
GPCE’12

An Inheritance System for Structural & Behavioral
Reuse in Component-based Software Programming

Petr Spacek, Christophe Dony, Chouki
Tibermacine

LIRMM, CNRS and Montpellier II University
161, rue Ada

34392 Montpellier Cedex 5 France
{spacek,dony,tibermacin}@lirmm.fr

Luc Fabresse
Université Lille Nord de France

Ecole des Mines de Douai
941 rue Charles Bourseul

59508 DOUAI Cedex France
luc.fabresse@mines-douai.fr

Abstract
In the context of Component-based Programming, which
addresses the implementation stage of a component-based
software engineering development process, this paper de-
scribes a specification and an operational integration of an
inheritance system into a self-contained new component-
based programming language named COMPO. Our proposal
completes and extends related works by making it possible
to apply inheritance to the full description of components,
i.e. both to structural (description of provisions and require-
ments, of component architecture) and behavioral (full im-
plementations of services) parts in component descriptions.
Inheritance in COMPO is designed to be used in conjunction
with composition to maximize reuse capabilities and expres-
sive power. COMPO implementation proposes a clear opera-
tional solution for inheritance and for achieving and testing
substitutions.

Categories and Subject Descriptors D.1.0 [Programming

techniques]: General—Component based programming
technique; D.2.11 [Software Architectures]: Languages—
Component Based Programming Language

General Terms Component-based, Programming, Lan-
guage

Keywords Programming, Inheritance, Architectures, Sub-
stitutability

1. Introduction
Component-based software is made of off-the-shelf compo-
nents, connected together into various kinds of architectures.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this domain, several languages, using the component con-
cept as a first class entity in organizing software, have been
and are currently designed and prototyped, but some cate-
gories have emerged. Architecture Description Languages
(ADLs) for models like Fractal [6] or SOFA [15] allow
for business-oriented and implementation-independent com-
ponents and architectures descriptions. Component-Based-
Programming Languages (CBPLs) like ACOEL [19], Arch-
Java [1], CLIC [4], ComponentJ [18], Bichon [23], Comp-
Java [16] or SCL [8, 9] address the implementation stage of
a component-based software engineering development pro-
cess; they allow developers to express full descriptions of
executable components.

Inheritance has proved to be one major cornerstone of
software reuse, first for the ability it gives developers to or-
ganize their ideas on the base of concept classification (a list
is a kind of collection, such architecture is a kind of visi-
tor, ...) which is itself one key of human abstraction power
and second for the calculus model that makes it possible to
not only reuse but adapt software, by executing an inherited
code in a new context (the receiver environment).

Many of the above quoted languages somehow propose
inheritance mechanisms but they have various limitations
(limitation to the architecture description side, limitation to
the implementation side which is frequently not achieved
with component-based languages, limitation to some part of
components descriptions, etc). More generally, the question
of the interest of inheritance-based reuse in the component-
based software development context is still discussed and
has not yet been explicitly nor fully addressed. This papers
aims at contributing to that question by proposing a specifi-
cation and an operational integration of an inheritance sys-
tem in the context of a component-based programming lan-
guages that supports reuse of descriptions of components’
structure and behavior. By “structure”, we mean provided
and required ports together with internal architectural de-
scription; and by “behavior”, we mean implementations of
services that make them executable. Our language, COMPO,

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming1 2012/5/4

ranges in this category and proposes components as run-

time entities, instances of descriptors. We introduce an in-
heritance link between descriptors on which we base an op-
erational system to reuse, i.e. to inherit, extend and spe-
cialize descriptions. Descriptors are texts describing compo-
nents’ structure and behavior. Listings 1 and 2 are examples
of component descriptors in COMPO.

We address the specific questions of stating what, among
port declarations, composition architectures and services
definitions, can be inherited, extended or specialized, and
how. We notably discuss the rationale and interest of en-
abling requirements extension or specialization: we will con-
sider various solutions, but will develop an answer to that
question which goes in the direction of enabling covariant
specialization, because it corresponds to the way human nat-
urally think about concept classification [7] and it promotes
expressive power. Our solution will thus propose simple sup-
port to help programmers achieve correct substitutions.

An alternative for reuse in the component-based software
development context is to use sole composition (see [17, 23]
and [22] for a good survey) and message redirection (or for-
warding; or delegation1); it has the advantage of not intro-
ducing any additional mechanism. Our opinion is that com-
position and inheritance are complementary and that their
combination is significantly more efficient especially when
structural reuse is to be considered. The above alternative
will be further discussed in the related work section, where
we show some examples in which sole composition usage
leads to code being too complex and reuse being difficult.
Inheritance in COMPO is thus designed to be used in con-
junction with composition to maximize software reuse capa-
bilities and language expressive power.

The paper is organized as follows. Section 2 proposes
an overview of COMPO essential constructions and syntax.
Section 3 is a step-by-step (services definitions, require-
ments declarations, internal architecture description) discus-
sion and presentation of our inheritance system specification
illustrated with various examples. Section 4 gives some ba-
sic clues on the COMPO’s implementation. Before conclud-
ing and discussing the future work, we present in Section 5
the related works.

