
(before or after the property modification) and what a connected component
is able to do (nothing, prevent the modification or change the property value).
Special or regular connectors can be used to connect properties since they are
just two regular ports. An example of connection using properties is depicted on
Figure 13 and the corresponding Scl code is shown on Figure 14.

In this example, a SclBinaryNACConnector is used. This connector fil-
ters incoming service invocations on the source port and only focuses on the
nac:value:oldValue service. After each modification of the value property
of the counter, the glue code of the connection is executed and the GUI
component is refreshed with the new value (the second parameter of the
nac:value:oldValue service). Actually, Scl provides different kinds of con-
nectors like SclBinaryNACConnector, SclBinaryNBCConnector, Property-

BinderConnector ensuring that the value of the target property is always
synchronized with the value of the source property. To sum up, component
properties are a useful means for component programmers to directly express
the external state of components instead of using syntactical conventions and
for architects that can use them to connect components.

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 105

4 Implementation

The actual prototype of Scl [28] is implemented in Squeak/Smalltalk [24].
Squeak is an open and highly portable implementation based on the original
Smalltalk-80 system [19]. Figure 15 shows a part of the class diagram of the core
model.

*

Port

Service

ProvidedPort RequiredPort

Component PropertySignature

requires

* +sources

+targets

...

*groups

*
* *has

*
*

1 *1defines owns

1

Interface provides1

1

1

*
*

owns

*
Connector

CallConnector FlowConnector

Fig. 15. UML class diagram of the current implementation of Scl

This figure shows only main connector families. In [33], a taxonomy of soft-
ware connectors has been established and eight kinds of connectors have been
identified. Similarly to the work done for ArchJava in [3], we have implemented
connectors of each kind. This shows that the connector model of Scl is suitable
to perform a large variety of connectors.

The current Scl syntax is the same as the Smalltalk one although some
changes in semantics have been done. For example, the syntactical receiver of
a service invocation is a port but the real Smalltalk receiver is not this port
but the component which this port belongs to. Because we do not implement
Scl with an evaluator or a compiler but directly with Smalltalk constructs, it is
easier to change and evolve the implementation. It is also difficult to implement
special things that are too far from the Smalltalk mechanisms.

5 Related Work

Understanding or teaching COP. Picolo [30] and BoxScript [29] are two
frameworks for introducing (teaching) components. Picolo is written in Python
and Boxscript in Java. They are small and contrary to Scl, they integrate a
simple binary connection mechanism.

Architecture description languages (ADLs). These languages are an im-
portant part of the current researches in component-oriented languages. In [32],
a classification of the most known ADLs has been established. For example,
Wright [5] is one of these languages that integrates connector support. But
Wright, as many of these languages, is dedicated to simulation and formal ver-
ification. Since ADLs are not executable languages, it is not possible to build an
application using it.

106 L. Fabresse, C. Dony, and M. Huchard

ArchJava [2,3] is a Java extension introducing software architecture con-
cepts to express architectural structure of applications within an implementation
in order to ensure that the implementation conforms to architectural constraints.
ArchJava classes support bidirectional ports in which methods are provided, re-
quired or broadcasted. The primitive connection mechanism (connect keyword)
is a coarse-grained one because it is based on bidirectional ports. ArchJava does
not support properties and component programmers have to write code in com-
ponents to enable connections based on component state notifications.

Fractal [8] is a recursive and reflective component model. A component has
external interfaces (ports) which provides (server interface) or required (client
interface) a defined set of services. Components are connected through bindings
between external interfaces. A primitive binding is a fixed interface connection
mechanism that binds one client interface with one server interface. Binding
components also called connectors represent composite bindings to create com-
plex connections. In Scl, components and connectors are different concepts be-
cause these two concepts fulfill different purposes, components are the business
reusable software units while connectors have to fix connection semantics and
deal with connection problems. Julia is the implementation reference of the Frac-
tal model in Java, and Fractalk [15] is an implementation of Fractal in Squeak.

ComponentJ [42] is another Java extension for component-oriented pro-
gramming. Components provide or require one interface per port. The compo-
nent programmer defines methods inside method blocks that can be plugged
into ports. Plug operations bind one component method block or port to a port
according to their interfaces. Component composition is done through dynamic
composition (compose keyword) and returns a new component. ComponentJ is a
strongly typed language ensuring plug operations and composition. There is no
connector support in ComponentJ and it is only possible to connect components
inside a composite. A component can only be instantiated if it is closed (without
unbounded required services) even if all required services are not necessary for
the current application.

Javabeans [22] has been one of the first component models allowing program-
mers to connect independently developed software entities. Javabeans program-
mers have to write special connection code (essentially Observable code from
the Observer pattern) and to respect syntactical rules to ensure that their Jav-
abeans can be automatically connected with other Javabeans using automatic
Adaptor [17] generation. Our properties, inspired from the Javabeans model, do
not enforce component programmers to write specific connection code.

