
Component-based programming

A Smalltalk implementation of Exil, a

Component-based Programming Language

Petr Spacek Christophe Dony
Chouki Tibermacine

LIRMM, CNRS and Montpellier II University
161, rue Ada

34392 Montpellier Cedex 5 France
{spacek,dony,tibermacin}@lirmm.fr

Luc Fabresse
Université Lille Nord de France

941 rue Charles Bourseul
59508 DOUAI Cedex France
luc.fabresse@mines-douai.fr

Abstract

The component-based development paradigm brings various solu-
tions for software reusability and better modular structure of appli-
cations. When applied in programming language context it changes
the way dependencies and connections between software pieces are
expressed. In this paper we present the Smalltalk implementation of
“Exil”, a component-based architecture description and program-
ming language that makes it possible to use component related con-
cepts (ports, interfaces, services, ...) at design and if wished at pro-
gramming time. This proposal enables Smalltalk users to develop
their applications in the component-oriented style.

Categories and Subject Descriptors D.1.0 [Programming tech-
niques]: General—Component oriented programming technique;
D.2.11 [Software Architectures]: Languages—Component Ori-
ented Language

General Terms Component-based Programming

Keywords Component, Inheritance, Architectures, Programming,
Substitutability

1. Introduction

In this work, we consider a software component as a piece of soft-
ware which is a unit of deployment and composition with con-
tractually specified interfaces and explicit dependencies. A compo-
nent interacts with other ones only by well declared communication
channels.

We have designed a programming language where a component
is a basic concept to encapsulate data and functionality in similar
way as an object does, but with respect to component design ideas
such as independence, explicit requirements and architectures. The
goal is to develop a language, in which an expert programmer
can develop independent components, design for reuse [5], and a
non expert programmer can develop applications by connecting
previously developed components, design by reuse [5].

A component can be seen as a black-box which provides func-
tionalities and explicitly expresses what it requires to be able to

[Copyright notice will appear here once ’preprint’ option is removed.]

01 class Compiler {

02 public Parser p;

03

04 public Compiler(Parser p) {}

05 ...

06 }

07 class App {

08 void main(string[] args) {

09 Compiler c = new Compiler();

10 c.p = new SpecialParser();

11 // or Compiler c = new Compiler(new SpecialParser());

12 ...

13 }

14 }

Figure 1. The Compiler class declares Parser attribute, from the
black-box viewpoint, this requirement is hidden to the user

provide them. With OOP, objects usually require some other ob-
jects to be able provide services, for example a compiler class usu-
ally requires a parser, see Figure 1. This dependency is expressed
by the public attribute p and by Compiler’s constructor, see lines 2
and 4 of figure 1). From reuse and deployment point of view, object
dependencies are not very well observable from the outside (except
by using reflective means or somehow by reading a documenta-
tion if there is one). With Component-based programming (CBP),
where component dependencies are explicit, it is clear what the de-
ployment environment will need to provide so that the components
can function, as illustrated on Figure 2, lines 2 and 14.

When a component is connected to another one, generally to
satisfy requirements, this defines a software architecture. A soft-
ware architecture is an overall design of software system [10]. The
design is expressed as a collection of components, connections be-
tween the components, and constraints on how the components in-
teract. Describing architecture explicitly at the programming lan-
guage level can facilitate the implementation and evolution of large
software systems and can aid in the specification and analysis of
high-level designs. For example, a system’s architecture can show
which components a module may interact with, help to identify the
components involved in a change, and describe system invariants
that should be respected during software evolution.

The work we present in this paper aims at proposing a Smalltalk
implementation of a dynamically typed component-based program-
ming language named Exil. Exil is based on Scl [4, 5] and extends
it towards the explicit and declarative expression of requirements
and architectures. It is based on the descriptor/instance dichotomy
where components are instances of descriptors. It also provides an
original inheritance system [9] which is not the scope of this paper.