2. A support Component-based
programming language

Our proposition for inheritance is demonstrated and vali-
dated via its integration into a component-based language
named COMPO. Although the language itself is not the sub-
ject of this paper, it is needed that we give an overview of
its main constructs and syntax. COMPO is an ongoing work
that aims at defining in an unified context (1) a component-

1 Although delegation in prototype-based language is something different,
we will use for message redirection the terms ”message delegation” and
corollary ”delegation connector” and ”service invocation delegation” with
semantics as specified in UML [13]

based architecture description and modeling language that
includes all standard component architectures concepts and
constructs (eg. component, ports, interfaces, connections,
constraints, etc) and (2) a component-based programming
language making it possible to write executable applications,
in which all the above concepts and constructs are available
as first-class entities. This language overall goal is to allow
standard applications or architecture verification and trans-
formations applications to be written in the same language,
via an integrated meta-level. COMPO is here used for our
operational study on inheritance because, as far as we know,
there exists no other language in which component architec-
tures and services can be written in the same context and us-
ing the same high-level constructs for component-based de-
velopment. Many component-based architecture are for ex-
ample translated into Java template code and implemented in
a world where concepts such as ports do not have a first-class
status.

From a concrete point of view, within a component de-
scription (see e.g. listing 1), the provides, requires,
internally requires and architecture sections are
related to components modeling and architecture descrip-
tion. The service section is related to services program-
ming; this section can be omitted if the architecture is to be
generated into another language.

2.1 Component descriptors.
COMPO applies the descriptor/instance dichotomy where
components are instances of descriptors. A component de-
scriptor is a text describing the structure (ports declarations
and architecture description) and the behavior (set of ser-
vices definition) of its instances.

As a first example, Listing 1 shows a version of a
FrontEnd component descriptor. FrontEnd components
can be used to build various kind of request servers. This
descriptor defines : (1) an external provided port named
default, providing services run() and isListening(),
(2) an external required port named backEnd through which
an architect can connect a FrontEnd to any other compo-
nent providing the handleRequest service, (3) two inter-
nal required ports to achieve internal composition with a
RequestHandler and with a TaskScheduler (note that
to satisfy requirements internally or externally is an archi-
tectural decision that has several possible solutions, any
FrontEnd in this example will come equipped with its
RequestReceiver and TaskScheduler). (4) the internal
architecture of a FrontEnd, (5) the public services of a
FrontEnd, only one (isListening()) being shown. Con-
cepts and syntax used in this example are detailed in the fol-
lowing sub-sections also using the description of an HTTP
Server (see listing 2) which uses a FrontEnd.

2.2 Ports
In COMPO, a port is a connection point (components are con-
nected through their ports) and a communication point (ser-

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming2 2012/5/4

component descriptor FrontEnd {

provides {

default : { run(); isListening (); } }

requires {

backEnd : { handleRequest(r) } }

internally requires {

rR <: RequestReceiver;

s : TaskScheduler; }

architecture {

delegate default to rR@.default;

connect s to (TaskScheduler new). default;

connect rR@.scheduler to s@.schedule;

delegate rR@.handler to backEnd; }

service isListening () {

^ rR isRunning. }

}

Listing 1. The FrontEnd descriptor

vices invocations are transmitted via ports). A port is defined
by a an owner component, a name, a list of service signa-
tures, a visibility (external or internal) and a role (provided
or required).

The role of a port is either required or provided with a
standard semantics : a provided (resp. required) port lists,
the signature of services offered (resp. required) by a com-
ponent.

The list of services signatures associated to a provided
port can be given :

• as an explicit list (we call such a list an anonymous

interface) (the default port declaration in Listing 1 is
an example).

• via a named interface (see Section 3.3),

The list of signature associated to a required port can be
given as an explicit list or via a named interface, as above,
or via a component descriptor name (e.g. cd); in this case,
the list is the list of signatures of services associated to cd’s
default provided port (the sched port declaration in Listing 1
is an example).

The visibility of a port is either internal or external (the
default is “external”).

• An external port ep of a c component is visible and can
be used by an architect to interconnect c into an englob-
ing composition architecture. For example, the external
required port backEnd of an instance of FrontEnd can
be connected to the external provided port default of an
instance of BackEnd as shown in listing 2 and in figure 1
(we are developing both textual and graphical component
definition interfaces).
Each component has a default external provided port
(named default) listing signatures of public services of
its owner component, and has a default and unique in-
ternal provided port, named self (for obvious histori-
cal reasons), listing signatures of all services of its owner
component and allowing any of its services to invoke an-
other one.

• An internal port ip of a c component is a support for
accessing c’s internal composition architecture, ip and
the component connected to it (that we call an internal
component of c) are invisible from the outside of c.
In Listing 2, it is shown how the two internal required
ports of a HTTPServer are connected to its two internal
components : a FrontEnd and a BackEnd, allowing it to
invoke their services (e.g. fE isListening in service
status).

• The list of external ports (provided and required) define
the external contract of a component.

2.3 Connections
A connection establishes a dual referencing between two
ports, making it possible to determine whether a port is con-
nected or not and, if true, to which other port it is connected.
When we sometimes write, in a somehow misleading but ad-
mitted way, that two components are connected, it is meant
that one port of the former is connected to one port of the
later.

