
!

!

!"#$%&'(&)'*+,-"+"&.(.$/&'/0'('1"0-"2.$3"'4/+,/&"&.567$"&.")'
87/%7(++$&%'(&)'9/)"-$&%':(&%;(%"'

<='

8".7'>8?4@A'

ACADÉMIE DE MONTPELLIER

U N I V E R S I T É M O N T P E L L I E R I I

— SCIENCES ET TECHNIQUES DU LANGUEDOC —

THÈSE

présentée au Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier pour

obtenir le diplôme de doctorat

SPÉCIALITÉ : INFORMATIQUE

Formation Doctorale : Informatique
École Doctorale : Information, Structures, Systèmes

Design and Implementation of a Reflective Component-Oriented
Programming and Modeling Language

par

Petr SPACEK

Soutenue le 17 decembre 2013 at ??h, devant le jury composé de :

Lionel SEINTURIER, Professeur, Inria, University Lille 1, France . Rapporteur
Ivica CRNKOVIC, Professeur, IDT, Mälardalen University, Sweden, . Rapporteur
Pierre COINTE, Professeur, LINA, Université de Nantes, France . Examinateur
Roland DUCOURNAU, Professeur, LIRMM, Université Montpellier II, France . Président
Christophe DONY, Professeur, LIRMM, Université Montpellier II, France Directeur de Thèse
Chouki TIBERMACINE, Associer Professeur, LIRMM, Université Montpellier II, France . . Co-Directeur de Thèse

http://www.univ-montp2.fr
http://www.edi2s.univ-montp2.fr
http://www.lirmm.fr/~spacek/
http://www.lifl.fr/~seinturi/
http://www.ivica-crnkovic.net/
http://www.emn.fr/z-info/cointe/
http://www2.lirmm.fr/~ducour/
http://www.lirmm.fr/~dony/
http://www.lirmm.fr/~tibermacin/

Version of October 27, 2013

Contents

Contents iii

Acknowledgement vii

Abstract ix

Résumé xi

1 Introduction 1
1.1 Context: Component-based Software Engineering . 2
1.2 Limitations of the Existing Approaches . 4
1.3 SCL, the predecessor of our work . 7
1.4 The problematic of the thesis . 8
1.5 Characteristics of the contribution . 11
1.6 Structure of the thesis . 12

2 Component Models and their Implementations 15
2.1 Advantages and promises of the component-based approach 16

2.1.1 Reuse . 16
2.1.2 Distribution . 19
2.1.3 Explicitness . 21

2.2 Presentation of the main Component-based approaches 21
2.2.1 Families of the component-based approaches 21
2.2.2 Frameworks family . 23
2.2.3 Generative family . 43
2.2.4 Component-oriented languages family . 52

2.3 Comparison . 59
2.4 Conclusion . 65

3 COMPO’s basics 67
3.1 The language philosophy . 68
3.2 Concepts . 70

3.2.1 Components and Descriptors . 70
3.2.2 Ports . 77

iii

iv Contents

3.2.3 Services . 85
3.2.4 Connections . 87

3.3 Mechanisms . 90
3.3.1 Component instantiation . 90
3.3.2 Service invocation . 92
3.3.3 Composition mechanism . 99
3.3.4 Substitution mechanism . 102

3.4 Recapitulation . 105
3.4.1 Definitions . 106
3.4.2 Choices . 107

3.5 Related work . 108
3.6 Summary . 110

4 Integrating inheritance 111
4.1 Introduction: Do we need inheritance? . 112
4.2 Inheritance for structural and behavioral reuse . 118

4.2.1 Multiple inheritance, yes or no? . 119
4.3 Descriptors and basic inheritance . 120

4.3.1 The ExtCalc Example . 120
4.4 Addition & specialization of services . 122

4.4.1 The service lookup mechanism . 123
4.5 Addition & specialization of provided port descriptions 126
4.6 Addition & specialization of external required ports descriptions 129

4.6.1 The DynamicHTTPServer example . 131
4.7 Extension & specialization of architectures . 134
4.8 Related work . 136
4.9 Summary . 139

4.9.1 Definitions made . 140
4.9.2 Choices made . 140

5 Integrating reflection 143
5.1 MDE, the motivation for reflection . 144
5.2 Reflection & Reification . 145
5.3 Requirements for the meta-model architecture . 147
5.4 The meta-model . 149
5.5 First-class descriptors and components . 151
5.6 First-class ports . 158
5.7 First-class services . 163
5.8 Related work . 171
5.9 Summary . 173

5.9.1 Definitions made . 174
5.9.2 Choices made . 174

6 COMPO in Practice 175

Contents v

6.1 Designing an HTTP server . 176
6.2 Designing a collection hierarchy . 180
6.3 Transformation to a bus-oriented architecture . 182
6.4 Verifying architecture constraints . 185

6.4.1 Verifying the bus-oriented architecture . 186
6.4.2 Verifying the Pipe & Filter architecture . 188

6.5 Summary . 191

7 The prototype 193
7.1 Why Smalltalk? . 194
7.2 Technology choices . 194
7.3 Bootstrap Implementation . 195
7.4 The implemented model . 197
7.5 Services invocation implementation . 199
7.6 Connection mechanism implementation . 201
7.7 Inheritance implementation . 202
7.8 Instantiation mechanism implementation . 203
7.9 Toward a graphical development environment . 204
7.10 Summary . 205

8 Conclusion 207

A Grammar 211
A.1 Lexan rules . 211
A.2 Parser rules . 212

B Usage sources 215
B.1 Collection hierarchy sources . 215
B.2 Constraints sources . 222

B.2.1 Pipes&Filters . 222

List of Figures 227

List of Tables 230

List of Listings 231

Bibliography 235

Acknowledgement

Saying thank you is more than good manners. It is good
spirituality.

Alfred PAINTER.

It hardly seems possible to me that I have finally reached the end of this long process, and that
it only remains to thank the people who have helped me along the way. Even beyond the formal
aspects of my education, I have learned much and gained much from the people around me over the
last seven years, and I know that I will never be able to truly express my appreciation. I can only say:
Thank you!

To Christophe and Chouki, I say: Thank you! You have taught me about research, about speaking,
and writing, about software architecture, and about life. You have supported me at every stage, from
my first arrival here at LIRMM to the final completion of my dissertation. You have supported me
when I was coasting along not getting much accomplished and when I was pushing hard to do more
than seemed possible. You have helped make my dissertation the best that I can make it. You have
been patient with me when I had nothing to give you and responsive when I gave you too much all at
once. You have truly gone beyond the call of duty.

To the MAREL group, I say: Thank you! You put up with my half-baked ideas and my buggy
prototypes and turned them into something real and even useful. Your feedback and your example
have enriched my experience as well as my work.

To my office mates, past and present, I say: Thank you! You have tolerated my muttering and
teasing and aggressive work-avoidance tactics. You have helped me to know that it can be done, and
to remember that there is more to computer science than my little corner of it.

To my family, and especially to HER (she knows), I say: Thank you! Your support has kept me
going when I thought I couldn’t go on. You have kept me in perspective, and helped me keep my
priorities straight. You are what makes it all worthwhile.

vii

Abstract

Component-based Software Engineering (CBSE), to produce software by connecting of the shelf
ready-to-use components, promises costs reduction during the development, the maintenance and
the evolution of a software. The recent period has seen the production of a very important set of
new results in this field. As the term “component” is very general, it encompasses many researches
having different objectives and offering various kind of abstractions and mechanisms. However one
main overall accepted idea is to model software with components organized into architectures and
to generate code from such abstract descriptions. This is a good idea but the question arise to know
which languages are good candidate for the generated code. In the current practice the design phase
happens in the component world and the programming phase occurs in the object-oriented world.
It appears that languages and technologies used to achieve component-based development are only
partially component-based. Our first claim is that to use component-based languages to write the
executable code is primarily important just because the original component-based designs (e.g. re-
quirements, architectures) do not vanish at run-time, making programs more understandable and
reversible. By doing this, it is then possible to imagine that design (modeling) and programming can
be done at the same conceptual level and why not using the same language. Usually, objects are
most always chosen to implements component-based designs. It is true that an object is certainly the
existing executable thing the closest to a component as they are understood today; close but not ex-
actly the same. Our second claim is then that it is possible to achieve component-programming lan-
guages by smoothly modifying object-oriented ones. Following these ideas, we present in this thesis
an example of a new pure component-based programming and modeling language, named COMPO

incorporating, in a simple and uniform way, core concepts and mechanisms necessary for the de-
scription and implementation of components and of component-based architectures: component,
port, service, connection and the following mechanisms: instantiation, service invocation, compo-
sition and substitution. We also claim that describing components, their architectures (structures)
and their services (behavior) would benefit (as objects descriptions do) from an inheritance-based
differential description. In consequence we propose a specification and implementation of an inher-
itance system taking requirements into account on a covariant specialization policy base and with a
corresponding dedicated substitution mechanism. We finally claim that making such a language fully
reflective will open an interesting new alternative (in the component’s context) for any king of model
or program checking or transformation. We revisit some standard solutions to achieve an original
component-oriented reification of concepts to build up an executable meta-model designed on the
idea of “everything is a component”. A complete prototype implementation of the COMPO language
has been achieved and is described in this thesis.

ix

x Abstract

Keywords: Component-oriented language, modeling, architecture, programming, separation of con-
cerns, decoupling, inheritance, reflection, reification, COMPO

Résumé

L’ingénierie des logiciels a base de composants, produisant du logiciel en assemblant des composants
sur « étagere » et « prets-a-l’usage », promet la réduction des couts au cours du développement, la
maintenance et l’évolution d’un logiciel. La période récente a vu la production d’un ensemble tres
important de nouveaux résultats dans ce domaine. Comme le terme «composant» a un sens assez
général, cet ensemble englobe de nombreuses recherches ayant des objectifs différents et offrant
divers types d’abstractions et mécanismes. Cependant, une idée générale communément admise
consiste a modéliser les logiciels avec des composants organisés en architectures, puis générer du
code a partir de ces descriptions abstraites. Ceci est une bonne idée, mais la question qui se pose
consiste a savoir quel langage est le meilleur candidat pour le code généré. Dans la pratique actuelle,
la phase de conception se déroule dans le monde des composants alors que la phase de program-
mation se produit dans le monde des objets. Il semble aussi que les langages et technologies util-
isées dans le développement a base de composants ne sont que partiellement a base de composants.
Notre premiere revendication consiste a dire qu’il est important d’utiliser les langages a composants
pour écrire du code exécutable, simplement parce que les artefacts a base de composants d’origine
(comme, les besoins ou les architectures) ne disparaissent pas au moment de l’exécution, rendant
les programmes plus compréhensibles et réversibles. En faisant cela, il est alors possible d’imaginer
que la conception (modélisation) et la programmation peuvent etre effectuées au meme niveau con-
ceptuel et pourquoi pas en utilisant le meme langage. Généralement, les objets sont presque toujours
choisis pour implémenter les conceptions a base de composants. Par ailleurs, il est vrai que c’est sans
surprise les objets qui sont utilisés pour implémenter des conceptions a base de composants ; un
objet étant certainement l’entité exécutable la plus proche d’un composant tel que c’est compris au-
jourd’hui. Par contre, ils sont proches mais il ne sont pas exactement les memes. Notre deuxieme
revendication est qu’il est possible d’atteindre des langages de programmation par composants en
apportant des modifications souples aux langages a objets. Suivant ces idées, nous présentons dans
cette these un exemple d’un nouveau langage pur de modélisation et de programmation par com-
posants, nommé COMPO intégrant d’une maniere simple et uniforme, les concepts de base pour la
description et l’implémentation des composants et des architectures a composants: composants,
ports, services et connexions, et les mécanismes nécessaires suivants: l’instanciation, l’invocation
de service, la composition et la substitution. Nous soutenons également que la description des com-
posants, leurs architectures (structures) et leurs services (comportement) gagneraient (comme le font
les descriptions d’objets) a utiliser des descriptions différentielles qui se basent sur un mécanisme
d’héritage. En conséquence, nous proposons une spécification et une implémentation d’un systeme
d’héritage en prenant en compte une politique de spécialisation covariante et un mécanisme de sub-

xi

xii Résumé

stitution dédié. Nous affirmons enfin que faire un tel langage totalement réflexif ouvrira une nouvelle
alternative intéressante (dans le contexte des composants) pour n’importe quel genre de modele ou
de programme de vérification ou de transformation d’architecture. Nous revisitons quelques solu-
tions standards pour obtenir une réification a composants originale pour construire un méta-modele
exécutable conçu sur l’idée du «tout est un composant». Une implémentation complete du prototype
du langage COMPO a été réalisée et est décrite dans cette these.

Mots clés: Langage à composants, modélisation, l’architecture, la programmation, la séparation des
préoccupations, découplage, l’héritage, la réflexion, la réification, COMPO

C
H

A
P

T
E

R 1
Introduction

To program is to understand.

Kristen NYGAARD.

Preamble

This chapter introduces the context of our research. The context is software engineering and more
specifically Component-Based Software Engineering (CBSE) which study development of reusable com-
ponents (development for reuse) and development by assembling reusable components (development
by reuse). We explain the problems regarding the existing component-based approaches and the strate-
gies they are using to build component-based software. In this context, we place our approach and the
solutions offered. We finish this chapter with presenting characteristics of the contributions and orga-
nization of the document.

2 Chap 1. Introduction

1.1 Context: Component-based Software Engineering

EVOLUTION, the ubiquitous process in every science discipline goes hand in hand with complex
problems and development of their solutions. It has been proven that a very helpful approach

to solve a complex problem is to identify and solve its sub-problems, ergo the Divide and Conquer
principle. The strategy of constructing a problem’s solution from solutions of its sub-problems has
been widely adopted by industry in many domains. Hence, for example, we drive cars assembled
from reusable and substitutable parts, called components, like an engine, wheels, doors, etc.

The process of seeking a viewpoint which simplifies a complex problem is commonly known as
abstraction. History shows that there are always more viewpoints of a problem and although a found
viewpoint, i.e. an abstraction of a problem, might be fundamentally wrong, it still can be used to
approximately solve the problem. For example, gravity laws as they were described by Isaac Newton
are a very good abstraction of weak-field gravity and slow speeds, but they are fundamentally wrong,
when used for solving problems in a context of strong-field gravity and high speeds (close to the
speed of light), as shown by Einstein. The quality of an abstraction depends on its ability to describe
a system that solves a given problem in an accomplishable way.

Figure 1.1 : Growing complexity of solutions, here mesured in terms of Lines of Code (LoC), forces the
evolution of computer programming languages

Evolution in software development industry, enforced by increasing complexity of developed sys-
tems [Kriens, 2012], has driven the creation of modern software in terms of objects and classes and
not by assembling individual bits or bytes, like it was usual less than 6 decades ago. Bits or bytes
were good abstractions for programming arduous calculations, but due to the amount of information
being manipulated and due to the evolution of business processes by new software, it was too expen-
sive to keep using these abstractions for programming present complex systems. Therefore they were
replaced by more convenient abstractions being able to describe solutions for modern problems in
manageable ways. Figure 1.1 shows how the growing complexity of solutions (measured by terms of
lines of code) forced the evolution of computer programming languages. The process can be sum-
marized into the following statement: “When things got too complex, it is time to increase abstraction
level.”