A Smalltalk implementation of a Component-based Programming Language 1 2011/8/12

ExilHelloerApp

helloer

service hello()

cPrinter : ExilTranscriptPrinter

printer

service print(string)
service clear()

cHelloer : ExilHelloer

helloer printer

service sayHello()

service hello() {
 cHellloer sayHello.
}

service sayHello() {
 printer print: #('Hello World').
}

service print(s) {
Transcript show: s; cr.

}

service clear() {
Transcript clear.

}

Figure 3. Diagram of the architecture of the ExilHelloerApp component

01 component Compiler {

02 require Parser p ;

03 ...

04 }

05 ...

06 component App {

07 provide service main(string[] args);

08

09 internalComponents {

10 Compiler c;

11 Parser p;

12 }

13 connections {

14 connect c.requirements.p to p.default

15 }

16

17 service main(string[] args) {

18 ...

19 }

20 }

Figure 2. Component-oriented languages explicitly express de-
pendencies, i.e. component Compiler require a Parser

The paper is organized as follows. Section 2 proposes an
overview of the Exil component model and programming language.
Section 3 gives some basic clues on the Smalltalk implementa-
tion. Before concluding and discussing the future work, we briefly
present in Section 4 the related work.

2. Exil Overview

This section presents the key concepts and structure of Exil.
In Exil, every component is an instance of a descriptor. A de-

scriptor defines the behavior of its instances by services and their
structure through ports, internal components and connections. The
diagram of a simple descriptor is presented on Figure 3. ExilHel-
loerApp is a descriptor of a component saying hello, the Exil code
of such a component is shown on Figure 4. It defines that the
ExilHelloerApp component will maintain only one provided port
called helloer providing service hello. The architecture of this
component (field internalComponents) declares 2 internal compo-
nents: cHelloer and cPrinter, and in the field internalConnec-
tions it defines how they are connected.

A descriptor may extend another descriptor, such a descriptor
is called a sub-descriptor. A sub-descriptor inherits all ports, in-
ternal components and connection of super-descriptor (its parent),
it may add new ports, new internal components and new connec-
tions or it may specialize them. A sub-descriptor may specialize an
inherited port by modifying its interface. It may specialize an in-
herited internal component by modifying its default descriptor and

finally may specialize connections by combination of connect and
disconnect statements. A sub-descriptor may specialize an in-
herited service. Using classical mechanism of inheritance we do
have common problems such as encapsulation violation between
the components. More over, allowing additional requirements in a
sub-descriptor the substitutability becomes more complicated [9].
However, modeling assets brought by inheritance are one major
cornerstone of the success of object-oriented languages (1) for the
ability it gives developers to organize their ideas on the base of con-
cept classification (a list is a kind of collection, such architecture is
a kind of visitor, ...) which is itself one key of human abstraction
power and (2) for the calculus model introduced by object-oriented
programming that makes it possible to execute an inherited code in
the correct context (the receiver environment). In the off-the-shelf
components context, as pointed by [6], a set of available black-box
components cannot cover all possible scenarios of usage, and there-
fore an adaptation mechanism is needed. Inheritance can be the
mechanism, which enables programmers to easily extend or spe-
cialize such components.

Services A descriptor may introduce services to specify func-
tionality of its instances. When a service is listed in a provided
port description, then the service is public. Each service has
a signature given by the following template: <service-name>

(<argument1-name>, <argument2-name>, ...). A defini-
tion of a service consist of the service keyword followed by the
service signature and a source code written in brackets after the
signature, for example service hello in Figure 4.

The syntax of Exil is a mix of java-like syntax, used for spec-
ifying descriptors, and Smalltalk syntax used for service bodies
implementation - this dichotomy is motivated by the fact that our
language is currently implemented in the Pharo-Smalltalk environ-
ment [1], but we consider java-like syntax more readable and ex-
pressive for structural descriptions.

Components communicate by service invocations through their
ports. A service invocation consists of a port, a selector (the name
of the requested service) and arguments. Arguments are treated as
in Scl, by temporary connections between arguments and ports tem-
porary created for each argument. In case of argument incompati-
bility an exception is thrown.