• A regular connection is between a required and a pro-
vided port. We provide two equivalent syntax for connec-
tions : (connect | delegate) <port> to <port>, or
<port> =:= <port>, where <port> is any expres-
sion returning a port. An example of an expression
establishing a regular connection is : connect s to

(TaskScheduler new).default;, (see. Listing 1).
• A delegation connection is between two ports having

the same role and is used to delegate a service invocation
from an external to an internal via the composite (pro-
vided to provided), or from an internal to an external via
a composite (required to required). An example of a “pro-
vided to provided” delegation connection is delegate

default to rR@.default; in Listing 1).

2.4 Internal architectures

Figure 1. HTTPServer, the diagram shows a logical repre-
sentation of an instance of the HTTPServer descriptor pre-
sented in Listing 2, after it has been created and initialized.

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming3 2012/5/4

An internal architecture of a component is the set of its
internal components (components connected to its internal
required ports) together with their inter-connections. A com-
ponent having internal component is as usual called a com-

posite. Initialization (i.e. instantiation and connection) of in-
ternal components of a composite c is performed during c’s
instantiation if described in the c’s descriptor architecture

section.
For example, the internal ports and architecture sections

of descriptor HTTPServer define the following internal ar-
chitecture for its instances.

• The internal required port fE is connected to a
FrontEnd.

• The internal required port bE is connected to a BackEnd.
Note that: bE <: BackEnd in the port section is a
shortcut to avoid writing the following instruction in
the architecture section : connect bE to (Backend

new).default).
• The internal required port name is connected to a
String. String is a predefined component descriptor
the role of which is to interface all basic types of the host-
ing language so that their elements can be used as stan-
dard components. Predefined descriptors expose a single
provided port named default through which procedures
or methods of basic types can be called in the form of a
service invocation via the COMPO interpretor or virtual
machine.

• a delegation connection is created between the provided
port default and the default port of the frontEnd.

• a regular connection is created between the required port
backEnd of the component connected to the fE inter-
nal required port and the port default of the compo-
nent connected to the bE internal required port: connect
fE@.backEnd to bE@.default.
This connection is a good example of a situation in which
architecture design requires that a refence be made to a
component which is not yet created. Here we need to
say that we want to connect the port backEnd of the
component that will be be connected to port fE. The @

operator makes it possible, for any port p to reference
the component that will later on be connected to p and
subsequently to specify an architecture before descriptors
are instantiated.

2.5 Services & Service invocations
Services implement the behavior of components. A service
may have parameters and may return a value.

Components communicate by service invocations made
through required ports. A service invocation consists of a
port name, a selector (the name of the requested service) and
optional arguments. fE islistening is an example of a
service invocation made through the fE port in the context

component descriptor HTTPServer {

provides {

default : { run(); status () } }

internally requires {

fE : FrontEnd;

bE <: BackEnd;

name <: String; }

architecture {

fE =:= (FrontEnd new). default;

delegate default to fE@.default;

connect fE@.backEnd to bE@.default; }

service status () {

fE isListening

ifTrue: [^ name printString + ’is running ’]

ifFalse: [^ name printString

+ ’is stopped ’]. }

}

Listing 2. The HTTPServer descriptor.

of the status() service of component HTTPServer. When
a required port receives an invocation it transmits it to the
port it is connected to. The receiving port then transfer the
invocation to its owner component which is responsible for
handling it (either executing a corresponding service or dele-
gating the invocation via a delegation connection, full detail
on this can be found in [8]).

3. Rationale and rules to reuse descriptions
with inheritance

This section presents the rationale and the operational de-
scription of our descriptor-level inheritance embedded in
our CBPL. Ports declarations, internal architecture definition
and initializations, services definitions; and more generally
all pieces of code specified at the descriptor level are subjects
to inheritance, extension and redefinition.

For the sake of simplicity, we have limited our proposal
to single inheritance relationship.

3.1 Descriptors and basic inheritance
Any descriptor can be defined as a sub-descriptor of an ex-
isting descriptor (D). In such a case, D’s port declarations, in-
ternal architecture and service definitions are inherited. Ev-
ery sub-descriptor has, by default, the super internal pro-
vided port. The port differs from regular provided ports in
one small detail: services implementations demanded by ser-
vice invocations sent to this port are looked up starting from
the super-descriptor of the owning descriptor (not directly
from the owning descriptor as it is in the case of regular pro-
vided ports).

Listing 3 show the ControlableFrontEnd sub-
descriptor that extends the FrontEnd descriptor (shown in
Listing 1) with a new port named control. Ports declara-
tions and internal architecture described in the FrontEnd

descriptor are inherited by the ControlableFrontEnd de-
scriptor, this is taken into account when creating an instance
of the ControlableFrontEnd descriptor whose structure
will conform to what is described in the FrontEnd descrip-
tor.