Component-oriented languages. These languages enable to code an applica-
tion using a component approach. These languages do not integrate the ADLs
features and provide object-oriented extensions to program with components.
For example, Lagoona [16] is based on the idea that components are modules that
contain class and message definitions. Note that most of proposed component-
oriented languages are Java extensions (Lagoona, Keris, ComponentJ, ArchJava,
Javabeans, Julia/Fractal, ...). There are few proposals using a dynamic language

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 107

and none in Smalltalk, except Fractalk that is an implementation of Fractal in
Squeak.

Mixing component and aspect oriented programming. As said in sec-
tion 3.4, we only consider symmetrical approaches such as FAC [39] or Fractal-
AOP [14] where aspects are regular components. This is to increase the reuse
of components that can be used as regular components as well as aspects com-
ponents. The specificity of Scl is that nothing is written in a component (no
special interface has to be implemented). The architect decides to use a com-
ponent as a base component or as an aspect component and uses the special
connector SclFlowConnector. This Scl feature is clearly not a complete sup-
port of AOP, but an attempt to bring some flexibility of AOP in Scl respecting
that components are independently developed and composed.

6 Conclusion

Component-based software development is founded on the unanticipated compo-
sition of independently developed software components. Such a mechanism must
be offered to programmers and many languages integrate some concepts and
mechanisms to achieve this. In this paper, we present Scl a concrete component-
oriented language. We believe that Scl represents a simple and uniform synthesis
of current proposal on component-oriented programming. Scl also brings new
features like a general purpose connector model. Connectors are useful to provide
an extensible connection mechanism that solves component connection prob-
lems. They offer a unified entity that enable standard required/provided con-
nections and also event-based component connections due to special connectors
and component properties. A component programmer only declares properties
that represent external state of components. A software architect can express
connections on the basis of properties notifications with the same connection
mechanism based on connectors.

Ongoing researches on Scl are focused on three areas. First, extending the
component model of Scl in order to better support dynamically features. For
example, dynamically adding or removing ports to a component could be a great
solution to deal with components that have a potentially unbounded number of
connections such as a Web Server component. Second, we plan to provide a
stable release of the current implementation of Scl and integrate tools dedi-
cated to component-oriented programming. And finally, developing large scale
applications using Scl will certainly show us interesting results about the Scl

expressiveness compared to existing component-oriented languages which are
mainly statically typed ones.

References

1. Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts –
A Tour of Piccola. In Mehmet Akşit, editor, Software Architectures and Component
Technology, pages 261–292. Kluwer, 2001.

108 L. Fabresse, C. Dony, and M. Huchard

2. Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. In ICSE, pages 187–197. ACM, 2002.

3. Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin. Language
support for connector abstractions. In Luca Cardelli, editor, ECOOP, volume 2743
of Lecture Notes in Computer Science, pages 74–102. Springer, 2003.

4. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, January 1997. Issued as CMU Technical
Report CMU-CS-97-144.

5. Robert Allen and David Garlan. The Wright Architectural Specification Language.
Technical report, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, 1996.

6. Dusan Balek and Frantisek Plasil. Software connectors and their role in component
deployment. In Proceedings of DAIS’01, Krakow, Poland, September 2001. Kluwer
Academic Publishers.

7. Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Frantisek Plasil, Gus-
tav Pomberger, Wolfgang Pree, Michael Stal, and Clemens A. Szyperski. What
characterizes a (software) component? Software - Concepts and Tools, 19(1):49–56,
1998.

8. Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. An Open Component Model and Its Support in Java. In Ivica
Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors,
CBSE, volume 3054 of Lecture Notes in Computer Science, pages 7–22. Springer,
2004.

9. Martin Büchi and Wolfgang Weck. Compound types for Java. In OOPSLA’98:
Proceedings of the 13th ACM SIGPLAN conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 362–373, New York, NY, USA,
1998. ACM Press.

10. Luca Cardelli. The Handbook of Computer Science and Engineering, chapter 103,
Type Systems, pages 2208–2236. CRC Press, Boca Raton, FL, 1997.

11. John Cheesman and John Daniels. UML components: a simple process for spec-
ifying component-based software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

12. Michael Eichberg. Mda and programming languages. In Workshop on Generative
Techniques in the context of Model Driven Architecture (OOPSLA ’02), 2002.

13. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131,
2003.

14. Houssam Fakih, Noury Bouraqadi, and Laurence Duchien. Aspects and software
components: A case study of the FRACTAL component model. In Minhuan Huang,
Hong Mei, and Jianjun Zhao, editors, International Workshop on Aspect-Oriented
Software Development (WAOSD 2004), September 2004.

15. FracTalk. Fractal Components in Smalltalk http://csl.ensm-douai.fr/FracTalk.
16. Peter H. Fröhlich, Andreas Gal, and Michael Franz. Supporting software com-

position at the programming-language level. Science of Computer Programming,
Special Issue on New Software Composition Concept, 56(1-2):41–57, April 2005.

17. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, March 1995.

18. David Garlan and Mary Shaw. An introduction to software architecture. In V. Am-
briola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, pages 1–39, Singapore, 1993. World Scientific Publishing Company.

http://csl.ensm-douai.fr/FracTalk

Scl: A Simple, Uniform and Operational Language for COP in Smalltalk 109

19. Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

20. Bernhard Gröne, Andreas Knöpfel, and Peter Tabeling. Component vs. component:
Why we need more than one definition. In ECBS, pages 550–552. IEEE Computer
Society, 2005.

21. Object Management Group. Uml 2.0 superstructure specification. Technical report,
Object Management Group, 2004.

22. Graham Hamilton. JavaBeans. API Specification, Sun Microsystems, July 1997.
Version 1.01.

23. George T. Heineman and William T. Councill, editors. Component-based software
engineering: putting the pieces together. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

24. Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to
the future: the story of Squeak, a practical Smalltalk written in itself. In OOPSLA
’97: Proceedings of the 12th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 318–326, New York, NY,
USA, 1997. ACM Press.

25. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In Jørgen Lindskov Knudsen, ed-
itor, ECOOP, volume 2072 of Lecture Notes in Computer Science, pages 327–353.
Springer, 2001.

26. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

27. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. In Journal of Object-Oriented
Programming, volume 1, pages 26–49, Août-Septembre 1988.

28. Simple Component Language. http://www.lirmm.fr/∼fabresse/scl/.
29. Y. Liu and H. C. Cunningham. Boxscript: A component-oriented language for

teaching. In 43rd ACM-Southeast Conference, volume 1, pages 349–354, March
2005.

30. Raphaël Marvie. Picolo: A simple python framework for introducing component
principles. In Euro Python Conference 2005, Göteborg, Sweden, june 2005.

31. M. D. McIlroy. Mass produced software components. In P. Naur and B. Ran-
dell, editors, Proceedings, NATO Conference on Software Engineering, Garmisch,
Germany, October 1968.

32. Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. Software Engineering,
26(1):70–93, 2000.

33. Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxonomy of
software connectors. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 178–187, New York, NY, USA, 2000. ACM Press.

34. Microsoft. DCOM technical overview. Microsoft Windows NT Server white paper,
Microsoft Corporation, 1996.

35. M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor, The
Psychology of Computer Vision, pages 211–281. mgh, ny, 1975.

36. Oscar Nierstrasz and Laurent Dami. Component-oriented software technology. In
Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software Com-
position, pages 3–28. Prentice-Hall, 1995.

http://www.lirmm.fr/~fabresse/scl/

110 L. Fabresse, C. Dony, and M. Huchard

37. Object Management Group. Model Driven Architecture, 2003. http://www.omg.
org/mda.

38. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053–1058, December 1972.

39. N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A model for developing
component-based and aspect-oriented systems. In Proceedings of the 5th Interna-
tional Symposium on Software Composition (SC’06), volume 4089 of Lecture Notes
in Computer Science. Springer, March 2006.

40. Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software compo-
nents. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

41. Johannes Sametinger. Software engineering with reusable components. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

42. João Costa Seco and Lúıs Caires. A basic model of typed components. Lecture
Notes in Computer Science, 1850:108–129, 2000.

43. Mary Shaw. Procedure calls are the assembly language of software interconnec-
tion: Connectors deserve first-class status. In ICSE ’93: Selected papers from the
Workshop on Studies of Software Design, pages 17–32, London, UK, 1996. Springer-
Verlag.

44. Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an aspect-oriented
approach tailored for component based software development. In AOSD ’03: Pro-
ceedings of the 2nd international conference on Aspect-oriented software develop-
ment, pages 21–29, New York, NY, USA, 2003. ACM Press.

45. C. Szyperski. Component Software: Beyond Object-Oriented Programming (2nd
Edition). Addison-Wesley, 2002.

46. Rob C. van Ommering. Koala, a component model for consumer electronics product
software. In Frank van der Linden, editor, ESPRIT ARES Workshop, volume 1429
of Lecture Notes in Computer Science, pages 76–86. Springer, 1998.

47. Matthias Zenger. Type-safe prototype-based component evolution. In Proceedings
of the European Conference on Object-Oriented Programming, Malaga, Spain, June
2002.

48. Matthias Zenger. Keris: evolving software with extensible modules: Research arti-
cles. J. Softw. Maint. Evol., 17(5):333–362, 2005.

http://www.omg.org/mda
http://www.omg.org/mda

	Introduction
	Component-Oriented Programming: What, Why and How ?
	The Scl Language
	Component Classes and Component Instances
	Component Provisions and Requirements
	Component Composition
	Separation of Concerns in Component Applications
	Component Properties and Publish/Subscribe Connections

	Implementation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