A component c1 can invoke a service of a component c2 if a
provided port p2 of c2 is connected to a required port p1 of c1. In
this case, the service invocation is emitted via p1 of c1 and received
via p2 of c2. When a component sends a service invocation i via one
of its required ports r, the component checks if port r is connected
to provided port p and if yes, then it transmits i via p, else a does-
not-understood error is thrown.

A Smalltalk implementation of a Component-based Programming Language 2 2011/8/12

component ExilHelloerApp {

provide { helloer->{hello()} }

internalComponents {

cHelloer->ExilHelloer;

cPrinter->ExilTranscriptPrinter;

}

internalConnections {

connect cHelloer.printer to cPrinter.printer

}

service hello() { cHelloer sayHello }

}

Figure 4. Exil code of the ExilHelloerApp descriptor providing
and implementing the hello service and having four internal com-
ponents cHelloer and cPrinter inter-connected by connections
specified in the internalConnections field

Interface An interface in Exil is a named list of service signa-
tures. An interface is created by a statement with the following tem-
plate: interface <interface-name> { <service-signature-1>;

<service-signature-2>; ...}. We have introduced interfaces
in Exil compared to Scl for convenience and reuse purposes. That
means, we want to be able to reuse a list of services, used as a
contract description by one component, as a contract description of
another component.

Port A port is an unidirectional communication point described
by a list of services signatures or by an interface reference (which
makes it possible to reuse such a description) and by a role (re-
quired or provided). A provided port describes what is offered by a
component. A required port describes what is demanded by a com-
ponent. For example, a definition of two provided ports named A

and B looks like: provide {A->{service1()}; B->ISecond},
where the A port provides a service called service1 and the B port
is described by an interface ISecond.

Connection A connection between two components is performed
by a connection between their ports. A descriptor lists all connec-
tions in the field internalConnections. A connection is specified by
a statement described by the template
connect <an-emittor-port-address> to

<a-receiver-port-address>. By the port-address it is meant
the expression <component-name>.<port-name>, for example
see the field internalConnections in Figure 4. A component
can act as an adapter between various other components and then,
it is called a connector.

Internal component A component can own internal components.
Such a component is then called a composite. The owning compo-
nent references an internal component by a variable.

A list of internal components is defined in the descriptor’s field
internalComponents, see Figure 4. The Exil code of the cHelloer
internal component is in Figure 5. Internal components are ini-
tialized during instantiation of the owning composite. By default
all internal components are initialized with NilComponent com-
ponent, a developer should implement an init service or op-
tionally may specify a default descriptor in the internal compo-
nents list, i.e. use the following statement internalComponents
{cPrinter->Printer}, which is equivalent to the cPrinter :=

Printer new. line in the init service.
An internal component is encapsulated by the owning compos-

ite and it is not accessible from outside of the composite. Services
defined by a composite can use internal components to implement
a desired behavior (service invocation redirect).

component ExilHelloer {

provide { helloer->{sayHello()} }

require { printer->{print(string); clear()} }

service sayHello() {

printer print: #(’Hello World’).

}

}

Figure 5. Exil code of the ExilHelloer descriptor providing and
implementing the sayHello service and requiring services print
and clear via required port printer.

3. Implementation

Exil is implemented in the Pharo Smalltalk environment [1] as an
extension of Scl. We chose Smalltalk because of its reflective ca-
pabilities, which are necessary for mechanisms like the service in-
vocation mechanism. And we chose Pharo environment for its rich
set of support tools and frameworks like PetitParser [8] framework
or Mondrian [7], which we use or will use for the Exil implemen-
tation.

The Exil implementation contains core classes representing Exil
component model, then there are parser and compiler classes re-
sponsible for source code processing and classes implementing
Exil GUI shown on Figures 6 and 7.