1.1. Context: Component-based Software Engineering 3

Year Operating System LoC (Million) Year Operating System LoC (Million) Year Operating System LoC (Million)

1994 Windows NT 3.5 7.5 2000 Debian 2.2 57.5 2003 Linux kernel 2.6.0 5.2
1996 Windows NT 4.0 11.5 2002 Debian 3.0 104 2009 Linux kernel 2.6.29 11
2000 Windows 2000 29.2 2005 Debian 3.1 215 2010 Linux kernel 2.6.32 12.6
2001 Windows XP 45 2007 Debian 4.0 283 2010 Linux kernel 2.6.35 13.5
2003 Windows Server 2003 50 2009 Debian 5.0 324 2013 Linux kernel 3.6 15.9

Table 1.1 : Growing complexity of software illustrated in terms of lines of code (LoC) in case of OS

Development of software projects with millions of lines of code (cf. Table 1.1) is no longer a matter
of a single developer, it is not in ones powers to be knowledgeable enough to confidently change every
part of such projects. Thus, the frequent practice is to assign one or more parts of the system to a de-
veloper. To understand how a part interacts with the rest of the system becomes crucial information
for the developer of the component in order to effectively evolve the component. For example, when
modifying the invariants of a data structure, a developer must discover what code within and outside
the part relies on those invariants, and make appropriate modifications to that code. Understanding
how the parts interact is especially difficult in many modern systems, which communicate indirectly
through shared data structures, dynamic dispatch, and events. To evolve these programs effectively,
an engineer often needs an abstraction of the possible run-time types and aliases of each element
involved in the change. Such abstractions are difficult to gain, and if they are incorrect, engineers are
likely to inject defects as they evolve the software system [Aldrich, 2003].

The complexity has been the engine of component-based research with a goal to develop, ma-
nipulate and reuse software parts that make up these complex systems. Component-based Software
Engineering (CBSE) is an approach that uses Component-oriented Programming (COP)1 to develop
reusable components (development for reuse) and to assemble software from these reusable “off-the-
shelf” components, connected together into various kinds of architectures (development by reuse).

In the sense of seeking for an appropriate abstraction to manage the growing complexity, CBSE
takes the notion of software component and uses it as the abstraction which makes development
of complex systems easier and manageable. The vision of reusable and connectable software pieces
made of other reusable and connectable software pieces is consistent with the divide and conquer
principle. Moreover, the well-established methodologies and techniques used in other engineering
domains, like electric-circuits design or product lines strategies, can be taken and adapted for the
purposes of CBSE.

As pointed by Szyperski in [Szyperski, 2002], CBSE opens the possibility to establish a component
market, similar to applications markets like AppStore, or Google Play Store, where developers store
their components and other developers use the stored components to design new components or to
assemble final products. In contrast to applications markets, the consumers of this component mar-
ket are developers and not final users. Software evolution then would became a matter of updating,
because it is easy to substitute a component with a new (more sufficient, effective, etc.) one. Also
on demand applications would became real, as it is possible to dynamically assemble an application.
For example a demanding customer may require a graph application with 3D rendering component
while a graph application with 2D rendering component will be enough for a regular customer. As
long as the 3D a 2D rendering components are substitutable, the rest of the application can be reused

1COP is a programming technique and paradigm producing reusable components as the output of coding process.

4 Chap 1. Introduction

and the two customers can be satisfied easily.

1.2 Limitations of the Existing Approaches

The existing component-based approaches have opened the door for the development of
component-based software. They have changed the way distributed applications are developed. In
particular, they enable the large-scale deployment of applications in distributed heterogeneous en-
vironments, by making transparent the distribution, security and many other non-functional aspects
and enabling the developers to focus on application concerns.

The approaches differ in many aspects, for example: in the way they define a component (run-
time vs. design-time entity, made from objects or not); whether or not they separate an external
contract definition from an internal composition definition; or in the way they define a component’s
behavior. In this work we divide the approaches into three global categories according to strategy
they use to construct a final solution.

The generative strategy uses high-level abstraction design models as conceptual tools for man-
aging the complexity of large software systems. These models specified in Architecture Description
Languages [Medvidovic et Taylor, 2000] (ADLs) describe the high-level organization of a software sys-
tem as a collection of components, connections between the components, and constraints on how
the components interact. The intent of these models is to communicate to an entire engineering team
part of the global knowledge needed to develop and evolve each component of the system. They also
aid in the specification and analysis of high-level designs. For example, an architectural model can be
analyzed to prove that the design invariants described by architectural constraints are satisfied. Once
the architecture design stage of development cycle is finished, the generative strategy takes the for-
mal description of a designed architecture and generates code skeletons using an a generator specific
for an implementation language. This implementation-language independence property is another
advantage of the approach as the same abstraction layer can generate code for different machines,
taking into account the heterogeneity of platforms.

However, this may cause problems in the analysis, implementation, understanding, and evolution
of software systems, because consistency between architecture design and final code is not guaran-
teed. While the architecture design may be analyzed for certain properties, it is difficult to know if
the properties hold in the implementation of the design. In addition, even if a system is initially built
to conform to its intended architecture design, as the system evolves to address new requirements,
its design may become inconsistent with the original architecture design over time. This inconsis-
tency causes problems for engineers working with the system, making it difficult to understand parts
of the system in isolation, and causing program errors when engineers rely on their inaccurate ar-
chitectural models. In summary, inconsistency between architecture and implementation pervades
existing systems, causing problems both in human reasoning and automated analysis of programs.

The framework strategy, represented by COM+ [Microsoft, 2012], Enterprise JavaBeans [Oracle,
2012], CORBA Components [OMG, 2012], Fractal [Bruneton et al., 2006], Spring [GoPivotal, Inc.,
2013], OSGi [OSGi Alliance, 2012], FraSCAti [Seinturier et al., 2012] etc. provides component models
and development frameworks for building component-based distributed applications. They all em-
ploy a similar global system design providing a separation between the functional aspects of the ap-

1.2. Limitations of the Existing Approaches 5

plication, which are captured by the components, and the non-functional, technical concerns, which
are captured by the containers. Run-time containers provide capabilities to dynamically lookup, load
and release components making it possible to develop adaptable distributed component-based sys-
tems.

As pointed by [Crnkovic et al., 2011], most component models classified under the framework
strategy use mainstream object-oriented programming languages C++, Java and C# for the imple-
mentation stage. By following the programming style guidelines of each particular framework a de-
veloper is able to design and implement components or create applications by assembling off-the-
shelf components. These programming style guidelines often prohibit common programming idioms
such as data sharing making the developer’s life harder as it tends to be very difficult for them to avoid
messing with the system’s integrity for their own convenience. Another problem is that the respect
of the programming style is not mandatory. The implementation languages do not treat component
related concepts, like required interfaces or composition, explicitly separating design development
stage from implementation stage, causing that the original component based design may vanish dur-
ing implementation. For example, in most cases, the connection between objects in object-oriented
programming languages are implicit in the implementation code, making it hard to verify that sys-
tems have, indeed, the intended architecture with explicit connectors.

While the previous strategies use Domain Specific Languages (DSL) and code generators or pro-
gramming style guidelines and run-time support systems to produce a software system, they fail in
verifying full conformance between a rich architectural specification and an implementation in a
general-purpose programming language. The lack of automated conformance checking seriously
compromises the benefits of architecture during implementation, testing, and software evolution.

The last approach, the component-oriented language (COL) strategy, is an evolution compati-
ble with both previous approaches. It operates in languages design domain and states that the more
natural way to develop component-based software systems is to use a single programming language
that allows doing so in the first place. Such programming languages should have a primitive sup-
port for both component definition, and composition (building components by assembling smaller
components).

“[...] we feel that there is need for pure component languages. These languages are needed
to provide a component developer with a clean and concise vocabulary and semantics for
building and composing components.” [Wuyts et Ducasse, 2001].

One of the main illities CBSE brought to software is modularity. In practice, Object-oriented pro-
gramming (OOP) also brought some modularity in code, but has some limitations to fully address
this quality attribute. Although it is possible to capture a component-based architecture in an object-
oriented language, the problem is that the capture is implicit, making it hard to reveal original design
intentions later. For example, the following Java code snippet models a very simple text-editor com-
ponent.

6 Chap 1. Introduction

public class TextEditor {
private ISpellChecker sc;
public TextEditor() { }
public void setSpellChecker(ISpellChecker sc) {...}
public ISpellChecker getSpellChecker() {...}
...

}

The global semantics of the sc attribute with the getter and setter operations is: “a text-editor
requires a spell-checker”. Unless users of such an editor read the editor’s documentation or its code,
they are not aware of the fact that the editor requires a spell-checker. The information is not explicit.
The example illustrates the need for a pure component-based language which treats these concepts
explicitly.

Component-oriented Programming Languages (COPLs) like ACOEL [Sreedhar, 2002], Arch-
Java [Aldrich et al., 2002], ComponentJ [Seco et al., 2008] or SCL [Fabresse et al., 2008] give solutions
for the previous problem by allowing developers to express full description of executable compo-
nents.

Moreover, using different concepts for design and implementation stages of development opens
a gap which makes architectural reasoning (i.e. the action of thinking about architectures in a log-
ical, sensible way) complicated. For example, architecture should show all of the components that
could possibly communicate with a given component. An engineer who is enhancing that compo-
nent can effectively use this knowledge to make sure that the enhanced component interacts properly
with all the existing components in the system. In order to enable architectural reasoning about an
implementation, the implementation must conform to its architecture. A system conforms to its ar-
chitecture if the architecture is a correct abstraction of the run-time behavior of the system. However,
an engineer who cannot trust the architecture to be complete must fall back on more labor-intensive
techniques for finding the other interacting components, or else risk introducing defects into the
code.

Recent experience [Fabresse et al., 2012 ; Aldrich et al., 2002] with COLs showed that it is possible
to bridge the gap between implementation and design and that in the same time we obtain better
code-level decoupling in component-based programming than in object-oriented one. Architecture
implementation conformance is automatically guaranteed, because there is no separation between
the design and implementation stage.

The above mentioned approaches provide means to design component-based software, but they
do not address very well maintenance and evolution of such software. For example, the generative
approach is forced to re-generate implementation of an architecture design every-time the design
changes. While smaller changes are manageable, larger ones require wider refactoring leading to
possible architecture-implementation inconsistencies. Managing software evolution and increasing
productivity are the main objectives of Model-driven engineering (MDE) approach.

Transformations are one of the essential principles of MDE needed for enhancing primary
models into final software products [Carrière et al., 1999]. Because MDE support is not present
in the above discussed approaches, transformations have to be described in third-party lan-
guages [Sánchez Cuadrado, 2012] making it difficult to apply a transformation on a model in a

1.3. SCL, the predecessor of our work 7

straightforward way. We believe that the problem lays in fact that the solutions do not pay enough
attention to reflection which is a basic need for doing transformations.

Recently the Models@runtime [Blair et al., 2009] stream addresses this by proposing the reflection
layer and by considering it as a real model that can be uncoupled from the running architecture (e.g.
for reasoning, validation, and simulation purposes) and later automatically re-synchronized with its
running instance. For example Meta-ORB [Costa et al., 2006][Provensi et al., 2010] proposes the de-
sign time use of models to generate middleware configurations, and, at run-time, the use of these
same models as the causally connected self-representation of the middleware components that is
maintained by the reflective meta-objects for the purposes of dynamic adaptation. However, the
approach still suffers from the disadvantage of separating a model from implementation, making it
difficult to ensure that the operational semantics defined in an implementation conform to its model
architecture.

The problem of not paying enough attention to reflection rises up again when talking about ar-
chitectural constraints which represent the formal technique for architecture decision documenta-
tion [Allen, 1997 ; Monroe, 2001 ; Tibermacine et al., 2010b]. Constraint are used in MDE to specify
and verify non-functional quality attributes of models. Examples of constraints include the choice of
a particular architectural style or pattern, like the layered style.

When defining component-based software architecture descriptions, architecture constraints are
generally intended for the validation of some specific architectural elements (components, in most
cases). This limits their potential reuse with architectural elements of other architecture descrip-
tions. In addition, this kind of architecture decision documentation often includes some parts which
can be used individually for documenting parts of design decisions [Tibermacine et al., 2010a]. Un-
fortunately, there is no means to extract these parts, to make them parametrized entities that can be
factorized and used in different reuse contexts.

1.3 SCL, the predecessor of our work

In this work we pick up the threads of the research made during the development of SCL (Simple
Component Language [Fabresse et al., 2008]) which tried to fill the lack of semantically founded and
really usable component-oriented languages (COL) by addressing the following problematics: What
is a COL? What are the advantages of those languages? How to achieve a COL?

SCL has been built to be: (i) minimal because all its abstractions and mechanisms answer to
an identified need; (ii) simple because these abstractions and mechanisms are of a high-level; (iii)
detailed because it targets a lot of crucial points usually forgotten by other propositions such as self-
references, arguments passing based on connections or considering base components (collections,
integers, etc) in a unified world; (iv) dedicated to CBSE because it integrates the two key points that
were identified: decoupling and unanticipation. The core of SCL is built upon the following concepts:
component, port, service, connector, glue code, and the following mechanisms: port binding and
service invocation. All of this is mixed into a language, in which an expert programmer can develop
independent components, design for reuse, and a non expert programmer can develop applications
by connecting previously developed components, design by reuse.

SCL applies the class/instance approach and it clearly distinguishes these two concepts. A com-

8 Chap 1. Introduction

ponent is a run-time entity and it is an instance of a component descriptor. Component descriptors
are written by the component programmer in order to create off-the-shelf reusable pieces of software
while the software architect creates an application by choosing and instantiating some component
descriptors and then connecting components (i.e. instances).

The unique communication protocol is built upon unidirectional named ports which allow the
programmer to group some services in a set and require or provide this set via required resp. provided
ports. Components communicate by service invocation through their ports. Ports help the program-
mer to group related services and then defines view points or security policies. Required ports define
view points for the component on its environment while provided ports define view points on the
component for its environment. A port also defines a security policy because a component that com-
municates with another component through one of its ports can only access the services accessible
through this port. The programmer defines services in the component implementation and chooses
to provide some of them through the provided ports of the component.

Areas where SCL might be improved are: explicit architecture description and reflection. SCL is
hard to use as an architecture description language, because it focuses more on the functional aspect
of components then on the specification aspect. This limits the modeling power of the language
Missing reflection level makes it impossible to reason about an architecture design described by a SCL

program or to apply automatic transformations needed in MDE development for enhancing an initial
design to the final product. In the following we describe a reflective COL based on the outcomes of the
SCL research which aspires to be even more detailed and dedicated to CBSE by taking into account
explicit architectures and MDE, while, in the same time, keeping the language minimal and simple as
much it is possible.

1.4 The problematic of the thesis

This dissertation presents the design and implementation of a reflective component-oriented lan-
guage named COMPO. This section describes the problems we aim to handle in the work. The global
objective of COMPO’s design is to try to preserve and improve the qualities of SCL (the predecessor).
In this sense, COMPO strives to go further in support for the modeling aspects of CBSE, by making it
easier to use techniques and methods designed for ADLs and to perform transformations and verifi-
cations typical for MDE.