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming4 2012/5/4

In Listing 4 we show an another sub-descriptor
named (RestartableFrontEnd) which extends the
ControlableFrontEnd descriptor with a new service. Ser-
vices defined in the FrontEnd and ControlableFrontEnd

descriptors are inherited by the RestartableFrontEnd

descriptor. This is taken into account when instances of the
RestartableFrontEnd descriptor are created and receive
services invocations (lookup algorithm).

component descriptor ControlableFrontEnd

extends FrontEnd

{

provides {

control : {start (); isRunning (); stop ()} }

architecture {

delegate control to rR@.control; }

}

Listing 3. The ControlableFrontEnd descriptor. Extends
the FrontEnd descriptor with a new provided port named
control.

component descriptor RestartableFrontEnd

extends ControlableFrontEnd

{

provides {

control : { restart (); } }

service restart () {rR stop. rR start}

service isListening () {

super isListening ifTrue: [^0] ifFalse: [^1] }

}

Listing 4. The RestartableFrontEnd descriptor. Spe-
cializes the control port of ControlableFrontEnd de-
scriptor and service isListening inherited from FrontEnd

3.2 Extension & specialization of services
To be able to inherit, extend and specialize the behavior de-
fined by a component descriptor, a sub-descriptor can intro-
duce new services and its instances can access and reuse ser-
vices defined by its super-descriptor. This gives us ability to
define behavior that’s specific to a particular sub-descriptor,
i.e. achieve polymorphism of descriptors.

A service can be redefined in a sub-descriptor and can
reuse the one it specializes by using the super internal
provided port. Sending an invocation to super states that the
service implementation should be looked for in the super-
descriptor of the descriptor in which the current service in
execution has been found.

Listing 4 shows an example of specializa-
tion and extension of services, where the descrip-
tor RestartableFrontEnd extends the descriptor
ControlableFrontEnd with a new service restart()

and specializes service isListening() defined in
ControlableFrontEnd, super is used to access
ControlableFrontEnd’s implementation of the
isListening() service.

3.3 Extension & specialization of declarations of
provided ports

The basic goal here is to be able to introduce a new pro-
vided port declaration and be able to specialize a declaration
(i.e. a list of service signatures) of an inherited port. This
capability leads to a higher expressive power. For example,
sub-descriptors are able to export an internal behavior via
newly added ports. Such an export does not break the encap-
sulation of the internal component, because it exports behav-
ior which has already been public. Another use is definition
of more viewpoints for a component, where each provided
port represents a viewpoint on the component. Specialization
of ports introduces more precise modeling possibilities for
software architects. An example of extension and special-
ization of provided ports is illustrated in Listings 1, 3 and 4,
where the ControlableFrontEnd descriptor extends orig-
inal FrontEnd descriptor with a new port named control.
The RestartableFrontEnd descriptor specializes the in-
herited port control with a new service signature.

The specialization of port roles makes sense only from
the required role to the provided role. Indeed, this kind of
role specialization can be performed simply by a delegation
of a required port to a provided port of a component. Thus,
there is no reason for allowing specialization of the roles of
ports.

We extend a set of ports simply by introducing a new port
in a sub-descriptor. A name of newly added port cannot clash
with existing port names. In Listing 3 we extend the origi-
nal FrontEnd descriptor with a new port named control

in order to export control behavior offered by the internal
component connected to the rR internal required port.

There are two scenarios how to specialize the list of
service signatures of an inherited port: (1) a specializa-
tion by adding new service signatures to its list of ser-
vice signatures (i.e. extending an anonymous inherited in-
terface). The RestartableFrontEnd example in Listing 4
shows the specialization of the control port defined by
the ControlableFrontEnd super-descriptor. The special-
ization is used in order to provide the restart service de-
fined by the descriptor RestartableFrontEnd. (2) a spe-
cialization using a named interface. In this case the set of
service signatures defined in the named interface has to be a
super-set of the set of service signatures used to describe the
original port. A specialization of a port named portA looks
like: provides { portA : Ispec}. In the super-descriptor,
portA was declared by the statement: provides { portA

: { ser1(); ser2() }}. The Ispec interface was defined
with the statement interface Ispec { ser1(); ser2();

ser3() }. The named interface Ispec defines a set of ser-
vice signatures, which is a super-set of a set representing the
anonymous interface of the original portA port. Therefore it
can be used for the specialization.

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming5 2012/5/4

Figure 2. An example of an extension and specialization of
required ports. Grayed parts of the figure illustrate inherited
parts.

3.4 Extension & specialization of declarations of
external required ports

In our inheritance system, we enable adding new declara-
tions of required ports to sub-descriptors and we allow for
modification of a declaration of an inherited required port.
Extension and specialization of required ports are needed
to preserve expressive power of our language. For exam-
ple, without such a capability, we will not be able to extend
the Emailer descriptor shown in Figure 2 with a new re-
quired port semanticsChecker or specialize its required
port syntaxChecker with a new required service signature
grammarChecking(). Syntactically these operations do not
differ from extension and specialization of provided ports.

component descriptor RandomRequestsQueue

extends RequestsQueue

{

requires { randomGen : { getNextInt (); }

...

}

component descriptor Randomizer {

provides { generator : { getNextInt (); }

...