3.1 Parser & Compiler

Exil has custom syntax and therefore a special parser is required.
We use PetitParser framework base for our parser which is rep-
resented by the ExilParser class, which inherits ExilGrammar

class and extends it with AST building code. We have chosen Pe-
titParser framework, because it allows us to maintain Exil grammar
as easily as common Smalltalk code and because we can smoothly
compose it with the PetitSmalltalk parser. The PetitSmalltalk parser
is used for service bodies parsing. The result of our parser is an AST
made from subclasses of the ExilParseNode class.

ExilCompiler transform the AST made by the parser to Exil
core classes representation. The compiler is designed as a visitor of
AST nodes.

3.2 Core

In our proposal, we use Smalltalk classes to implement component
descriptors. All classes implementing component descriptors are
subclasses of the base class called ExilComponent, the base class
the mechanism to store information about provided and required
ports, internal components and their interconnections contains in
the class-side. This information is used at instantiation time by de-
scriptors (initialization methods) to create components (descriptors
instances).

Internally, for each port and each internal component, an in-
stance variable is created in the class implementing the descriptor
to hold references to port instances and internal components in-
stances. Ports are implemented as objects. There is one class hier-
archy for provided ports and one for required ports, all of them are
subclasses of ExilPort base class. Ports are described by inter-
faces, which are implemented by arrays or by classes.

An interface is implemented as an array of service signatures.
When an interface is defined as the named interface, for exam-
ple interface IMemory { load(); save(data); }, then the
IMemory sub-class of the class ExilInterface with methods
load and save data: is created. These methods are having empty
bodies. A sub-interface is then implemented as a sub-class of the
class representing its parent.

Services are represented by methods. An automatic (and trans-
parent for the user) mapping of a service signature from Exil to

A Smalltalk implementation of a Component-based Programming Language 3 2011/8/12

Figure 6. Exil GUI

a Smalltalk’s method selector is based on naming convention, for
example service signature sum(numberA,numberB) is mapped
into a Smalltalk method with selector sum numberA:numberB:.
Since service bodies are written in Smalltalk, a call of the sum

service performed in a body of an another service looks like
<receiver> sum:{ 1. 2 }. The call is automatically dispatched
to sum numberA:numberB: method, according to parameters ar-
ity.

For each internal component and port there is an instance
variable having the same name. Information about ports and as-
sociated interfaces or about default descriptors of internal com-
ponents are stored as class side methods which return an ar-
ray of associations, i.e. pairs of port name (resp. internal com-
ponent name) and interface (resp. descriptor). Connections are
stored similarly, as a class-side method which returns an array
of associations. An association is a pair of port-addresses. We
call these methods the description methods. For example the
ExilHelloerApp descriptor shown in Figure 4 is implemented as
a sub-class of the ExilComponent class named ExilHelloerApp

having 3 instance variables, one named helloer representing
the port helloer and two others representing internal compo-
nents cHelloer, cPrinter and named in the same way as the in-
ternal components. The ExilHelloerApp metaclass implements
four description methods called providedPortsDescription,
requiredPortsDescription, internalComponentsDescription
and connectionsDescription. Source code of the class is in
Figure 8.

3.3 Inheritance implementation

A sub-descriptor is implemented as a sub-class of the class rep-
resenting its super-descriptor. All these specializations are imple-
mented as modifications of the description methods.

A service specialization is equal to the method overriding in
Smalltalk. When a sub-descriptor specialize an inherited service,
the corresponding method is then overridden in the sub-class real-
izing the sub-descriptor.

ExilComponent subclass: #ExilHelloerApp

instanceVariableNames: ’helloer cHelloer cPrinter’

classVariableNames: ’’

poolDictionaries: ’’

category: ’Exil-Examples-Helloer’.

!

ArithEvaluator class>>providedPortsDescription

^ #(#helloer->#(#hello)).

!

ArithEvaluator class>>requiredPortsDescription

^ #().

!

ArithEvaluator class>>internalComponentsDescription

^ #(#cHelloer->ExilHelloer #cPrinter->ExilTranscriptPrinter).

!

ArithEvaluator class>>connectionsDescription

^ #((#cHelloer->#printer)->(#cPrinter->#printer).