The study of existing CBSE approaches, presented in the following chapter (cf. Chapter 2), con-
vinced us that component-based software should be developed by use of component-oriented pro-
gramming languages which provide a development continuum by supporting both the design and
implementation stages of the development process. In the same time, we would like to have the ad-
vantage of explicit architecture description and the advantage of run-time adaptability that we men-
tion in Section 1.2.

The following list presents the problems we plan to handle and answers the question: “How do
we want to do that?”

To program and design components using the same language We want COMPO to be a pure
component-oriented language (COL) in which it should be possible to design and implement

1.4. The problematic of the thesis 9

reusable components. The purity means that we try to not to build just an extension for an
existing programming language, which will support component-oriented programming, be-
cause it could force developers to choose between components and objects to implement
given element of the business domain of their application. Such a COL bridges the gap be-
tween design and implementation by eliminating inconsistencies that may occur when two
conceptually different languages are used for design and implementation [Fabresse et al., 2012 ;
Aldrich et al., 2002].

To handle this: we try to identify the core component concepts and restrict COMPO’s design to
strictly use those concepts only, making it possible to design and seamlessly implement com-
ponents in one language.

To model component-based architectures We would like that COMPO users be able to model var-
ious component-based architectures in the same way ADLs do so. ADLs explicitly describe
architectures of component-based software. With such an explicit approach, the interaction is
with the model architecture and not with an intricate sequence of design features. That makes
initial understanding on the software easier. But it also means designers working with an ex-
plicit architecture of a software system can easily pick up a design where others left off. Much
like anyone can open up and immediately continue working. Thus explicit modeling appeals
to a variety of audiences: companies with flexible staff; infrequent users; and anyone who is
concurrently involved in a large number of design projects. To understand and demonstrate
the advantage of being explicit consider the following example:

“Let’s say we want a person data structure. We can accomplish this by having specific
fields, as Listing 1.4 shows. Of course, to make this work, we must define the variables
in the person class. Many modern languages provide a dictionary data structure (also
knows as a map, associative array, or hash table), so, we could use it to define the
person class, using the approach in Listing 1.4. (This is slower, but let’s assume this
section of code is not performance critical.)

Using a dictionary is appealing because it lets you change what you store in the
person without changing the person class. If you want to add a telephone number,
you can do it without altering the original code.

Despite this, the dictionary does not make it easier to modify the code. If I’m trying to
use the person structure, I cannot tell what is in it. To learn that someone’s storing the
number of dependents, I must review the entire system. If the number of dependents is
declared in the class, then I only have to look in the person class to see what it supports.

The key principle is that explicit code is easier to understand which makes the
code easier to modify. As Kent Beck puts, the explicit code is intention revealing. This
dictionary example is small in scale, but the principle holds at almost every scale of
software design.” [Fowler, 2001].

To handle this: we design COMPO in a way, it will be possible to model and explicitly describe
component-based architectures, i.e. it is possible to use COMPO as a regular ADL.

10 Chap 1. Introduction

class Person {
public String lastName;
public String firstName;
public int numberOfDependents;

}

Figure 1.2 : To be Explicit: fields example

class Person {
public Dictionary data;
/* data["firstName"]; data["lastName"]; ... */

}

Figure 1.3 : To be Explicit: dictionary example

To reuse component designs We want to be able to design a new component on the basis of an exist-
ing component, i.e. to reuse a component design including both the structure description and
the behavior description. There are many ways how to reuse software, like aspects [Kiczales
et al., 2001 ; Seinturier et al., 2006], traits [Curry et al., 1982], mixins [Bracha et Cook, 1990] or
composition which is already a mechanism in the world of components. The successful reuse
mechanism is inheritance, which has proved to be one major cornerstone of software reuse in
the OO world, first for the ability it gives developers to organize their ideas on the base of con-
cept classification (a list is a kind of collection, a given architecture is a kind of visitor, ...) which
is itself one key of human abstraction power and second for the calculus model that makes it
possible to not only reuse but adapt software, by executing an inherited code in a new context
(the receiver environment). Despite the success of inheritance, the question of the interest of
inheritance-based reuse in the CBSE context has not yet been explicitly nor fully addressed.

To handle this: we design and integrate a component-oriented inheritance mechanism for
COMPO.

To support development processes We would like to be able to reason about, transform and verify
component-based architectures (possible at run-time), because we believe that such illities are
fundamental for MDE. Also, we would like to make it possible for users to customize commu-
nication between components or to constraint it. Our previous work [Tibermacine et al., 2011]
shows that architectural constraints can be successfully realized as components. The idea is
attractive when it comes to verification of architectures qualities, especially, after a transfor-
mation was applied. Therefore, we would like to be able to design constraint components and
connect them to standard business components to check their qualities, all at both the static-
time and run-time and in the context of one language.

To handle this: we shall try to design COMPO as a reflective language by making some aspect
of the internal representation explicit and hence accessible from the program. A reflective lan-
guage or system provides a principled (as opposed to ad hoc) means of achieving open engi-
neering [Blair et al., 1998]. Reflection enables language users to reason about architectures, to

1.5. Characteristics of the contribution 11

perform model transformations, to examine and modify the structure and behavior of entities
(in or case of components) at run-time.

To summarize our dream
It would be nice to have a language in which one can describe a component-based
architecture and continuously implement it, then verify and execute or transform the
result.

1.5 Characteristics of the contribution

The contributions of this dissertation are as follows:

Uniformity. We propose and describe a component-based meta-model and a reflective descrip-
tion in COMPO of its main component descriptors made executable via a concrete implementation.
We present concrete, adapted (first-class descriptors) or new (first-class ports), meta-level solutions
for a component-based reification of concepts leading to a “everything is a component” operational
development paradigm. We tried to design the component-based model compliant to its meta-model
and the component-based meta-model compliant to itself. The system is self-described by the ex-
plicit definition of the root of the instantiation tree (Descriptor) and the root of the inheritance tree
(Component). One consequence of component-oriented reification is that there is now only one kind
of entity, component: a descriptor is a component and a meta-descriptor is a true descriptor whose
instances are descriptors. This allows a simplification and economy of concepts, which are thus more
powerful.

Architecture within Implementation. COMPO tries to smoothly integrate a rich architectural de-
scription with a programming language to enforce full structural conformance between design and
implementation. COMPO provides architecture description constructs, so that developers can specify
an architecture during design and then fill in the architecture with COMPO implementation code. It
includes all core concepts of CBSE, i.e. components, ports, explicit connections and services. Compo-
nents are instances, supporting instance-based architectural reasoning, and ownership declarations
are used to specify hierarchical relationships between components.

Unique communication protocol. In SCL, sending a service invocation through a port is the only
possible way for two components to interact. Nevertheless, we make effort to integrate ownership
relation to achieve explicit hierarchical design, when doing so, we proposed a solution based on in-
ternal required ports and thus keep the unique communication protocol. Such a protocol is another
step towards full communication integrity of COMPO applications.

Openness and extensibility. Reflection provides the necessary levels of openness making the
language uniformly accessible by the user. It opens the essential possibility that architectures, imple-
mentations and transformations can all be written at the component level and using a unique lan-
guage. It encourages introspection and indeed adaptation of the underlying structure and behavior
of the platform. Reflection ease introduction, possibly dynamic, of different control facilities for com-
ponents such as non-functional aspects; it allows application designers and programmers to define

12 Chap 1. Introduction

important trade-offs such as performance vs. safety; and it makes easier the use of these frameworks
and languages in different environments.

Modeling friendly inheritance system. Reuse scheme designed for COMPO is quite innovative
in the context of CBSE, because it promotes modeling power with covariant specializations. Using
extends statement, a new descriptor can be defined on the base of an existing descriptor, such a
descriptor is then called a sub-descriptor. Sub-descriptors may introduce new ports or extend inter-
faces of inherited ports; new services and override inherited services and finally a sub-descriptor may
extend and specialize the internal architecture it inherits from its parent, ergo, COMPO’s inheritance
system offers means for both structural and behavioral reuse.

1.6 Structure of the thesis

The remainder of this dissertation is structured to gradually present precise definitions for the con-
cepts informally addressed in this introductory chapter. The contents of the remaining chapters are
as follows:

• Chapter 2 presents the state of the art of component-based approach. The general motivation
of this approach is presented through three problematic areas of software engineering, namely
reuse, distribution and explicitness problems for which the component-based development
seems better suited than the object-oriented approach. After presenting the main families of
component-based approaches, some approaches are described in detail. Finally, in conclud-
ing this chapter, we point on weaknesses of these approaches in the context of component-
oriented programming.

• Chapter 3 presents our basic component-based language. Based on the outcomes of Chapter 3
try to identify the main concepts and mechanisms of the component-based approach and then
in each section we discuss how we believe COMPO meets these principals.

• Chapter 4 extends the component language presented in Chapter 3 with the component-based
inheritance system for structural and behavioral reuse. We motivate the need for an inheri-
tance system by showing cases where an inheritance mechanism is inevitable for reusing the
structural definition of component descriptions.

• Chapter 5 describes the self-described component-based meta-model with makes it possible to
integrate reflection into the language. We describe how the integrated reflection allow for stan-
dard application development, and for static or run-time model and program transformations,
all within the context of COMPO language.

• Chapter 6 illustrates the features of our model by means of medium size examples like a HTTP
server design, architecture constraints modeling and verification or architecture transforma-
tion.

• Chapter 7 presents the prototype implementation in Pharo SMALLTALK starting with the
technology choices and meta-model core architecture.

1.6. Structure of the thesis 13

• Chapter 8 draws some conclusions about the proposed component-oriented programming and
modeling language and describe some future directions.

C
H

A
P

T
E

R 2
Component Models and their

Implementations

If a cluttered desk is a sign of a cluttered mind, of what, then,
is an empty desk a sign?

Albert EINSTEIN.

Preamble

In this chapter, we present a state of the art of the Component-Based Software Engineering approach.
Section 2.1 recalls and discusses the main advantages and promises of the component-based approach.
We detail two principles: reuse and explicitness. Given the multitude of component-based approaches,
we made a selection of those we consider pivotal and we detail each selected approach in 2.2. Section 2.3
presents a comparison of the selected approaches, following a set of criteria that we consider relevant
to our contribution. Section 2.4 concludes this chapter by providing a concise overview of the different
approaches and shows the need to propose a new component-oriented programming and modeling
language.

16 Chap 2. Component Models and their Implementations

2.1 Advantages and promises of the component-based approach

RESEARCH works on Component-Based Software Engineering (CBSE) have brought many ad-
vances on how to achieve complex software development by reusing and assembling compo-

nents. CBSE studies the ways reusable pieces of code can and should be described (for example by
giving an explicit high or low level description of what they require to achieve what they provide)
and in the ways software architectures are thought, specified, described or implemented. The cur-
rent trend is to explicitly express architectures of software solutions, to reason about them, to verify
them and to transform them. CBSE also studies the development of distributed applications which
requires an interaction between components deployed on different hosts.

This section presents the three main aspects in which component-based development promises
to be better suited than traditional development paradigms such as object-oriented development.
These three areas are: (i) reuse which directly reduces the cost and time during the phases of de-
velopment and testing [Szyperski, 2002], (ii) distribution which complicates the application code by
requiring the integration of specific code for communications and (iii) explicitness which eases main-
tenance of software by making code structure self-explanatory, hence understandable. Each of these
three areas is developed in a sub-section with the aim to show the contributions or the promise of
component-based approach along this axis.

2.1.1 Reuse

Reuse is one of the major goals of software engineering for its potential to reduce cost and time of
software development. With increasing count of lines of code (LoC) the need for reuse grows.

The Don’t Repeat Yourself (DRY) principle states that:

“Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.” [Hunt et Thomas, 1999].

When the DRY principle is applied successfully, a modification of any single element of a sys-
tem does not require a change in other logically unrelated elements. Additionally, elements that are
logically related all change predictably and uniformly, and are thus kept in sync.

Many concepts and associated mechanisms were invented to reuse code, such as:

• function and function call

• module and module import

• class and inheritance

• framework and framework setting

• component and assembly of components.

In all cases, reuse is performed in two steps: the identification and declaration of a bounded
parameterizable part, a box, and a definition of how to configure and use the box later. For example,

2.1. Advantages and promises of the component-based approach 17

the definition of a function is done with formal parameters (a box) which are substituted by actual
parameters in a function call (a later configuration and usage). There are generally three types of
reuse: black box, white box and gray box.

In black-box reuse, the internal of boxes are hidden. The only possible way a user can configure
a box is through a pre-defined external interface. As long as the external configuration interface of a
box has not been changed, the box can be easily changed by another with the same or compatible in-
terface. For example, without changing its external specification (signature and semantics), the code
of a function can be altered, without the need for changing all programs using the function. Thus, in
this setup, functions are black-boxes, because theirs internal implementation is not accessible in the
use-time.

At the opposite, the white-box reuse type reveals internals of boxes. In the use-time, a box can
be configured either through external interfaces or directly through its definition (implementation.)
On the one hand, revealing internals has the advantage of making easier, because all information
about a box is accessible, it also provides better configuration opportunities. On the other hand, this
internal revealing may cause problems. Consider the following example: Zend Framework1 is an
object-oriented web application framework. Its configuration is made explicit through a set of ab-
stract classes. A user of the framework can configure the framework by implementing specialization
classes that define abstract methods of the abstract classes. The definition of the abstract methods is
a white-box reuse. Indeed, as the framework evolves, new abstract methods are introduced and ex-
isting may be removed or altered, i.e. interfaces of the abstract classes change. Client programs that
implement specialization classes for the abstract classes directly by definition of abstract methods
may not work when a new version of the framework is about to be used.

Reuse is facing a paradox. To increase the potential for reuse, the black-box approach provides
better solutions, because its boxes are more independent from a usage context. However, for use in
a given context, mechanisms for setting and adjusting boxes may be necessary, therefore it seems
that the white-box approach should be favored. The gray-box reuse type is an intermediate level
between the previous two forms. The implementation details of a grey-box can be known or disclosed
to understand its realization but cannot be modified by its users and cannot be configured through its
interfaces. For example, by specifying the places where a component may be varied (e.g., extension or
adaptation points), it is possible to avoid unstable implementation dependencies. That is, a supplier
of a component should guarantee that variation points remain invariant in subsequent releases. Such
a specification can be seen as a type definition from which concrete implementations can be derived
all conforming to that type.

For a long time it was claimed that object-orientation was the solution to reusability of software.
Object-orientation indeed enabled the development of reusable class libraries, such as the Standard
Template Library [Stepanov et Lee, 1994] or Foundation Classes for Java or C++. These class libraries
provide particular type constructors and API, such as sets, lists, hash tables and so on; however, soft-
ware reuse in the large [Emmerich, 2002] has never been achieved by object-oriented development.

Reuse of objects is hampered by the large number of fine-grained classes generated during object-
oriented modeling that are entangled in a system of association, aggregation and generalization re-

1http://framework.zend.com

18 Chap 2. Component Models and their Implementations

lationships. The large number of dependencies makes it difficult to take classes out of the context in
which they were developed and reuse them elsewhere.