}

server := QueuedServer new.

assocPair := ’randomGen ’->(Randomizer new).

randomQueue := RandomRequestsQueue

newCompatible: (Array with: assocPair).

server reconnect: ’queue ’ to: randomQueue.

Listing 5. An example of unsatisfied required port problem
and its solution using the reconnect and newCompatible

support tools. The RandomRequestsQueue descriptor ex-
tends the RequestQueue descriptor with an additional re-
quired port to which an instance of the RandomGenerator

descriptor should be connected.

Semantically the extension and specialization of required
ports introduce a new issue, it breaks child-parent substi-
tutability. In OOPLs, substitutability between sub-classes
and super-classes is guaranteed. To be more precise, inter-
face compatibility is guaranteed. Behavior compatibility is
still not guaranteed, as pointed by [12]. In CBPL with the
possibility to extend or specialize super-descriptor’s require-

Figure 3. Dynamic substitution with a sub-descriptor hav-
ing additional required port may lead to unsatisfied require-
ment in the architecture. Grayed parts of the figure illustrate
inherited parts.

ments creating a potentially non-substitutable sub-descriptor
is possible.

Additional required ports may became unsatisfied, when
an instance of such a sub-descriptor is used where an in-
stance of the super-descriptor is expected. This may break
up the system. In other words, adding new required ports
(or specializing a required port in a sub-descriptor) violates
the Liskov’s substitution principle [11]. These operations
change components dependencies and can lead to unspeci-
fied behavior. This is illustrated in Figure 3 and Listing 5,
where an instance2 of the RequestQueue descriptor is sub-
stituted with an instance of the RandomRequestsQueue de-
scriptor. The RandomRequestsQueue descriptor extends the
RequestQueue descriptor with an additional required port
to which an instance of the RandomGenerator descriptor
should be connected. At runtime, when an instance of the
RequestsQueue descriptor is substituted by an instance of
the RandomRequestsQueue descriptor, the randomGen re-
quired port may became unsatisfied.

This problem has three possible solutions: (1) forbid ex-
tending requirements, but requirements have been made ex-
plicit in components and they are considered as important
entities to make it possible to introduce new connections.
Therefore it is undesirable to limit expressive power of mod-
eling by forbidding extension and specialization of require-
ments. For example, without possibility to add a required
port it is complicated to design the Emailer example shown
in Figure 2; (2) constrain substitutions - define a rule saying
that an original component can be substituted by a new one,
only if the new one provides at least the same and requires
at most the same as the original one; (3) allow additional
requirements and delegate responsibility for additional re-

2 the instance is the internal component connected to the internal required
port queue of an instance of the QueuedServer descriptor shown in Fig-
ure 3 and Listing 6.

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming6 2012/5/4

quirements satisfaction to the language users, while provid-
ing verification support for substitutions.

With COMPO all alternatives are possible, but since the
language is oriented toward modeling flexibility, we have
experimented with the third alternative. We will thus sup-
port covariant specialization if and when needed because it
corresponds to the way human naturally think differential
description [7]. Our inheritance mechanism does not apply
any restrictions to implicitly guarantee substitutability. Sub-
stitutions in COMPO are under the developer’s control and
responsibility.

We are providing three support methods: (1) the newCom-

patible method to return a component compatible with the
super-descriptor of the component (the service is automati-
cally created for each sub-descriptor which extends its par-
ent with additional requirements); (2) the reconnect method
(executed when a substitution is performed) to warn users
about unsatisfied additional requirements (by an exception)
and (3) the isCompatibleWith method to help developers to
check the validity of a substitution. For an example of usage
see Listing 5.

The first substitutions support comes in case when a
sub-descriptor has an additional required port. Then our in-
heritance system automatically generates a method called
newCompatible: The method has a unique parameter, an
array of pairs port-component. The method is able to cre-
ate an instance, which is substitutable with instances of the
super-descriptor. That is all additional requirements are sat-
isfied by connections to components given in the array argu-
ment.

The second support is the reconnect:to: method to
achieve substitutions safely. This method takes two ar-
guments, the first one is the name of an internal re-
quired port referencing the component which should be re-
placed and the second argument is the replacing component.
reconnect:to: checks for compatibility between the origi-
nal and the new component descriptor, i.e. checks if the new
component provides and requires at least the same as the
original one and checks if all requirements will be satisfied
after substitution. If all requirements of the new component
are satisfied, the replacement is performed, otherwise an ex-
ception is thrown. reconnect:to: reconnects all ports of
the original component to corresponding ports of the new
component and connects the new component to the corre-
sponding internal required port of the composite to reference
the new component.

For components compatibility checking purposes we pro-
vide isCompatible method. The isCompatible method is
able to compare the external contracts of compared compo-
nents and answer by true if they are compatible and false
otherwise. The method is useful for the reconnect:to:

method, which warns users in the case of unsatisfied require-
ments.

3.5 Extension & specialization of internal
architectures

Internal architecture description and initialization is inher-
ited by a sub-descriptor and it can be extended and special-
ized. When a large and complicated architecture needs to be
reused, the language should support such a feature.