!

Figure 8. The ExilHelloerApp class implementing the
ExilHelloerApp descriptor showed in Figure 4.

Service invocations Service invocations, in the context of inher-
itance, fully benefits from Smalltalk’s message sending system.
When a port receives a service invocation which is valid according
to the contract specified by the interface of the port, it translates the
service signature into a Smalltalk selector and the standard method
look-up is performed. Since descriptors and sub-descriptors are re-
alized by classes and subclasses, not extra mechanism is needed,
the standard method look-up works perfectly.

Substitution and initialization/compatibility support Exil users
are responsible for the init method implementation of a descriptor
to achieve dependency injection, that is to say, for initializing vari-
ables referencing internal components used in the internal archi-
tecture. The first support comes in case when a sub-descriptor has
an additional required port. Then our inheritance system automati-
cally generates two new class instantiation methods (and two corre-
sponding init methods, not described here), one newCompatible
without parameter and newCompatible: having as unique param-

A Smalltalk implementation of a Component-based Programming Language 4 2011/8/12

Figure 7. Component classes in browser

eter an array of pairs port-component. The first one is able to create
an instance, compatible for substitution with instances of super-
descriptors, for which all additional requirements are satisfied by
connections to default instances of the required component. The
second one does the same thing but uses its argument for connect-
ing additional required ports.

The second support is a method to achieve substitutions safely.
Substitution is achieved by a method replace:with: on instance-
side of the base class ExilComponent. This method takes two ar-
guments, the first one is the name of the internal component vari-
able referencing the component which should be replaced and the
second argument is the replacement component. replace:with:
checks for original and replacement components descriptors com-
patibility then it checks if all requirements would be satisfied after
substitution. If the descriptor of the new component is compatible
with the descriptor of the original one and if all requirements of
the new component are about to be satisfied, the replacement is
performed otherwise an exception is thrown. replace:with: re-
connects all ports of the original component to corresponding ports
of the new component and change internal component reference of
the composite to reference the new component.

Readers can download a Pharo image of Exil implementation
here: http://www.lirmm.fr/∼spacek/exil/

4. Related work

We give in this section an overview of existing component models
implemented on top of Smalltalk, and discuss their limitations.

CLIC Clic [2], an extension of Smalltalk to support full-fledged
components, which provides component features such as ports, at-
tributes, or architecture. From the implementation point of view,
it fully relied on Smalltalk reflective capabilities. Thus, from the
Smalltalk virtual machine point of view, CLIC components are ob-
jects and their descriptors are extended Smalltalk classes. Because
of this symbiosis between CLIC and Smalltalk, the use of CLIC
allows taking benefit from modularity and reusability of compo-

nents without sacrifice performance. CLIC model allows compo-
nents to have only one provided port. The idea of a single provided
port is based on the observation that developers do not know be-
forehand, which services will be specified by each required port of
client component. Therefore it is hard to split component function-
ality over multiple ports. CLIC also support explicit architecture
description and inheritance. It does not need any additional parser
or compiler.

FracTalk FracTalk1 is a Smalltalk implementation of the Fractal
hierarchical component model [3]. In FracTalk, a primitive compo-
nent is implemented as a plain object. As in Exil, every port is im-
plemented as a single object in order to ensure that every port allow
invoking only declared operations. Therefore, a single component
materializes as multiple objets. In opposite to Exil, the description
of a component is scattered over multiple classes. A component in
FracTalk is described by implementation class and factory class.
Another limitation of FracTalk is the the difficulty to make use
of Smalltalk libraries. Smalltalk objects aren’t full fledged compo-
nents since they do not have a membrane and then does not provide
expected non-functional ports. Therefore, the only mean to use a
Smalltalk object in a FracTalk application is to encapsulate it in the
content of some component.