“ [...] class-based languages encourage the reuse of class definitions through extension,
but they do not permit the reuse of a class extension in disjoint parts of a class hierarchy.
” [Flatt, 2000]

In fact, a class is not independent of context as it is coupled to the hierarchy in which it was
defined. The problem of implicit coupling [Briand et al., 1999 ; Peschanski et al., 2000] results in
the fact that in the code of the methods, it is possible to instantiate or use external elements without
making these links explicitly through interfaces, i.e. the black-box reuse. Figure 2.1 shows an example
of implicit coupling between two objects. Each instance of the class A will use its own instance of the
class B to fill functionality bar. The problem is the b=new B() statement which is inside the class A
while it should be decided outside. This coupling between objects is implicit because it is embedded
in the source code which is not always visible, and it is as strong as non-editable.

A
- b : B
+ A() { b = new B(); }
+ void foo() {
 b.bar();
 }

B
+ void bar() { ... }

Figure 2.1 : Strong and implicit coupling between two classes

A step towards further decoupling is that the constructor of the class A possesses a parameter of
type B to initialize the value of the b private attribute. When instantiating the class A, then it would be
possible to pass back an instance of the class B. The coupling would be made when instantiating the
class A and not statically in the code. This decoupling is still not satisfactory because it does not allow
the setting after A’s instances were instantiated. This could be solved with accessors (get and set),
an explicit interface and sub-typing, see Fgure 2.2. The class A in this example uses the interface IB
to type the attribute and set accessors. The interface IB explicitly declares what features are required
and therefore reduce coupling between the class A and a particular class implementing the interface,
such as Bimpl.

A
- b : B
+ A() {}
+ IB getB() {...}
+ void setB(IB b) {...}
+ void foo() {
 ...
 b.bar();
 ...
 }

«interface»
IB

+ void bar();

app : Application
+ void main(...) {
 A a = new A();
 IB b = new Bimpl();
 a.setB(b);
 }

Bimpl
+ void bar() { ... }

Figure 2.2 : Low and explicit coupling between two classes

2.1. Advantages and promises of the component-based approach 19

«Component»
b : Component

+ void bar() {
 ...
 }

«interface»
IB

+ void bar();
«Component»
a : Component

+ void foo() {
 ...
 call extern bar();
 ...
 }

Figure 2.3 : Explicit and low coupling between components

Although it is possible to decouple the objects with an object-oriented language, it requires the
use of programming conventions that are not always respected by the programmers. Figure 2.3 shows
a schematic example of the component approach which enforces components decoupling and spec-
ification of explicit communication interfaces. In this example, the component a calls (call) a bar
service it does not define (extern). This call will be handled by another component, here b, con-
nected to the component a later.

Components overcome this problem and provide more easily reusable and more coarse-grained
units of code that provide one or more well-defined interfaces. More importantly they provide mech-
anisms to assemble and configure systems without requiring hard-core programming skills. Thus, in
CBSE, we hope to achieve a massive code reuse and even markets of components [Szyperski, 2002]
like componentsource.com. However further work is needed for simplifying reuse of components.

2.1.2 Distribution

In modern software it is no longer true that an application runs entirely in one address space. Soft-
ware tend to be distributed. A distributed system is a mechanism in software for normalizing the
method-call semantics between application entities residing either in the same address space (ap-
plication) or remote address space (same host, or remote host on a network.) The need to decouple
the business part and the technical part of an application (such as remote communications, security,
etc..) has led to the development of middleware.

Middleware (cf. Figure 2.4) is an intermediate layer between the operating system and the appli-
cation layer that aims to provide a uniform and transparent view to communicating applications by
hiding distribution, heterogeneity of systems, hardware and communication protocols.

Using a middleware ensures independence between the business application code and the tech-
nical code that is facing many problems such as low-level concurrency; marshalling (serializing and
deserializing the arguments and return values of method calls) or distributed garbage collection. Mid-
dleware usually provides a common set of high-level services (also called not functional services) as
concurrency control, transactions and security. The middleware objects or ORB (Object Request Bro-
ker) allow a remote object method invocation. Several middleware exist, certainly, the well known is
the CORBA standard (Common Object Request Broker Architecture) of the OMG (Object Management
Group).

In the past decade, architectures of distributed objects have evolved into distributed component

componentsource.com

20 Chap 2. Component Models and their Implementations

Figure 2.4 : Principle of middleware

architectures. For example, the OMG has developed CORBA Component Model [OMG, 2012] (CCM)
which builds a component model on top of CORBA objects. This movement towards components
was particularly motivated by the problems of coupling discussed in Section 2.1.1 (reuse), but also
by the difficulty to separate the business and technical or non-functional concerns using an object-
oriented approach. With components, the code for using non-functional services is not mixed with
the business logic code.

The communication between the business layer and technical layer is controlled by a third entity
in the middleware platform. This third entity calls the business code when necessary. This princi-
ple of outsourcing, sometimes called inversion of control, is similar to the operation of frameworks
where the code written by a programmer is called by framework code . An example of such a third
party entity is an EJB container which supports the execution of an EJB component, as detailed in
Section 2.2.2.

Although the ideas of CBSE have already taken shape in a number of component systems –
both industrial and academic. The industrial systems (represented mainly by EJB [Oracle, 2012] and
CCM [OMG, 2012]) are oriented on providing a stable and mature run-time, even at the cost of sac-
rificing the option of building component hierarchies and other advanced features (such as multiple
communication styles, behavior description, etc.) [Bures et al., 2006]

Moreover, middleware platforms are built in standard programming object-oriented languages
forcing the users of these platforms to develop their components by use of the same languages. Once
again, the issues raising when a non component-oriented language is used for the design and imple-
mentation of a component-based system (cf. 1.2) limit comprehensibility of such software making it
harder to maintain and evolve.

2.2. Presentation of the main Component-based approaches 21

2.1.3 Explicitness

Knowledge sharing and understandability are key factors for the development of large-scale software
projects. Making thoughts and ideas “visible”, i.e. explicit, is the way to support these key factors.
The value of making things explicit is that one can “see” what others are thinking and what are the
original design intentions.

Where design counts is often not in how the software runs but in how easy it is to change. This
drive towards changeability is why it is so important for a design to clearly show what the software
does and how it does it. After all, it is hard to change something when you cannot see what it does. An
interesting corollary of this is that people often use specific designs because they are easy to change,
but when they make the program difficult to understand, the effect is the reverse of what was in-
tended.

While the size of applications constantly grows, it is becoming difficult to understand, maintain,
and test programs written in standard programming languages. Several code visualization tech-
niques [Langelier et al., 2005 ; Ducasse et al., 2006 ; Wettel et Lanza, 2007] have been proposed to
ease understanding and evolution of programs’ architectures. It is becoming evident that although it
is possible to capture an architecture in an object-oriented language, the problem is that the capture
is implicit, making it hard to reveal original design intentions later. In fact, object-oriented languages
and the current trend of modeling software architectures using UML is criticized as being inadequate
for the development of large-scale applications [Garlan et Kompanek, 2000].

The component-based approach with its ability to express software architectures [Shaw et al.,
1995] in terms of interconnected components, seems to offer a vision suitable for large-scale pro-
gramming. The high-level languages dedicated to the architecture description attempt to explicitly
describe the structure and behavior of software are the starting point for understanding software’s
architecture as a whole and thus offer high-level techniques adapted to large-scale architectures such
as the model for evolution problem in software architecture SAEV [Oussalah et al., 2006] or a mech-
anism for automatic replacement of a component while preserving the qualities of an original archi-
tecture [Desnos et al., 2007]. In addition to specifying the structure and topology of the system, the
architecture shows the intended correspondence between the system requirements and elements of
the constructed system. It can additionally address system-level properties such as capacity, through-
put, consistency, and component compatibility. Architectural models clarify structural and semantic
differences among components and interactions. Thus components can be re-used in different con-
texts [Shaw et al., 1995] or be composed to define larger systems.

2.2 Presentation of the main Component-based approaches

In Section 2.2.1 we try to identify and present the main families of approaches and the reasons that
drive us when choosing the representatives of each family.

2.2.1 Families of the component-based approaches

There are many ways how to classify component-based approaches, for example [Crnkovic et al.,
2011] focus on component-frameworks and [Medvidovic et Taylor, 2000] on ADLs. Sometimes an

22 Chap 2. Component Models and their Implementations

Domain AU
TO

ST
A

R

B
IP

B
lu

eA
rX

C
C

M

C
O

M
D

E
S

II

C
om

p
oN

E
T

S

E
JB

Fr
ac

ta
l

K
O

A
LA

K
ob

rA

IE
C

61
13

1

IE
C

61
49

9

Ja
va

B
ea

n
s

M
S

C
O

M

O
p

en
C

O
M

O
SG

i

Pa
lla

di
o

PE
C

O
S

Pi
n

Pr
oC

om

R
ob

oc
op

R
U

B
U

S

Sa
ve

C
C

M

SO
FA

2.
0

General purpose X X X X X X X X X X X
Specialized X X X X X X X X X X X X X

Table 2.1 : General purpose and domain specific component models [Crnkovic et al., 2011]

approach may belong to more than one category. For example, Fractal [Bruneton et al., 2006] com-
ponent model is made of the framework for component-oriented development and the Fractal ADL
which ease use of the framework. In fact, both could be used separately. One can use the framework
without the ADL and another one can use the ADL to describe an architecture and then use a model-
specific generator for another component-model. Thus, Fractal is a component-framework and, in
the same time, an ADL.

In the previous chapter, we have sketched a way how to divide them into three global families
according to the strategy they use to construct a final solution:

Frameworks family provides development frameworks for building component-based distributed
applications based on mainstream object-oriented programming languages. Functional as-
pects of the application are captured by components, and non-functional aspects by run-time
containers.

Generative family uses high-level abstraction design models as conceptual tools for managing the
complexity of large software systems. Once the architecture design stage of development cycle
is finished, the generative family takes the description of a designed architecture and generates
code skeletons using a generator specific to an implementation language.

Component-oriented languages family operates in languages design level and states that the more
natural way to develop component-based software systems is to use programming languages
that allow doing so in the first place.

The classification made in [Crnkovic et al., 2011] divide approaches into general purpose and spe-
cialized models. Table 2.1 shows that the distribution between general-purpose component models
and specialized component models. Following our classification, all the component models belong
to the frameworks family as they use mainstream object-oriented programming languages C++, Java
and C# to build component-based software. One of the goals of this thesis is to provide a general
purpose language for developing component-based systems. Thus, we will consider the general pur-
pose models identified in [Crnkovic et al., 2011] as representatives of the framework strategy fam-
ily. In addition, we chose to study: OpenCORBA for its reflection maturity; Kevoree [Daubert et al.,
2012], DynamicTAO [Kon et al., 2000], MetaORB [Costa et al., 2006] as representatives of the Mod-
els@runtime [Blair et al., 2009] stream and FraSCAti as an implementation of the SCA [OASIS, 2013]
approach. Finally, we also study OSGi [OSGi Alliance, 2012].

The classification of Architecture Description Languages (ADLs) made in [Medvidovic et Taylor,
2000] says that these languages describe the high-level organization of a software system as a collec-
tion of components, connections between the components, and constraints on how the components

2.2. Presentation of the main Component-based approaches 23

interact. ADLs belong to the generative family because it takes the formal description of the designed
architectures and generate code skeletons using a generator specific to an implementation language.
This implementation-language independence property is an advantage of the approach as the same
abstraction layer can generate code for different machines, taking into account the heterogeneity of
platforms. We take the ALDs described in [Medvidovic et Taylor, 2000] as representatives of the gen-
erative strategy family. In addition, we study UML components package [Cheesman et Daniels, 2000]
which provides means for describing component-based architectures and can be used as a model for
generating code.

As representatives of the component-oriented language family we choose ACOEL [Sreedhar, 2002],
ArchJava [Aldrich et al., 2002], ComponentJ [Seco et al., 2008], CLIC [Bouraqadi et Fabresse, 2009] and
Bichon [Xu et Ren, 2010] because they all address the implementation stage of a component-based
development in a language-level by allowing developers to express full descriptions of executable
components within a programming language.

Each following section is devoted to the study of the previous approaches driven according to the
following plan:

1. Study plan

a) Basic Overview

b) External contract description & Architecture design description

c) Inheritance

i. Structural inheritance - the ability to reuse the structure definition, i.e. external &
internal contracts and architectures

ii. Behavioral inheritance - the ability to reuse the behavior definition of components

d) Reflection

i. Introspection - the ability of a system to observe, and thus reason, about itself com-
prising the operations defined at the meta-level which examines the data structures
of the model

ii. Intercession - the ability of a model to modify its execution state comprising the op-
erations of a meta-level which change the data structures of the model

iii. Reification - the method used to expose the internal representation of a system in
terms of entities that can be manipulated at run-time

2.2.2 Frameworks family

The frameworks family uses mainstream object-oriented programming languages, such as C++, Java
or C#, to build component-based software. By following the programming style guidelines of each
particular framework a developer is able to design and implement components or create applica-
tions by assembling off-the-shelf components. To ease the application of the programming style
guidelines, the models are sometimes accompanied by a model-specific ADL used for generating pre-
arranged source code. The members of this family employ a similar global system design providing a
separation between the functional aspects of the application, which are captured by the components,

24 Chap 2. Component Models and their Implementations

and the non-functional, technical concerns, which are captured by the container. Run-time contain-
ers provide capabilities to dynamically lookup, load and release components making it possible to
develop adaptable distributed component-based systems.

SOFA 2

SOFA 2 [Hnětynka et Plášil, 2006 ; Bures et al., 2006] is a component system employing hierarchi-
cally composed components. It is a direct successor of the SOFA component model [Plásil et al.,
1998], which provides the following features: ADL-based design, behavior specification using behav-
ior protocols, automatically generated connectors supporting seamless and transparent distribution
of applications, and distributed run-time environment with dynamic update of components.

From its predecessor, SOFA 2 has inherited the core component model, which is however im-
proved and enhanced in the following way: (1) the component model is defined by means of its
meta-model; (2) it allows the dynamic reconfiguration of component architecture and accessing com-
ponents under the SOA concepts; (3) via connectors, it supports not only plain method invocation,
but in fact any communication style; (4) it introduces aspects to components and uses them to clearly
separate the control (non-functional) part of components and to make it extensible.

Figure 2.5 : Meta-model of SOFA2

SOFA 2 and all its features are defined using a meta-model (see Figure 2.5). The meta-model serves
directly for the component specification, which is stored in the repository [Hnetynka et Pise, 2004]
and used throughout the application life-cycle. Being a hierarchical model, it allows components to
be hierarchically nested. Components can be either primitive or composite. A composite component
is built of other components, while a primitive one contains no sub-components. In SOFA 2, a com-
ponent is an encapsulated entity interacting with other components only via designated provided
and required interfaces. A component can play the role of both a black-box and gray-box entity. The
black-box role is represented by a component frame, which specifies the set of interfaces, both pro-
vided and required, and determines the component’s type. As a gray-box, a component is specified

2.2. Presentation of the main Component-based approaches 25

as an architecture that implements a particular component frame (or a number of frames). An ar-
chitecture of a composite component specifies the sub-components and the bindings between their
interfaces. The bindings are performed using connectors that are dynamically generated at deploy-
ment time. An architecture of a primitive component stays empty and directly implements the corre-
sponding frame. SOFA defines the CDL (Component Definition Language) language, based on OMG
IDL to describe interfaces, frames and architectures of components. The language has the ability to
attach behavioral descriptions in the form of protocols [Plásil et al., 1999].