In COMPO, a sub-descriptor may extend a set of in-
ternal components by introducing a new internal required
port. Usually this action implies extension and specializa-
tion of internal connections. These operations are illustrated
in Figure 3, where the descriptor QueuedHTTPServer ex-
tends the descriptor HTTPServer with a new internal com-
ponent named queue (described by RequestsQueue). And
it specializes the inherited connections in order to assem-
ble the queue component into the architecture of its super-
descriptor. COMPO code of QueuedHTTPServer is given in
Listing 6.

Specialization of an inherited internal component in
a sub-descriptor can be achieved by modifying the in-
terface description of the internal required port asso-
ciated with the internal component. The descriptor of
PriorityQueuedServer in Listing 6 specializes an inher-
ited internal component queue by describing it with the
PriorityRequestsQueue descriptor .

The specialization of an inherited internal connection
can be achieved by the combination of statements hav-
ing the following syntax: disconnect <port-name> from

<port-name> and connect <port-name> to <port-name>

(statements were explained in Section 2.5).

component descriptor QueuedHTTPServer

extends HTTPServer

{

internally requires {

queue <: RequestsQueue }

architecture {

disconnect fE@.backEnd from bE@.default;

connect fE@.backEnd to queue@.in;

connect queue@.out to bE@.default; }

}

component descriptor PriorityQueuedServer

extends QueuedHTTPServer

{

internally requires {

queue <: PriorityRequestsQueue }

}

Listing 6. Specialization and extension of an internal archi-
tecture.

4. Implementation
The current implementation of COMPO is used as a lab-
oratory for exploring new ideas and is built in [3] as an
extension of the SCL [8, 9] implementation in the context
of a global effort towards the development of efficient dy-
namic languages.. We have chosen Smalltalk because we
are a part of the effort to bring component concept into the
Pharo environment. Descriptors and sub-descriptors are im-
plemented as subclasses of the CompoComponent class. The

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming7 2012/5/4

CompoComponent class contains the mechanism to store
necessary inforation about ports and associated interfaces,
internal components and connections. The inheritance mech-
anism uses Smalltalk’s meta-model facilities to implement
extension and specialization operations for both the struc-
ture and behavior of descriptors.

Readers can download a Pharo image of COMPO imple-
mentation here: http://www.lirmm.fr/∼spacek/compo/

5. Related works
CBPLs ADLs

criterium/model ACOEL ArchJava CLIC CompJava COMPO Fractal SOFA
Structure inheritance yes yes yes yes yes yes yes
Behavior inheritance yes yes yes no yes no no
Extensions

Provided ports yes yes no yes yes yes yes
Required ports yes yes yes no yes yes yes

Internal components yes yes yes no yes yes yes
Connections yes yes yes no yes yes yes

Specialization
Provided ports yes no yes yes yes yes yes
Required ports yes no yes no yes yes no

Internal components no no yes no yes yes yes
Connections no no yes no yes yes yes

Substitution:
restrictive yes yes yes yes yes yes yes

with addit.reqs. no no yes no yes no no

Table 1. Comparative table of inheritance in selected CB-
PLs and in Fractal and SOFA models

In this section we give an overview of how inheritance is
used in existing Component-based Programming Languages
(CBPLs) and ADLs, and compare this with our proposal.
We also compare our proposal based on a combination of
inheritance and composition with inheritance-free proposal
in which all reuse schemes are achieved using sole compo-
sition.

It is important to note, that none of these languages we
have studied propose a complete specification of inheritance
which concerns all main reuse aspects. Our knowledge about
the behavior of their inheritance mechanism often had to
be extracted from experiments conducted using these lan-
guages. The list of related works is not exhaustive; especially
ADLs that do not support any form of descriptors inheritance
are not included.

5.1 Inheritance in related CBPLs
Here, we compare how related CBPLs integrate inheritance
aspects such as: the structure inheritance , the behavior in-
heritance and abilities to extend and specialize particular
definitions in a component descriptor (i.e. ports, internal
components and connections.) As related CBPLs we con-
sider ACOEL [19], ArchJava [1], CLIC [4] and CompJava
[16], because these languages combine implementation and
architecture specification.

Structure inheritance is partially supported in all other
languages. We say partially, because CompJava do not al-
low the reuse of internal components and connections spec-

ification. Ports declarations can be reused via component
type definition. Except that they use a different terminology,
the languages define component type as a set of port names
including interface references and roles specification. And
then a component type can be defined as an extension of an
existing component type

Behavior inheritance is fully supported only in CLIC and
ArchJava languages. ACOEL model supports implementa-
tion inheritance by the extend statement, but a child cannot
access any of the internals (implementation classes, meth-
ods) of a parent, except via the input ports of the parent,
i.e. this.<portname>.<servicename> (composition-like
approach). The advantage of this black-box approach is that
it preserve encapsulation of parent components. We support
white-box approach to be able to specialize services imple-
mentations which are not provided by a parent.

Ports specialization is not supported in ArchJava, because
adding new provided methods to an existing port might
cause ambiguities if these provided methods were required
by a connected component, and provided by a different com-
ponent. There would then be two components providing
the same required method, breaking ArchJava’s connection
rules. Adding required methods to an existing port would
make the component class non-substitutable for the compo-
nent superclass, because connections made to the superclass
might not provide the subclass’s required methods. Required
methods in a new port are also problematic, because the new
port might not be connected at all.