5. Conclusions

In this paper, we propose a Smalltalk implementation for a dynamically-
typed component-based language. The language brings benefits of
the component-paradigm closer to the Smalltalk users and it also
provides solid soil for experiments in component software area.
Exil allows programmers to express architectural structure and
then seamlessly fill in the implementation with Smalltalk code,
resulting in a program structure that more closely matches the
designer’s conceptual architecture. Thus, Exil helps to promote

1 http://vst.ensm-douai.fr/FracTalk

A Smalltalk implementation of a Component-based Programming Language 5 2011/8/12

effective architecture-based design, implementation, program un-
derstanding, and evolution.

We plan to work in the near future on the integration of our pre-
vious work on architecture constraint specification and architecture
description structural validation [11, 12]. In this way, we can spec-
ify conditions on the internal structure of a component (its internal
components and connections between them) or on its ports. This
will help developers in better designing their systems by making
more precise architecture descriptions. There are here some inter-
esting issues that we foresee to study, as for example, architecture
constraint inheritance.

In the future, we would like to switch from Smalltalk syntax
used for services implementation to Ruby syntax, which is more
similar to the syntax used for component structure description.
For this purposes we would like to port SmallRuby2 project into
Pharo and develop Ruby parser using PetitParser [8] framework.
We are also interested in visual programming and we plan to use the
Mondrian [7] framework to enhance our user interface with auto-
generated component/architecture diagrams.

References

[1] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Pharo by Example. Square Bracket Associates, 2009.
ISBN 978-3-9523341-4-0. URL http://pharobyexample.org.

[2] N. Bouraqadi and L. Fabresse. Clic: a component model symbiotic
with smalltalk. In Proceedings of the International Workshop on
Smalltalk Technologies, IWST ’09, pages 114–119, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-899-5.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The fractal component model and its support in java: Experiences with
auto-adaptive and reconfigurable systems. Softw. Pract. Exper., 36:
1257–1284, September 2006. ISSN 0038-0644. doi: 10.1002/spe.
v36:11/12. URL http://portal.acm.org/citation.cfm?id=

1152333.1152345.

[4] L. Fabresse. From decoupling to unanticipated assembly of compo-
nents: design and implementation of the component-oriented language
Scl. PhD thesis, Montpellier II University, Montpellier, France, De-
cember 2007.

[5] L. Fabresse, C. Dony, and M. Huchard. Foundations of a sim-
ple and unified component-oriented language. Comput. Lang. Syst.
Struct., 34:130–149, July 2008. ISSN 1477-8424. doi: 10.1016/j.cl.
2007.05.002. URL http://portal.acm.org/citation.cfm?id=

1327541.1327717.

[6] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995. ISBN 978-0-201-63361-0.

[7] M. Meyer and T. Gı̂rba. Mondrian: Scripting visualizations. Eu-
ropean Smalltalk User Group 2006 Technology Innovation Awards,
Aug. 2006. URL http://scg.unibe.ch/archive/reports/

Meye06cMondrian.pdf. It received the 2nd prize.

[8] L. Renggli, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Practical dy-
namic grammars for dynamic languages. In 4th Workshop on Dy-
namic Languages and Applications (DYLA 2010), Malaga, Spain,
June 2010. URL http://scg.unibe.ch/archive/papers/

Reng10cDynamicGrammars.pdf.

[9] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse. Reuse-oriented
inheritance in a dynamically-typed component-based programming
language. Technical report, LIRMM, University of Montpellier 2, May
2011.

[10] C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 2002. ISBN 0201745720.

2 https://swing.fit.cvut.cz/projects/smallruby

[11] C. Tibermacine, R. Fleurquin, and S. Sadou. A family of languages
for architecture constraint specification. In the Journal of Systems and
Software (JSS), Elsevier, 83(5):815–831, 2010.

[12] C. Tibermacine, S. Sadou, C. Dony, and L. Fabresse. Component-
based specification of software architecture constraints. In Proceed-
ings of the 14th International ACM SIGSOFT Symposium on Com-
ponent Based Software Engineering (CBSE’11), Boulder, Colorado,
USA, June 2011. ACM Press.

A Smalltalk implementation of a Component-based Programming Language 6 2011/8/12