SOFA CDL provides a single inheritance mechanism for interface specification reuse based on the
sub-typing for interfaces. Due to the dichotomy between frames and architectures, SOFA proposes
two multiple inheritance mechanisms for specification reuse, one for frames and one for architec-
tures. SOFA proposes to solve the name collisions occurring during the multiple inheritance using
explicit renaming. Frames inheritance mechanism preserves a form of sub-type relation in the inher-
itance hierarchy. Architectures inheritance mechanism has a non-combinational form. There is not
a notion of behavioral inheritance.

SOFA supports introspection features in form of so-called control interfaces (a.k.a. controllers).
Controllers are not usually accessed by the application logic, but rather by the run-time environ-
ment. The control interfaces together with their implementation form a control part of components
in SOFA 2 which is modular and extensible. A notion of intercession features is captured by the DCUP
extension of SOFA [Plásil et al., 1998]. It proposes an extension of the SOFA model components to
support the update of components in a safe way for their execution. DCPU architecture introduces a
new notion where components are split into two parts, permanent and replaceable parts, as well as
into a functional and a control part. Updates only update the replaceable part of the component, re-
placing it with a newer version. The updating process is controlled by a component manager, which
exists in the permanent part of the component, thus making the component itself responsible for
how the updating process is performed. Although SOFA 2 is defined by the meta-model, the entities
of the meta-model are not reified, hence not accessible in run-time. Reflection can only be used if it
is provided by a target (object-oriented) implementation language.

Fractal

Fractal component model [Bruneton et al., 2006 ; Bruneton et al., 2004] is designed to be used in vari-
ety different software branches, e.g. middleware, operating systems, information systems and graph-
ical user interface libraries. The main Fractal’s design principles are: composite components, shared
components to model resources, introspection capabilities to monitor a running system, configura-
tion and dynamic reconfiguration capabilities. The modular and extensible organization allows the
use of Fractal in different situations from highly optimized and hardly configurable to less optimized
and heavily configurable and dynamic applications.

Fractal components consist of two parts: a controller and a content. The controller is a set of in-
terfaces designated to control behavior, functional and non-functional aspects of a component like
introspection, configuration, security and transactions. Controller interfaces may be internal which
are accessible from component’s sub-components or external which are accessible from outside of
the component. Further, controller interfaces are divided in functional interfaces and control inter-
faces. The functional interfaces are provided or required interfaces, representing functional aspects of

26 Chap 2. Component Models and their Implementations

a component. Functional interfaces are equivalent to remote interfaces from EJB. Control interfaces
that are equivalent to EJB’s home interfaces are provided interfaces that correspond to non-functional
aspect of components such as introspection or configuration. Fractal defines various predefined con-
trollers: attribute controller, binding controller, content controller and life-cycle controller.

The content represents internals of a component. Fractal defines three kinds of components de-
pending on its internals and exposed control interfaces:

• a composite component is a component that exposes a content controller in order to add or
remove its sub-components.

• a primitive component is a component that does not expose its content controller, but has at
least one control interface.

• a base component is a component that does not expose any control interface.

Fractal allows a component to be owned by various distinct components. Such components are
called shared components. They are usually used to represent shared resources.

Creating software using Fractal takes three steps: first, write the implementation code, second,
add code annotation with Fractal meta-information, and last, write the linking code using Fractal
Architecture Definition Language (ADL) [Leclercq et al., 2007]. The code annotations provide the
information about classes that implement components and fields that represent required services,
among others. Fractal ADL was created in order to describe the architecture of Fractal components.
It is an open, extensible XML based language. The language hides some implementation details, like
implementation of attribute, binding or content controllers. Fractal ADL allow users to describe prim-
itive and composite components. Primitive components specify only provisions and requirements in
form of provided and required interfaces and a content which is a name of an implementation class.
Composite components contain nested sub-components that may be interconnected with bindings.

A definition of components and also sub-components in Fractal ADL may use multiple inheri-
tance mechanism to achieve structural definition reuse. Inheritance is simply an extension of the
mechanism that allows adding and overriding component’s interfaces, sub-components, bindings,
attributes and implementation class definitions. Conflicts resulting from multiple inheritance are
solved by linearizing the inheritance graph. Behavior inheritance is not present at the level of ADL,
however it is possible to sub-class and override an implementation class in the level of implementa-
tion language.

The Fractal component model consists of a framework for the instantiation of components and a
set of specifications that a component should or should not implement depending on what control
capabilities a component developer wants to offer to users of the component. The control interfaces
are special provided interfaces with predefined names organized in levels of control with gradually
increasing reflective and introspection capabilities of components:

• lowest level components have no control capabilities, only their methods may be invoked.
These components serve only as a component embedding of existing objects.

2.2. Presentation of the main Component-based approaches 27

• the next level provides introspection capabilities of components through a standard interface.
This interface allows a user of a component to discover all external interfaces of the component.

• the last level, also called configuration level provides control interfaces to introspect and modify
the content of a component that consists of sub-components interconnected with bindings.

The model also allows to perform dynamic reconfigurations of Fractal structures. This is achieved
by means of a series of calls to the framework or by using its underlying scripting language FScript.

There are currently two reference implementations: Julia 2 (Java) and Cecilia 3 (C/C++) and other
experimental implementations as FractTalk 4 (Smalltalk) or FractNet 5 (.Net).

Kevoree

Kevoree6 [Daubert et al., 2012] is an open-source dynamic component model, which relies on models
at run-time [Blair et al., 2009] to properly support the dynamic adaptation of distributed systems.

Models@runtime basically pushes the idea of reflection one step further by considering the re-
flection layer as a real model that can be uncoupled from the running architecture (e.g. for reason-
ing, validation, and simulation purposes) and later automatically resynchronized with its running
instance. In particular, Kevoree provides a proper support for distributed models@runtime.

In Kevoree, components encapsulate business functionalities. Each component provides a set
of functionalities exposed to others. A component also requires functionalities to achieve their own
ones. All these functionalities are identified by a port (required or provided) on the component. Com-
ponents communicate only through their ports.

Components are described by component types which are realized as Java classes. This make it
possible to use the standard Java inheritance to achieve structural and behavioral reuse. This also
means that Kevoree components are sophisticated Java objects.

Kevoree introduces the Node concept to model the infrastructure topology and the Group concept
to model semantics of inter node communication during synchronization of the reflection model
among nodes. Kevoree includes a Channel concept to allow multiple communication semantics be-
tween remote components deployed on heterogeneous nodes. All Kevoree concepts (Component,
Channel, Node, Group) obey the object type design pattern to separate deployment artifacts from
running artifacts.

Kevoree supports multiple kinds of execution node technology (e.g. Java, Android, MiniCloud,
FreeBSD, Arduino, . . .).

Kevoree aims at providing advanced adaptation capabilities to different types of nodes:

Level 1 : Parametric adaptation. Dynamic update of parameter values, e.g. change of sampling rate
in a component that wraps a physical sensor (adaptation of instance properties).

2http://fractal.objectweb.org/julia/index.html
3http://fractal.ow2.org/cecilia-site/current/
4http://csl.ensm-douai.fr/FracTalk/Smalltalk
5http://archive.is/rosfp
6http://www.kevoree.org

http://fractal.objectweb.org/julia/index.html
http://fractal.ow2.org/cecilia-site/current/
http://csl.ensm-douai.fr/FracTalk/Smalltalk
http://archive.is/rosfp
http://www.kevoree.org

28 Chap 2. Component Models and their Implementations

Level 2 : Architectural adaptation. Dynamic addition or removal of bindings or components, e.g.
replication of software components and channels on different nodes to perform load balancing
(adaptation of instances graph).

Level 3 : Dynamic provisioning of types. Hot deployment of component types that were not foreseen
before the initial deployment of the system. This allows for system evolution by enabling para-
metric and architectural reconfigurations, including management of instances for types that
are added and managed dynamically (adaptation of types).

Level 4 : Adaptation for remote management. Nodes supporting level 4 adaptation participate in
a remote management layer, which supervises less powerful nodes. This layer monitors re-
mote nodes by requesting their current Kevoree model; the layer triggers dynamic adaptation
of nodes by sending precomputed reconfiguration scripts to them. This remote adaptation pro-
cess supports seamless management of less powerful nodes by a more powerful one, which has
enough resources to build and evaluate new and appropriate configurations.

The adaptation engine relies on a model comparison between two Kevoree models to compute
a script for a safe system reconfiguration; execution of this script brings the system from its current
configuration to the new selected configuration [Morin et al., 2009].

Model comparison yields a delta-model defining changes (using CRUD operations) that should be
applied on the source model to obtain the target model. planification algorithms use this delta-model
as input in order to defined an efficient schedule of the adaptation steps. The delta-model is finally
compiled into a Kevoree script. The Kevoree Script language (KevScript for short) is a core language
for describing reconfiguration. KevScript is comparable to FScript for Fractal Component Model.
Execution of a KevScript directly adapts a Kevoree system, without the need for a full Kevoree model
definition. Such adaptation scripts are written by designers, or they can be generated by automated
processes (e.g. within a control loop managing the Kevoree system).

COM Component Object Model

COM (Component Object Model) [Microsoft, 1995 ; Rogerson, 1997] is a component model developed
by Microsoft. COM component model is designated to run components within different processes on
the same computer. A distributed version DCOM (Distributed COM) extends functionality of COM to
run components over a network. The last COM version COM+ extends COM with Microsoft Transac-
tion Server - MTS to use transactions, Message Queue Server - MSMQ for asynchronous invocations
and other services for improving performance and security. COM specification is not restricted on
any platform, however the mainly supported COM platform is Microsoft Windows.

COM components are not restricted on one programming language, they may be written in any
programming language whose compiler is able to compile into a binary with an internal structure
including virtual tables and function calling conventions as specified in COM specification.

COM uses Object Remote Procedure Call - ORPC which is built on top of DCE/RPC [Group, 1997].
To define components a MIDL (Microsoft IDL)7 may be used. MIDL is not directly used by COM, it is
used to pre-generate source code with MIDL compiler.

7MIDL is an extension of CORBA IDL

2.2. Presentation of the main Component-based approaches 29

COM component model allows to specify only provisions of components in form of provided in-
terfaces. COM provides capabilities for introspection of provisions of components, but requirements
must be obtained by programming from a source code. The interface discovery mechanism is imple-
mented through the notion of a special interface called IUnknown that must be implemented by every
COM component. The purpose of IUnknown is actually twofold: (i) it allows the dynamic querying
of a component (QueryInterface() operation) to find out if it supports a given interface (in which
case, a pointer to that interface is returned), and (ii) it implements reference counting in terms of
the number of clients using components’ interfaces. Reference counting is used to garbage collect
components when they no longer have any clients.

A COM interface specifies a set of method signatures and has the following characteristics:

• it has a unique identifier called IID (Interface IDentifier), a 128-bit number generated by a
pseudo-random algorithm to avoid conflict;

• it is immutable and any changes such as the addition, modification or removal of a method
signature, is impossible. A new functionality should be introduced by adding a new interface
instead of modifying existing interfaces; This constraint makes managing different versions of
the same interface as they must have different identities;

• it inherits directly or indirectly from the interface IUnknown;

• it is described in MIDL (Microsoft Interface Definition Language).

Figure 2.6 : Graphic of a COM object named CA has two interfaces IX and IY representation

COM objects are instances of classes that can be used only through their interfaces. Figure 2.6
shows a graphical representation of a COM object. COM specifies an interface of a COM object must
be a pointer (accessible by customers) to an area of the component called node interface.

COM supports two approaches in hierarchical composition:

• containment: an owning component reimplements part or all provided interfaces of sub-
components. Reimplementation of interfaces may pass calls to a sub-component, whose in-
terfaces are reimplemented.

• aggregation: when a client is obtaining an interface from a component in order to invoke com-
ponent’s services a sub-component’s interface may be returned and therefore a client works
directly with a sub-component.

30 Chap 2. Component Models and their Implementations

COM hierarchical composition is not explicitly captured by a kind of ADL, but at source code level.
It is actually only a design pattern how to create composed components.

In order to use a COM component, it must be registered in a windows registry database. A GUID
(Globally Unique Identifier), which is a 128 bit key is used to identify COM components within the
registry database. Windows registry database also contains a table to convert a class name to a GUID
identifier. COM components are shared within a system therefore any application can use any of
registered components. This has a drawback that a replacement of a COM component with a newer
version, may cause compatibility problems in other applications that also use the replaced COM com-
ponent.

COM model does not provide any means for structural or behavioral inheritance in the compo-
nent level of abstraction. However it is possible to reuse interface definition by the interface inheri-
tance of MIDL.

OpenCOM

OpenCOM [Clarke et al., 2001] is a lightweight and efficient component model based on Microsoft
COM model. It includes the binary level interoperability standard, Microsoft’s IDL, COMs globally
unique identifiers and the IUnknown interface. The higher level features of COM such as distribution,
persistence, transactions and security are not used. OpenCOM proposes an approach to the design
of configurable and open middleware platforms based on the concept of reflection. More specifically,
OpenCOM defines a reflective architecture for next generation middleware platforms, supplemented
by an open and extensible component framework.

The key concepts of OpenCOM are capsules, components, interfaces, receptacles and connec-
tions. Capsules are run-time containers and they host components. Each component implements
a set of custom receptacles and interfaces. A receptacle describes a unit of service requirement. An
interface expresses a unit of service provision, and a connection is the binding between an interface
and a receptacle of the same type.

The general structure of any OpenCOM component is to have a header file for each provided/re-
quired interface, and one source file for the implementation of a component.

The header file is the place in which a developer defines an interface as a C struct. An “interface”
is a struct containing method pointers. Typically developers define receptacles as a receptacle list
in a component source file, which is a struct containing a list of pointers to interfaces. A compo-
nent source file will therefore need to include the header files of any other component interfaces that
should be bound to component having receptacles.

The source file is the place to define the component’s constructor, destructor, and interface
method implementations. Inside a component’s constructor, we register the interfaces and recep-
tacles of the component with the OpenCOM kernel, and in the process point the interface method
pointers at our implementations of those methods.

Each OpenCOM component must inherit the implementation (through containment [Rogerson,
1997]) of three standard sub-components (called MetaInterception, MetaArchitecture and MetaInter-
face). These implement the reflective facilities identified in [Blair et al., 1998] and (respectively) export

2.2. Presentation of the main Component-based approaches 31

Figure 2.7 : The Architecture of OpenCOM

the following meta-interfaces from the host component:

• IMetaInterception enables the programmer to associate (dissociate) interceptor components
with (from) some particular interface. Interceptors implement interfaces that contain inter-
ceptor methods; these are invoked before or after (or both before and after) every method in-
vocation on the specified interface. Multiple interceptors can be added/ removed at run-time
and reordered as desired.