An interesting solution comes with ACOEL model,
which uses ports parametrized by mixins [5]. During instan-
tiation a mixin can be passed as an argument of a component
constructor and a parametrized port is then “decorated” with
new behavior. In COMPO, ports are just descriptions of com-
munication and connection points. Therefore, they should
not carry any implementation of behavior or its specializa-
tion.

Ports extension is well supported. CLIC model does not
support additional provided port, because this model allows
components to have only one provided port. The idea of a
single provided port is based on the observation that devel-
opers do not know beforehand, which services will be speci-
fied by each required port of a client component. Therefore it
is hard to split component functionality over multiple ports.
We see this as a unnecessary limitation of modeling power.

On the other hand, in the CompJava, a component type
may extend another component type and it inherits all ports.
It may extend the interface of inherited provided ports or
may add provided ports. Extension of required ports is not
allowed due to the substitutability policy of the CompJava
model.

Architecture extension and specialization. ACOEL and
ArchJava treat internal components as regular instance vari-
ables of classes and therefore there is no way to specialize in-
herited internal components. CompJava supports inheritance

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming8 2012/5/4

of component types only. Component types do not involve
internal components and connections declarations, therefore
architecture cannot be reused.

Substitutions. ACOEL, ArchJava and CompJava define
sub-type relation as defined by Liskov [11]. In general, a
component type is a sub-type of another one if it provides
at least the same and requires at most the same. To ensure
ACOEL use a type system checking. CompJava and Arch-
Java forbid additional requirements (in inherited types) and
then they restrict substitutability by the sub-type relation.

In Table 1, we make a summary of this comparison.

5.2 Inheritance in related ADLs
Structure reuse is a primary inheritance property supported
by ADLs [14], which operate mainly at design stage in the
development process. They make it possible to design soft-
ware using components and then convert them into a com-
ponent framework written in OOPLs or other programming
languages (but not CBPLs). ADLs generally do not sup-
port behavior inheritance, because behavior of components
is specified either in programming languages they are im-
plemented in, or using some formalisms where there is no
inheritance.

For example Fractal and its Fractal ADL allow to ex-
tend one component definition with another one, then a sub-
definition can add or override elements. It also extends com-
ponent type definition with contingency (optional or manda-
tory) and cardinality for each port. It is possible to add con-
nections but impossible to specialize an inherited connec-
tion.

SOFA Component Definition Language (CDL) uses
the frame term for component types. One frame can
inherit from another frame and then port declarations
are reused. To compose several frames, SOFA introduce
architecture construct, where an architecture implements
a frame and may inherits from an another architecture. In
this way, internal components and connections are reused.
Ports are specialized using interface redefinition i.e. by
the following statement frame ComponentName inherits

InheritedCompName changes InterfaceInstance1::

OriginalInterfaceType1 => NewInterfaceType1. Spe-
cialization of inherited connections is supported by the
statement: newTie1, newTie2 replacing originalTie

subsume subcompInstName:intInstName to intInstName

exempt: subcompInstName:intInstName.
Other ADLs do not specify inheritance between descrip-

tors, they usually use inheritance uniquely for creation of
sub-interfaces. In UML, the component entity inherits from
the structured class entity and therefore they can participate
in generalization relationship in the same way as classes do.

5.3 Composition as a reuse mechanism
In ComponentJ [18] the authors state that all reuse schemes
are achieved using sole composition. By nature, the com-
position concept allows only black-box reuse. Therefore it

Figure 4. The ”lost of initial receiver” problem, when com-
position and invocations forwarding are used. The context
pseudo variable self does not refer to the original receiver
of service invocation when delegations are used. The m2()

service of descriptor Child is never called

cannot be used when an internal architecture of a descriptor
needs to be reused. For example the reuse of a descriptor’s
internal architecture shown in Figure 3 cannot be performed
with composition.

Achieving behavioral inheritance by using composition
and message forwarding raises various issues including the
well known ”lost of initial receiver” problem [10]. The con-
text reference self (or this in some languages) does not
refer to the original receiver of service invocation when for-
warding is used. The problem and its solution are illustrated
in Figure 4, where the m2() service of descriptor Child is
never called.

ComponentJ proposal describes an operational solution
to that problem. The solution is based on a connexion of the
”self” port of the composed-component to the default pro-
vided port of the composite and on the service invocations
forwarding from the composite to the composed-component
(see the dashed arrow in the bottom of Figure 4).

The solution is operational but we argue that inheritance
is preferred because it: (1) enables abstract description and
conceptual description; (2) does not increases the complex-
ity of the system and therefore preserve code maintainabil-
ity of large systems, where hierarchical concept modeling
is used; (3) copy the structure of an external contract of a
super-descriptor (i.e. declaration of provided and required
ports) automatically to sub-descriptors.