• IMetaArchitecture enables the programmer to obtain the identifiers of all current connections
between the host components’ receptacles and external interfaces. These identifiers can then
be used to obtain information about the receptacle/interface/components involved in the con-
nection.

• IMetaInterface supports inspection of the types of all interfaces and receptacles declared by the
host component.

32 Chap 2. Component Models and their Implementations

Figure 2.7 visualizes the component model. It shows an OpenCOM enabled component (top) and
the OpenCOM run-time component (bottom). The components’ management and meta-interfaces
are shown on the left hand side of the OpenCOM enabled component. The three meta-interfaces are
linked to the embedded sub-components that implement OpenCOM’s reflective capability. Among
these interfaces, MetaArchitecture and MetaInterface are further linked to corresponding private in-
terfaces in the run-time. Also associated with the illustrated component are a component specific
interface (labeled “custom interface”) and two receptacles. Components can export any number of
component specific interfaces and receptacles. The OpenCOM runtime component is shown encap-
sulating the system graph and type libraries, and exporting the IOpenCOM interface.

Similarly to the COM model, OpenCOM does not provide any means for structural or behavioral
inheritance in the component level of abstraction.

CORBA Component Model (CCM)

CORBA (Common Object Request Broker Architecture) specified by the OMG is a widely used stan-
dard for middleware and distributed computing. A part of the CORBA specification called CORBA
Object Model (CCM) provides a support for remote procedure calls independently of a communica-
tion protocol, programming language, operating system and hardware platform. OMG also provides
a set of CORBA Object Services that includes naming service, trading service, transactions, security,
persistence and others.

Corba uses Interface Definition Language - IDL to describe procedures and functions that may be
remotely invoked. Mappings of IDL to various programming languages like C++ or Java are defined.
This implies possibility to use CORBA with various programming languages.

The version 3.0 of Corba specification introduces CORBA Component Model - CORBA CM, based
on CORBA Object Model, which covers a set of software component features. It extends Corba Object
Services to provide component specific services for managing, configuring, deploying and intercon-
necting components.

Component IDL (CIDL), which is an extension of CORBA IDL for defining components. CIDL
defines two kinds of components: basic components and extended components. Basic components
serve to simply encapsulate existing CORBA objects within a component. They cannot inherit from
other components and cannot specify provisions and requirements. Only attributes are allowed to be
specified for component configuration purpose.

Extended components provide a rich set of component functionality. Extended components pro-
vide two kinds of provisions and requirements for synchronous and asynchronous invocations. Pro-
visions for synchronous invocations are called facets and requirements receptacles. Asynchronous
provisions and requirements are called event sources and event sinks. CORBA CM also provides a pos-
sibility to define attributes of extended components which are named values, primarily intended for
a configuration purpose.

CORBA objects that want to provide direct access to their meta-data have to implement reflec-
tion provider interfaces. A client can determine whether a given object supports CORBA reflection
by attempting to narrow the object’s reference to the desired reflection provider interface. The reflec-
tion provider interface supports operations for meta-data retrieval in two formats: XML and an any (a

2.2. Presentation of the main Component-based approaches 33

type) containing an instance of an IFR interface description structure.

CCM uses the CORBA object model as its underlying object inter-operability architecture and
thus is not bound to a particular programming language. All CCM components support introspection
interfaces, which can be used to discover the capabilities of components. The CCM Navigation inter-
face (see Listing 2.1) defines introspection methods (get_all_facets() and get_named_facets(in
NameList names)) for discovering facets (provided ports). The CCM Receptacles interface (see
Listing 2.2) introspection methods (get_all_receptacles() and get_named_receptacles(in
NameList names)) for discovering receptacles (required ports).

interface Navigation {
Object provide_facet (in FeatureName name) raises (InvalidName);
FacetDescriptions get_all_facets();
FacetDescriptions get_named_facets (in NameList names) raises (InvalidName);
boolean same_component (in Object object_ref);

};

LISTING 2.1 : CCM Navigation interface

interface Receptacles {
Cookie connect (in FeatureName name, in Object connection)
raises (InvalidName, InvalidConnection,

AlreadyConnected, ExceededConnectionLimit);
void disconnect (in FeatureName name, in Cookie ck)
raises (InvalidName, InvalidConnection,

CookieRequired, NoConnection);
ConnectionDescriptions get_connections (in FeatureName name)
raises (InvalidName);

ReceptacleDescriptions get_all_receptacles ();
ReceptacleDescriptions get_named_receptacles (in NameList names)
raises(InvalidName);

};

LISTING 2.2 : CCM Receptacles interface

CORBA CM is a flat model though it does not support hierarchical composition of compo-
nents. Hierarchical composition may be substituted by exposing requirements, that represent sub-
component’s interfaces, from a component and connecting them to a component that is supposed to
be a sub-component.

Structural and behavioral inheritance is not present in the component level of abstraction. In the
traditional CORBA object model, interfaces can be extended only via inheritance. To support new
interfaces, therefore, application developers must: (1) use CORBA’s Interface Definition Language
(IDL) to define a new interface that inherits from all the required interfaces; (2) implement the new
interface; and (3) deploy the new implementation across all their servers. Because overloading is not
supported in CORBA multiple inheritance has limited applicability. Moreover, applications may need
to expose the same IDL interface multiple times to allow developers to either provide multiple imple-
mentations or multiple instances of the service through a single access point. Unfortunately, multiple

34 Chap 2. Component Models and their Implementations

inheritance cannot expose the same interface more than once and, alone, it cannot determine which
interface should be exported to clients [Henning et Vinoski, 1999].

CORBA Component Implementation Framework (CIF) is a framework for constructing compo-
nent implementations. CIF uses CIDL source files to generate skeletons that contain implementa-
tions of various mandatory behaviors of components. Mapping to a programming language is per-
formed in two steps: mapping from CIDL to IDL and then mapping from IDL to a chosen program-
ming language. Implemented and compiled component is packed along with a generated component
descriptor file and default properties file into a single Zip file and deployed on a server.

There are two possible ways how components may be instantiated and interconnected. The first
one is statically through an assembly descriptor which is an XML file providing necessary information
about instantiating and interconnecting components. The second way is dynamically either from a
source code using Object Request Broker - ORB services or using a CORBA scripting tool. For this pur-
pose CCM provides a variety of introspection services to determine all provisions and requirements
of a component.

OpenCORBA

OpenCORBA [Ledoux, 1999] is a reflective implementation of CORBA in NeoClasstalk [Rivard, 1996],
which in turn is an extension of Smalltalk with a metaobject protocol that allows the dynamic re-
placement of the class of an object and, importantly, the meta-class of a class. The reflective features
of OpenCORBA are thus based on the idea of modifying the behaviour of a CORBA service by replac-
ing the meta-class of the class defining that service. Two aspects of CORBA are reified and subject to
this mechanism.

First, it allows the dynamic adaptation of the behavior of remote invocations by applying the
above idea to the classes of proxies (stubs) and server templates (skeletons). By default, these classes
are generated (according to the standard IDL to Smalltalk mapping) as instances of the meta-classes
ProxyRemote and TypeChecking, respectively, which implement the standard CORBA behavior. Re-
placing these meta-classes with custom ones therefore allows remote invocations with different non-
functional properties. For instance, it is possible to implement a replication strategy at client side, or
to introduce an optimized form of type checking of server invocations.

The other aspect that can be subject to meta-class change is the creation of meta-information el-
ements in the Interface Repository, allowing the adaptation of the strategy for validating the integrity
of such elements.

The OpenCORBA approach allows for arbitrary customisations based on behavioural reflection.
The facilities provided are an equivalent of request interceptors in CORBA, regarding the customisa-
tion of request behavior.

OpenCORBA, however, provides dynamic customization, whereas CORBA interceptors are static.
In addition, such customization can be made on a per-interface type basis, whereas CORBA intercep-
tors apply to all requests on an ORB instance.

In general, the OpenCORBA approach is limited to the aspects described above (although the
overall approach could apply more generically), thus not allowing, for example, the internal ORB

2.2. Presentation of the main Component-based approaches 35

mechanisms to be customized or adapted.

Another limitation derives from the use of the meta-class approach, meaning that the scope of
adaptation is a class, thus affecting all of its instances. For instance, as stub and skeleton classes are
generated for each particular interface type, all the running instances of an interface type are affected
by a meta-class change (as all of them share the same proxy and skeleton classes).

Similarly to CCM, the structural and behavioral inheritance mechanism is not present in the com-
ponent level of abstraction.

Meta-ORB

[Costa et al., 2006] proposes the design-time use of models to generate middleware configurations
and run-time use of the same models to represent middleware components which are causally con-
nected with their models. The models are then maintained by the reflective meta-objects for the pur-
poses of dynamic adaptation. The MetaORB meta-model is an extension of the CCM meta-model,
in a way that it allows backward compatibility with the standard. MetaORB provides the meta-
information management with a principled reflective meta-level. This has the benefit of unifying
the use of meta-information in the system (e.g. preventing that different meta-object implementa-
tions use different meta-level representations), as well as providing a basis to closely integrate the
configuration and adaptation features of the platform.

Meta-information describes the structure and semantics of entities in a computational system.
This description is used for static configuration of the middleware (by instantiating its components
at load time) and for its dynamic adaptation (via run-time component-based reconfiguration).

In the MetaORB architecture, meta-information is specified in a model, according to an explicit
meta-model. This explicit meta-model represents the platform’s type system and is maintained in
a repository that can be used for the definition, storage and retrieval of models that represent spe-
cialized configurations of the middleware and its applications. Once the definition of an entity (a
component and its interfaces, for instance) is obtained from the type repository, it may be used to
build a run-time model of the entity, allowing its dynamic instantiation by specialized factories and,
if necessary, the construction of its reflective self-representation, used for dynamic introspection and
reconfiguration.

MetaORB reflection is based on per-object meta-objects, enabling to isolate the effects of reflec-
tion. The MetaORB meta-model reifies the first-class constructs: interfaces (access points to the ser-
vices provided by a component), components (represent the units of functionality) and binding ob-
jects (equivalent to distributed components, whose internal components can be deployed across the
network). The corresponding meta-model elements (meta-types) represent both the type and tem-
plate aspects of such constructs, meaning that the meta-model provides a basis for the functions of
type and configuration management. In short, base-level objects (components) are represented as
multiple meta-model elements, as it is shown in Figure 2.8

Similarly to CCM, the structural and behavioral inheritance mechanism is not present in the com-
ponent level of abstraction.

36 Chap 2. Component Models and their Implementations

Figure 2.8 : Reifying a base-level object according to multiple meta-space.

DynamicTAO

DynamicTAO [Kon et al., 2000] is a CORBA compliant reflective ORB, which makes explicit the ar-
chitectural structure of a system in a causally connected way. Component configurators keep the
consistency of dependencies as new components are added or removed from the system. Reflection
capabilities are limited to coarse-grained components, without possibility to control more detailed
structures of the model.

DynamicTAO is based on the ability to dynamically reconfigure the internal strategies of the ORB,
by plugging and unplugging strategy implementations on existing components. It defines special-
ized component configurator classes, in order to provide the dynamic management of different kinds
of entities, such as particular ORB instances or ORB domains. Each of these configurators defines a
number of hooks for the installation of strategies, depending on the kind of the component it config-
ures. The interfaces of these configurators constitute the DynamicTAO Meta Object Protocol (MOP),
with facilities for loading and installing new strategies, and for inspecting the state and structure of
the reified components.

Customization and dynamic adaptation of ORB components in DynamicTAO is based on strate-
gies with emphasis on environments with very limited resources, such as handheld computers. The
architecture is based on a configurable ORB skeleton, which defines abstract components that repre-
sent customization slots for the several ORB services. It also allows the flexible selection of concrete
components for each abstract component.

Similarly to CCM, the structural and behavioral inheritance mechanism is not present in the com-
ponent level of abstraction.

2.2. Presentation of the main Component-based approaches 37

JavaBeans

The Javabean component model8 was developed by Sun Microsystems9 in 1996 around the Java pro-
gramming language. A Javabean is "a reusable software component that can be manipulated in a
graphical development environment" [Hamilton, 1997]. It should be noted that all Javabeans are not
necessarily graphical components (called widgets) such as buttons, menu bars, etc.. Even though this
model is particularly well suited for building graphical user interfaces, its usage can be much wider.

A Javabean is an instance of a Java class that has attributes, methods, properties and can emit
and receive events (see Figure 2.9) . Attributes and methods are standard concepts in Java, unlike
properties that are “units” of configuration that affect the appearance or behavior of a Javabean. A
property has a name, a type and a value that is read and/or written via Javabean methods which
conform to the naming conventions of Java. Events are Java objects that are exchanged when the
components are connected. There are a multitude of predefined events and it is possible to define
new ones. In most, events are usually related to changes of properties values.

Figure 2.9 : Structure of a Javabean component

Javabeans connection is based on notifications and event listeners. Each Javabean listen to a set
of events. It can react to these events. It can also notifies its listeners with events that it produces. In
summary, two independently developed Javabeans can be connected (without changing their code)
if the former is able to listen and handle events that the latter emits. Connections are defined within
an application code by registering a bean as an event listener of another bean.

Javabeans use the Java inheritance mechanism to reuse structure and behavior definition of com-
ponents.

A Javabean also has a standard introspection mechanism accessible through its interface
BeanInfo which offers information about the bean (its properties, the types of emitted or handled
events and its methods). Development environments offered for Javabeans, as the Bean Development
Kit (BDK) or Netbeans, use this mechanism to provide a graphical representation of Javabeans.

A bean shelf (library) comes in the form of an archive (jar) containing the bean implementation
(compiled Java files) and resource files (configuration files, images, etc..). This archive can then be

8The meaning of the word bean, in the case of Javabean, is “grain”. So a Javabean is a coffee bean.
9On January 27, 2010, Sun was acquired by Oracle Corporation for $7.4 billion, based on an agreement signed on April

20, 2009. The following month, Sun Microsystems, Inc. was merged with Oracle USA, Inc. to become Oracle America, Inc.

38 Chap 2. Component Models and their Implementations

easily deployed. The execution of a Javabean is supported by the Java virtual machine that acts as a
container. This makes the Javabeans mobile since JVMs are available for most hardware platforms.

Enterprise Java Beans (EJBs)

EJB (Enterprise Java Beans) is a component model developed by Oracle with actual Version 3.0 [Ora-
cle, 2012 ; Monson-Haefel, 1999]. EJB is primarily used for a client-server model of distributed com-
puting, where clients connect to a server in order to access services provided by the server with an
emphasis to access relational database.

EJB specification introduces three kinds of components: Entity classes, Session beans and
Message-driven beans. In the case when beans export remote interfaces, communication between
client and beans and also between beans is performed using RMI (Remote Method Invocation) which
is a Java implementation of RPC (Remote Procedure Call).

The main purpose of entity classes is to access remotely over network data stored in a database
or another permanent storage. Each entity class represents an object view on one record from a
database, and is therefore identified by a primary key. Due to permanent storage background, en-
tity classes are statefull. Entity classes may be shared between multiple users, that may use a primary
keys to access a concrete class. Invocations are performed synchronously.

Session beans are not permanent and have no primary key since are not backed by a database or
other form of permanent storage. Session beans are not shareable in general. However persistency
and shareability may be achieved by explicit access to a database and use of beans handle. Invoca-
tions of session beans are synchronous. Session beans may be statefull or stateless. A statefull bean
maintains its state across various method calls. It is intended to be used by one remote client. On
the other side stateless bean does not hold its state and may be pooled and used by various remote
clients in an instant.

Message-driven beans do not represent any data directly, however they may access any shared
data in an underlying database. Message-driven beans are executed when a message from a client is
received on a server, so their invocation is asynchronous.

Beans expose two kinds of interfaces:

• A remote interface represents provisions of a bean. It provides an access point for a client to
access methods of a bean and must be implemented by a developer of a bean.

• A home interface provides methods for beans configuration during deployment, access to
beans’ metadata, and managing the lifecycle of its instances (creation, destruction, research
case of persistence, etc. .) A home interface is automatically provided by an EJB container.

Both kinds of EJB interfaces are provided interfaces. EJB does not support required interfaces
of beans. Only requirements in form of co-operating EJB may be specified within a Deployment de-
scriptor. A reference to related EJB must be however obtained programmatically within a code of a
bean and thus an application architecture is hidden.

2.2. Presentation of the main Component-based approaches 39

An application server embed an EJB container for running beans. Beans are deployed together
with a deployment descriptor which is a single XML file. An EJB server usually provides various ser-
vices similar to Corba Object Services: naming and trading service, transaction service and others.

The interface EJBHome supports introspection with a method to retrieve the EJBMetaData ob-
ject to obtain information about the enterprise Bean. The EJBMetaData object implements the
javax.ejb.EJBMetaData interface which defines methods for obtaining the class of the bean’s re-
mote interface, home interface, bean type (entity, statefull or stateless session), and the primary keys
type (entity only). A reference to the bean’s EJB home can also be obtained. Once a client applica-
tion has a reference to bean’s remote and home interface classes, normal Java reflection can be used
to introspect the methods available for the client. The EJBMetaData is designed to be used by IDEs
and other builder tools that may need generic methods for obtaining information about a bean at
run-time.

Similarly to Javabeans, EJBs use the Java inheritance mechanism to reuse structure and behavior
definition of components.

OSGi

OSGi [OSGi Alliance, 2012] was originally designed for embedded systems, but later has been used
as a general-purpose component model in different domains. The model tries to provide the stan-
dard implementation of dynamic modules for the Java platform. The OSGi specification therefore
defines a framework for managing the life-cycle of a set of components stored in a module concept
called Bundle. The two reference implementations of OSGi are Apache Felix10 and Eclipse Equinox11

projects.

Applications or components (coming in the form of bundles for deployment) can be (optionally
remotely) installed, started, stopped, updated, and uninstalled without requiring a reboot. Appli-
cation life cycle management (start, stop, install, etc.) is done via APIs that allow for remote down-
loading of management policies. The service registry allows bundles to detect the addition of new
services, or the removal of services, and adapt accordingly.

A Bundle means a specific JAR of Java platforms required for deployment. It can define ad-
ditional meta-information in the form of a manifest file and declare dependencies to other Bun-
dles or fragments of Bundles exploiting the notion of Java packages. The dependencies have the
folowing atributes: name, interface (Class of the service registered in the framework) and cardinal-
ity. The cardinality is expressed with the following syntax: cardinality ::= optionality ’..’
multiplicity, for example 0..n means optional and multiple.

In its primary form the OSGi framework therefore introduces modularity to Java. Modules (bun-
dles) are easy to deploy since the granularity of dependencies is either a JAR package or a Java class.
These are accompanied by a Java code to be executed (at start and stop). The code is defined in spe-
cific classes named Activator and representing the internal code of a component. The framework
also defines a concept of internal service whose registration is dynamic in a central registry of the
platform.

10http://felix.apache.org/
11http://www.eclipse.org/equinox/

http://felix.apache.org/
http://www.eclipse.org/equinox/

40 Chap 2. Component Models and their Implementations

In short we can say that components are less formally defined than services.

A service is any object that is registered in the OSGi Service Registry and can be looked up using
its interface name(s). The only prerequisite is that a service should implement some interface.

In contrast, a component tends to be an object whose life-cycle is managed, usually by a compo-
nent framework such as Blueprint12 or iPOJO13. A component may be started and stopped; this would
be considered an “active” component. A component that does not need to be started or stopped is
called “passive”. A component may publish itself as an OSGi service. A component may bind to or
consume OSGi services. For example a developer can say that his/her component “depends on” a
particular service, in which case the component will only be created and activated when that service
is available – and also it will be destroyed when the service becomes unavailable.

SCA standard and its implementation FraSCAti

The standard Service Component Architecture (SCA) [OASIS, 2013] proposed by OSOA (Open Service
Oriented Architecture) as the result of a desire to unify component-based and service-oriented archi-
tectures. Several companies such as IBM, Oracle or SAP have proposed a model to express both: the
notion of service and also the notion of software components and their assemblies to model a full ar-
chitecture. All interconnections between components thus follow the service paradigm which serves
to type components contracts. The best known implementations of the standard are Apache project
Tuscany14 or INRIA’s project FraSCAti [Seinturier et al., 2012].

The SCA model is defined around four main principles: programming language independence,
IDL (Interface Description Language) independence, communication protocols independence, SCA
non-functional properties independence. It advocates the principles of service composition and
reuse: a system can be composed of new services specifically tailored for the intended application,
as well as of components extracted from existing systems and/or applications. SCA provides support
for a wide spectrum of programming languages and frameworks (e.g. BPEL, PHP, Java) and diverse
communication mechanisms (e.g. Remote Procedure Call, Web services).

The model defines systems in terms of service components and composites. The former imple-
ment and use services; the latter describe the assembly of components from the point of view of its
function. This includes connections between components/services and the references the system of-
fers for its use. Other concepts have been proposed in SCA, like wires that connect services (provided
ports) to references (required ports), interfaces that provide a description of both services and refer-
ences, and, at last, binding, which introduces an access mechanism used by services and references.
A visual representation of these concepts can be seen in Figure 2.10

The use of SCA within programming languages such as Java is very similar to Fractal, and is per-
formed by introducing annotations into the source code for SCA elements. The standard is organized
around a set of four sets of specifications: assembly language, component implementations, bind-
ings, and policies.

12http://aries.apache.org/modules/blueprint.html
13http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
14http://tuscany.apache.org/

http://aries.apache.org/modules/blueprint.html
http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
http://tuscany.apache.org/

2.2. Presentation of the main Component-based approaches 41

Figure 2.10 : Visual Representation of SCA Concepts

42 Chap 2. Component Models and their Implementations

FraSCAti is a model for the development of highly configurable SCA solutions. The main contri-
bution of FraSCAti is to address the above issues of configurability and manageability in a systematic
fashion, both at the business (application components) and at the platform (non-functional services,
communication protocols, etc.) levels. This is achieved through an extension of the SCA component
model with reflective capabilities, and the use of this component model to implement both business-
level service components conforming to the SCA specification and the FraSCAti platform itself.

Technically, FraSCAti is built on top of the Fractal component model [Bruneton et al., 2006]. In
fact, FraSCAti is an advanced example of using Fractal controllers. It provides the following six con-
trollers [Seinturier et al., 2012], each implementing a particular facet of the execution policy of an SCA
component:

Wiring Controller providing the ability, for each component, to query the list of existing wires
(lookupFc), to create new wires (bindFc), to remove wires (unbindFc), and to retrieve the list
of all existing wires (listFc). These operations can be performed at run-time.

Instance Controller which creates component instances according to one of the four SCA modes.
The getFcInstance method provided by this controller returns the component instance asso-
ciated with the currently running thread.

Property Controller enabling to attach a property to a component (putFcValue) and retrieving its
value (getFcValue).

Hierarchy Controller implementing the hierarchical design of SCA components, where a compo-
nent is either primitive or composite. Composite components contain sub-components that
are themselves either primitive or composite. The management of this hierarchy is performed
by the hierarchy controller, which provides methods for adding/querying/removing the sub-
components of a composite.

Lifecycle Controller dealing with multithreaded applications where the reconfiguration operations
cannot be performed in an uncontrolled way. For example, modifying a wire while there is a
client request under processing. The life-cycle controller ensures that reconfiguration opera-
tions are performed safely.

Intent Controller managing the non-functional services attached to an SCA component.

The resulting collaboration scheme between controllers is captured in a software architecture
which is illustrated in Figure 2.11.

Compared to the SCA assembly language that only allows the description of the initial configura-
tion of an application, FraSCAti makes this configuration accessible and modifiable while the applica-
tion is being executed. The following component elements can be changed at run-time: wires, prop-
erties, and hierarchies. By providing a run-time API, the platform enables the dynamic introspection
and modification of an SCA application. This feature is of particular importance for designing and
implementing agile SCA applications, such as context-aware applications.

FraSCAti takes over the reuse capabilities introduced by Fractal’s inheritance.

2.2. Presentation of the main Component-based approaches 43

Figure 2.11 : FraSCAti controllers, each implementing a particular facet of the execution policy of an
SCA component

2.2.3 Generative family

The generative family uses high-level abstraction design models as conceptual tools for managing the
complexity of large software systems. These models, usually specified in ADLs, describe the high-level
organization of a software system as a collection of components, connections between the compo-
nents, and constraints on how the components interact. A system’s architecture provides a model
of the system that suppresses implementation detail, allowing the architect to concentrate on the
analysis and decisions that are most crucial to structuring the system to satisfy its requirements. The
intent of these models is to communicate to an entire engineering team part of the global knowledge
needed to develop and evolve each component of the system. They also aid in the specification and
analysis of high-level designs. For example, an architectural model can be analyzed to prove that the
design invariants described by architectural constraints are satisfied.

Once the architecture design stage of development cycle is finished, the generative strategy takes
the formal description of a designed architecture and generates code skeletons using a generator
specific for an implementation language. This implementation-language independence property is
another advantage of the approach as the same abstraction layer can generate code for different ma-
chines, taking into account the heterogeneity of platforms.

Our study plan focuses on inheritance and reflection, however the static nature of the generative
family do not match with reflection very well [Medvidovic et Taylor, 2000]. Reflection or at least in-
trospection capabilities depend on code which is generated. Behavioral inheritance, i.e. the ability to
reuse the behavior definition of components, is also not supported since the family mainly focuses
on structural description of complex software systems, not on the implementation of functionality
provided by these systems.

44 Chap 2. Component Models and their Implementations

ACME

ACME [Garlan et al., 1997] was developed as a joint effort of several architectural research groups,
ACME is intended to serve as a least- common-denominator interchange language for architectural
descriptions. It defines a basic, un-interpreted vocabulary of components, connectors, ports, roles,
bindings, and configurations. A system is constituted by components connected by connectors; the
ports are end-points of the connectors. These elements may have specifications associated with them
through property lists. In ACME properties may be specified in any language. The semantics of the
properties and, even, of the overall architectural specification are supplied by these auxiliary lan-
guages. The goal is that a specification written in one language, say UniCon, could share a common
architectural structure with a specification in another language, say Rapide, and thus the architect
will be able to take advantage of the descriptive and analytic tools of multiple ADLs or formalisms.

ACME is built on a core ontology of seven types of entities for architectural representation: com-
ponents, connectors, systems, ports, roles, representations, and rep-maps. Among the seven types,
the most basic elements of architectural description are components, connectors, and systems.

• Components represent the primary computational elements and data stores of a system. Intu-
itively, they correspond to the boxes in box-and-line descriptions of software architectures.

• Connectors represent interactions among components. Computationally speaking, connectors
mediate the communication and coordination activities among components.

• Systems represent configurations of components and connectors.

Components’ interfaces define points of interaction between the component and its environ-
ment. Each port identifies a point of interaction between a component and its environment. A com-
ponent may provide multiple interfaces by using different kinds of ports. A port can represent an
interface as simple as a single procedure signature, or more complex interfaces, such as a collection
of procedure calls that must be invoked in a certain specified order, or an event multi-cast interface
point. Connectors also have interfaces that are defined by a set of roles. Each role of a connector de-
fines a participant of the interaction represented by the connector. Binary connectors have two roles
such as the caller and callee roles of an RPC connector, the reading and writing roles of a pipe, or the
sender and receiver roles of a message passing connector. Other kinds of connectors may have more
than two roles. For example an event broadcast connector might have a single event-announcer role
and an arbitrary number of event-receiver roles.

ACME supports the hierarchical description of architectures. Specifically, any component or con-
nector can be represented by one or more detailed, lower-level descriptions. Each such description
is called a representation in ACME. The use of multiple representations allows ACME to encode mul-
tiple views of architectural entities. It also supports the description of encapsulation boundaries, as
well as multiple refinement levels.

When a component or connector has an architectural representation there must be some way to
indicate the correspondence between the internal system representation and the external interface
of the component or connector that is being represented. A rep-map defines this correspondence.

2.2. Presentation of the main Component-based approaches 45

ACME has focused on providing a common skeleton through which the benefits of other lan-
guages and tools can be combined. Thus, ACME is consistent with the ability to describe and analyze
software architectures, but it does not, in itself, provide a sufficient basis. It is only through mappings
to other languages that ACME descriptions can be interpreted and analyzed. One peculiar thing about
ACME is that its representation can vary depending on the underlying model. For instance, a UNIX
pipeline could be modeled in a syntax similar to C as we show in Listing 2.3.

Component pipe =
{

Port in;
Port out;
Property implementation : String = "while (!in.eof) {in.read; compute; out.write; }";

}

LISTING 2.3 : A component modeling a UNIX pipe in ACME

ACME partially supports structural inheritance with the notion of sub-typing via the extends fea-
ture.

Aesop

The Software Architecture Design Environment Generator (AESOP) [Garlan et al., 1994] is a set of
tools designed to develop a system model which provides a vocabulary for architectural description
through an object-oriented framework of types. It is based on the UNIX environment; it has pipe and
filter style extensions in order to model those features. However, it has a generic kernel, suitable for
all environments. The language does not provide a plain text description of the model; all modeling
is done in the graphic editor of the tool.

An architectural configuration is represented as an interconnected collection of object instances.
The vocabulary of an architectural style is described by defining sub-types of the basic architectural
types: Component, Connector, Port, Role, Configuration, and Binding. By default, an architectural
configuration in AESOP is an un-annotated hierarchical structure of components, connectors, and
configurations. A style provides attributes for representing the semantics of individual elements and
tools for analyzing and exploiting those specialized representations In also modifies the manipulation
methods of the base types to enforce style-specific constraints.

For example, a pipe-filter style would define a “filter” sub-type of component, a “pipe” sub-type
of connector, and appropriate port and role sub-types. The “insert port” method of a filter, for exam-
ple, would require that the inserted port be either a data input or output. Additionally, tools could be
introduced into the environment to generate implementations of pipe-filter systems from the archi-
tectural representation. Aesop can be used to support the analysis techniques of a particular formal
method or some other ADL.

AESOP provides component sub-typing support. Aesop enforces behavior-preserving sub-typing
to create sub-styles of a given architectural style. An AESOP subclass must provide strict sub-typing
behavior for operations that succeed, but may also introduce additional sources of failure with re-
spect to its super-class.