6. Conclusions
In this paper, we have proposed an original descriptor-
based inheritance system for a component-based program-
ming language taking into account in the same context the
architecture modeling and coding aspects of components.
We have motivated and described concrete solutions for cre-
ating new component descriptors by extending and special-
izing existing ones and for extending or specializing all

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming9 2012/5/4

key primary aspects of component modeling and program-
ming: ports declarations, composition (or connection) archi-
tectures, services declarations and definitions. These solu-
tions are implemented and can be tested with our prototype
(http://www.lirmm.fr/∼spacek/compo/) implemented in Pharo
Smalltalk [3].

Among the various possible specialization options for
inheritance, we have applied in our context the covariant-
oriented one, by allowing to add requirements on a sub-
descriptor, that promotes expressive power and reuse. We
have implemented supports to help programmer achieving
substitutions. Other well-known approachs can of course be
considered. Besides, we have not yet discussed the multiple-
inheritance option. Inheritance in component-based devel-
opment is useful for both “development-for-reuse” and
“development-by-reuse”. It helps, in combination with other
composition techniques, in effortless production of new off-
the-shelf components or new applications embedding com-
plex components architectures.

There are various prospective for this work. The first one
is to obviously to gain more experience on using inheritance
in this context and to consider its use in designing Compo-
nent Design Patterns [2]. Beside, our inheritance extension
is currently used to build a reflective version of COMPO,
the primary goal of which is, through a first-class repre-
sentation of descriptors, components, ports and architec-
ture, to write model-driven verifications or transformations
of COMPO component-based applications in COMPO itself.
We are applying it to constraint-based architecture verifica-
tion, extending our earlier works [20, 21] towards constraint-
components hierarchies.

References
[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connecting

software architecture to implementation. In procs. of ICSE,
New York, NY, USA, 2002. ACM.

[2] K. Arnout. From patterns to components. ETH Zürich, 2004.

[3] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Pharo by Example. Square Bracket Associates,
2009.

[4] N. Bouraqadi and L. Fabresse. Clic: a component model
symbiotic with smalltalk. In procs. of IWST, New York, NY,
USA, 2009. ACM.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In Pro-

ceedings of OOPSLA and ECOOP. ACM Press, 1990.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. The fractal component model and its support in java:
Experiences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper., September 2006.

[7] R. Ducournau. “real world“ as an argument for covariant
specialization in programming and modeling. In Advances

in Object-Oriented Information Systems, Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2002.

[8] L. Fabresse, C. Dony, and M. Huchard. Foundations of a
simple and unified component-oriented language. Comput.

Lang. Syst. Struct., July 2008.
[9] L. Fabresse, N. Bouraqadi, C. Dony, and M. Huchard. Filling

the Gap between Design and Implementation with Compo-
nents. International Journal of Computer Languages, Systems

and Structures, Jan. 2012.
[10] H. Lieberman. Using Prototypical Objects to Implement

Shared Behavior in Object Oriented Systems. In procs. of

OOPSLA, Portland, Oregon, USA, Nov. 1986. Published as
ACM SIGPLAN Notices 21(11).

[11] B. Liskov and S. Zilles. Programming with abstract data
types. In Proceedings of the ACM SIGPLAN symposium on

Very high level languages, New York, NY, USA, 1974. ACM.
[12] R. C. Martin. Agile Software Development, Principles, Pat-

terns, and Practices. Prentice-Hall, Inc, 2002.
[13] OMG. UML 2.4.1 superstructure specification; document

formal/2011-08-06. Technical report, OMG, August 2011.
[14] T. Oplustil. Inheritance in architecture description language.

In procs. of WDS, Prague, Czech Republic, June 2003. Mat-
fyzpress.

[15] F. Plásil, D. Bálek, and R. Janecek. Sofa/dcup: Architecture
for component trading and dynamic updating. In procs. of

CDS, Washington, DC, USA, 1998. IEEE Computer Society.
[16] H. A. Schmid and M. Pfeifer. Engineering a component lan-

guage: Compjava. In Software and Data Technologies, Com-
munications in Computer and Information Science. Springer
Berlin Heidelberg, 2008.

[17] J. a. C. Seco and L. Caires. A basic model of typed com-
ponents. In procs. of ECOOP, London, UK, 2000. Springer-
Verlag.

[18] J. C. Seco, R. Silva, and M. Piriquito. Componentj: A
component-based programming language with dynamic re-
configuration. Computer Science and Information Systems,
Dec. 2008.

[19] V. C. Sreedhar. Mixin’up components. In procs. of ICSE, New
York, NY, USA, 2002. ACM.

[20] C. Tibermacine, R. Fleurquin, and S. Sadou. A family of
languages for architecture constraint specification. In the

Journal of Systems and Software (JSS), Elsevier, 2010.
[21] C. Tibermacine, S. Sadou, C. Dony, and L. Fabresse.

Component-based specification of software architecture con-
straints. In procs. of CBSE, Boulder, Colorado, USA, June
2011. ACM Press.

[22] W. Weck and C. Szyperski. Do we need inheritance? In procs.

of ECOOP, 1996.
[23] L. Xu and Y. Ren. Bichon: A new component-oriented pro-

gramming language. Software Engineering, World Congress

on, 2010.

An Inheritance System for Structural & Behavioral Reuse in Component-based Software Programming10 2012/5/4