46 Chap 2. Component Models and their Implementations

C2

C2 is a component- and message-based style designed to support the particular needs of applications
that have a graphical user interfaces, with the potential for supporting other types of applications as
well. The style supports a paradigm in which UI components, such as dialogs, structured graphics
models (of various levels of abstraction), and constraint managers, can more readily be reused. A
variety of other goals are potentially facilitated as well. These goals include the ability to compose
systems in which: components may be written in different programming languages, components
may be running in a distributed, heterogeneous environment without shared address spaces, archi-
tectures may be changed dynamically, multiple users may be interacting with the system, multiple
toolkits may be employed, multiple dialogs may be active (and described in different formalisms),
and multiple media types may be involved.

The C2 style can be informally summarized as a network of concurrent components hooked to-
gether by connectors, i.e., message routing devices. The top of a component may be connected to the
bottom of a single connector and the bottom of a component may be connected to the top of a single
connector. There is no bound on the number of components or connectors that may be attached to
a connector (see Figure 2.12).

Figure 2.12 : A sample C2 architecture and a detail of the internal architecture of a C2 component.
Jagged lines represent the parts of the architecture not shown.

Each component has a top and bottom domain. The top domain specifies the set of notifica-
tions to which a component responds, and the set of requests it emits up an architecture. The bot-
tom domain specifies the set of notifications that this component emits down an architecture and
the set of requests to which it responds. All communication between components is solely achieved
by exchanging messages. Message-based communication is extensively used in distributed environ-
ments for which this architectural style is suited. Central to the architectural style is a principle of
limited visibility or substrate independence: a component within the hierarchy can only be aware of
components “above” it and is completely unaware of components which reside “beneath” it. Sub-
strate independence has a clear potential for fostering substitutability and reusability of components
across architectures. To eliminate a component’s dependence on its “superstrate,” i.e., the compo-
nents above it, the C2 style introduces the notion of event translation: a transformation of the re-
quests issued by a component into the specific form understood by the recipient of the request, as
well as the transformation of notifications received by a component into a form it understands. The
C2 design environment is, among other things, intended to provide support for accomplishing this

2.2. Presentation of the main Component-based approaches 47

task.

The internal architecture of a C2 component shown in Figure 2.12 is targeted to the user interface
domain. While issues concerning composition of an architecture are independent of a component’s
internal structure, for purposes of exposition below, this internal architecture is assumed.

C2 supports multiple sub-typing relationships among components: name, interface, behavior,
and implementation. C2 allows creation of sub-types of such a component by sub-typing from any
or all of the internal blocks. Different combinations of these relationships are specified using the
keywords and and not as we illustrate in the following code snippet:

component Well_1 is subtype Matrix (beh)
component Well_2 is subtype Matrix (beh \and \not int)

C2 also supports conformance checking mechanisms. It even allows sub-typing from several
types, potentially using different sub-typing mechanisms due to multiple conformance mechanisms.

C2 connectors have context reflective interfaces. Each C2 connector is capable of supporting
arbitrary addition, removal, and reconnection of any number of C2 components.

Darwin

Darwin [Magee et al., 1995] is an architectural description language developed by Magee and Kramer.
It describes a component type by an interface consisting of a collection of services that are either pro-
vided (i.e. declared by that component) or required (i.e.. expected to occur in the environment). Con-
figurations are developed by component instantiation declarations and bindings between required
and provided services. Darwin supports the description of dynamically reconfiguring architectures
through two constructs — lazy instantiation and explicit dynamic constructions. Using lazy instanti-
ation, a logically infinite configuration is described and components are instantiated only as the ser-
vices they provide are used by other components. Explicitly dynamic structure is provided through
the use of imperative configuration constructs. In effect, the configuration declaration becomes a
program that is executed at run-time, rather than a static declaration of structure.

In a Darwin-generated implementation, each primitive (non-hierarchical) component is as-
sumed to be implemented in some programming language, and platform specific glue code is gener-
ated for each service type. The elaboration algorithm acts, essentially, as a name-server that provides
the location of provided services to any executing components.

The model does not provide any means of describing the properties of either a component or
its services. Component implementations are uninterpreted black boxes, while the collection of ser-
vice types is a platform-dependent collection whose semantics is also uninterpreted in the Darwin
framework.

Darwin supports hierarchical composition. A component might be composed of other compo-
nents or of primitive components which represent built-in features of the language. Darwin also
supports the structure of parallel programs and modeling of network topologies.

Darwin’s support for architectural style is limited to the description of parameterized configura-
tions. For example, a Darwin pipeline description is shown in Listing 2.4. This description indicates

48 Chap 2. Component Models and their Implementations

that a pipeline is a linear sequence of filters, where each filter’s output is bound to the input of the
next filter in line. Using parameterization to describe families of systems means that only systems
that can be described constructively can be effectively characterized. That is, in order to delineate
membership in an architectural style it is essentially necessary to construct an algorithm that can
construct exactly those members of the style.

component pipeline (int n) {
provide input;
require output;

array F[n]:filter;
forall k:0..n-1 {

inst F[k];
bind F[k].output == output;
when k<n-1 bind

F[k].next == F[k+1].prev;
}
bind

input == F[0].prev;
F[n-1].next == output;

}

LISTING 2.4 : A pipeline component description in Darwin

Components hide their behavior behind well-defined interfaces and programs are constructed by
creating instances of component types and binding their interfaces together. These compositions are
considered as types as well, which leads to a hierarchical composition. Interfaces in Darwin can be
parameterized and derived by inheritance from one or more base interface types. Also, component
types can be defined explicitly or fully or partially typed from an existing component type (a partial
component declaration).

Rapide

Rapide [Luckham et Vera, 1995 ; Luckham et al., 1995a] is a set constituted by a type language, a defi-
nition language, a constraint language, and an executable programming language. The type language
is intended to provide interfaces for the definition language, which defines the architecture. The con-
straint language defines requirements for timing and other pattern events. The executable language
is concurrent and reactive. Its main purpose is to construct behavior of components and connections
between components.

The language is based on modeling computations and interactions as partially ordered event sets
(or “posets”). Rapide defines component types (called interfaces) in terms of a collection of commu-
nication events, which are either observed (Rapide calls these “extern actions”) or initiated (“public
actions”). Rapide interfaces define the computational behavior of a component by relating the ob-
servation of extern actions to the initiation of public actions. Interaction between components is
described for a particular configuration in one of two ways: (i) events can be “connected”, in which
case they are aliased to the same event. (ii) an architecture can declare “constraints” which specify
causal relationships between events on different components. Given a constraint, the initiation of

2.2. Presentation of the main Component-based approaches 49

one event will result in the generation of another event following it in all event orderings, but they are
not considered as the same event.

Rapide’s connections define an asymmetrical, primitive relation between two components. The
type language of actions permits the definition, essentially, of function calls between components.
Events have parameters and possibly return values. As such, they are not adequate for the introduc-
tion of new interaction types and do not support symmetric interaction patterns.

Rapide’s constraints might appear to provide better support for an explicit connector mechanism,
since related constraints can generate quite complex interactions between components. However,
these constraints can only be declared at the global configuration level and therefore do not permit
the localization of analysis of interactions. Further, because the language does not permit them to be
explicitly bundled as connectors, complex interaction patterns (sets of constraints) can not effectively
be reused in multiple contexts.

Rapide permits a form of consistency checking and analysis through architectural simulation. In
essence, the architecture is simulated, generating a partially ordered set of events that is compati-
ble with the interface, behavior, and constraint specifications. Because the generated set explicitly
defines causal relations between events rather than simply providing one possible sequence of the
events, simulation is useful for detecting execution alternatives such as race conditions.

However, a given simulation execution will provide only one possible poset, rather than all per-
mitted posets. This means that alternatives due to non-determinism in a behavior specification are
not captured by architectural simulation.

Architectures in Rapide can be filled in with implementations in an executable sub-language or
in languages such as C++ or Ada. The Rapide system includes a tool that dynamically monitors the
execution of a program, checking for communication integrity violations. Communication integrity
could be enforced statically if system implementors follow style guidelines, such as never sharing
mutable data between components. However, the guideline forbidding shared data prohibits many
useful programs, and the guidelines are not enforced automatically.

The type language allows deriving new interface type definitions by inheritance from existing
ones, including the capability of dynamic substitution of sub-types for super-types. However, at the
higher levels (Architecture, ...), inheritance is not supported.

UniCon

UniCon [Shaw et al., 1995] provides a tool for constructing executable configurations based on com-
ponent types, implementations and “connection experts” that support particular connector types.
UniCon supports explicit, symmetrical and asymmetrical connectors. That is, an architectural con-
figuration contains connector declarations that logically define an interaction. Each connector has
a collection of roles that define which participants are expected in a given interaction. Component
interfaces, rather than providing or requiring services, are defined by players which have a type (indi-
cating the nature of the interaction expected) and a set of properties (providing details of the compo-
nent’s interaction at that interface). At the configuration step, players on components are associated
with roles on connectors.

50 Chap 2. Component Models and their Implementations

While UniCon’s model of explicit connectors seems to provide promise for architectural style,
by creating a place where new interactions might be defined and compositional rules elaborated,
UniCon currently provides limited mechanisms for defining new connector types. New types can
only be added by hand-implementing new connection experts. This adds to the collection of built-
in, atomic types. Every connector is tagged with a type, which is manifested as a type construct in
the written notation and as the choice of an icon in the graphical notation. This type indicates which
roles must be satisfied for the connector to operate properly, together with the types of players that are
eligible to play the roles. Analysis of architectures in UniCon is limited to those tools supplied with the
given connector types (which depend on specific implementations of components and connectors)
and there is no way to describe architectural styles.

A component’s interface consists of the component’s type, specific properties (attributes with val-
ues) that specialize the type, and a list of points (players) through which the component can interact
with the outside world. Each player is typed and may list properties that further specify the player.
Property lists are used to refine the types to subtypes or to specialize a type to a particular use. A com-
ponent’s implementation may either be primitive or composite. A primitive implementation consists
of some element outside of UniCon’s domain, such as a source file in a given programming language,
a data file, or an executable. A composite implementation consists of other components and con-
nectors, composed as described below. A connector’s protocol consists of the connector’s type, some
specific properties that specialize the type, and a list of points (roles) at which the connector can
mediate the interaction among components. Each role is typed and optionally lists properties that
further specify the role. UniCon supports only built-in connectors, so each connector’s implementa-
tion is specified as built-in.

Wright

Configuration Capitalize
Component UpperCase
Connector Pipe
Instances

Split : SplitFilter
Upper : UpperCase
Merge : MergeFilter
P1, P2, P3 : Pipe

Attachements
Split.left as P1.Source
Upper.Input as P1.Sink
Split.Right as P2.Source
Merge.Right as P2.Sink
Upper.Output as P3.Source
Merge.Left asP3.Sink

End Capitalize

LISTING 2.5 : A component modeling a filter in Wright

WRIGHT is designed to support the formal description of the architectural structure of software
systems. In order to do so, it permits the description of both architectural styles, or families of sys-

2.2. Presentation of the main Component-based approaches 51

tems, and architectural instances, or individual systems.

WRIGHT is built upon the following abstractions: components, connectors, and configurations.
The language provides explicit notations for each of these elements, formalizing the general notions
of component as computation and connector as pattern of interaction.

A WRIGHT specification describes a component interface as a collection of ports, or logical inter-
action points. Each port is defined in terms of a protocol written in a subset of CSP [Hoare, 1978].
These ports factor the expectations and promises of the component into the points of interaction
through which the component will interact with its environment. The component may optionally
further specify how the interactions on its ports are combined into a computation.

The configurations can be divided into instances (a type if a specification of a component), at-
tachments (describes the topology of the system), and hierarchy (a component may hold other com-
ponents). In Listing 2.5 we give an example of a filter routine.

Components have two important parts — an interface and a computation. The interface consists
of several ports. Each port represents an interaction. The computation provides a more complete
description of what is done.

Connectors are considered as composition patterns among components. A collection of interface
instances combined via connectors is called a configuration.

No inheritance notion is present in the model.

UML

UML (Unified Modeling Language) [OMG, 2011b] is a standard graphical language defined by the
OMG for modeling systems. In its version 1.x, this language already included the notion of compo-
nents, considered modular, expandable and interchangeable system units encapsulating the imple-
mentation and outlining a set of interfaces. This low level vision components for a modeling language
has changed from UML 2.0. The components are now units of abstract structure that represent sub-
parts of a system. They can be modeled from different points of view and refined throughout the
development cycle.

UML 2.0 has introduced concepts and mechanisms inspired by ADLs for describing systems in
terms of interconnected components in the Internal Structures framework. The framework is used to
capture the internal structure of a component (and can be also used for hierarchical components).
The meta-class StructuredClassifier allows to decompose the functionality of a Classifier into
several parts. A part is a Property of the owning StructuredClassifier referenced via the parts
association. Technically, the type attribute of a part specifies the type of the classifier that will be
instantiated within an instance of the owning structured classifier. Further, parts may be intercon-
nected via connectors, which correspond to future links to be established among the corresponding
instances.

A component has an external structure made of ports (see Figure 2.13). Ports isolate a component
from its environment, with the interactions between the internal structure and its environment.

Several ports can be defined for a component, which can distinguish different interactions de-
pending on the port through which they are made. Ports enhance the decoupling between a com-

52 Chap 2. Component Models and their Implementations

Figure 2.13 : Structure of a UML component

ponent and its environment so it can be reused in another environment that meets the constraints
imposed on the port. Constraints associated with a port can be provided interfaces, required inter-
faces or protocols. A port can be associated with several provided and required interfaces. Interfaces
describe static constraints (type and signature operations) that must be implemented by a classifier
(class or component). Protocols are descriptions of dynamic constraints that can be done using state
diagram which we give an example in the following.

Collaboration between two or more components result in connectors representing opportunities
for communication between multiple instances of components. There are two types of connectors in
UML: the assembly connectors and delegation connectors.

An assembly connector is used to connect components that provide and require consistent ser-
vices. A connector assembly is defined between a required interface (resp. a required port) and a
provided interface (resp. specified port). Delegation connectors are used in the construction of com-
posites, that is to say components with an internal structure comprised of Parts (Property derived
from TypedElement), and connectors. Delegation connectors are used to connect external contracts
a component interfaces (or ports) to external contracts such to share that redirect requests inbound
operations. As for ports, a connector can be described by a protocol and it is then possible to check
the validity of a connection by checking the compliance of protocols.

The UML-meta-class Component also inherits from the UML-meta-class Class (as redefined in
the Structured Classes package) and gains the ability to have methods and attributes and to partici-
pate in associations and generalizations. Further, besides the associated ports, a Component may be
also directly associated with a set of provided and required interfaces.

Although UML is a reflective model described in MOF, which is the core sub-set of UML, its re-
flection capabilities are not usable in run-time.

2.2.4 Component-oriented languages family

Component-oriented languages family states that the most natural way to develop component-based
software systems is to use a single programming language that allows doing so in the first place. Such
programming languages provide a primitive support for both component definition, and composi-
tion (building components by assembling smaller components).

2.2. Presentation of the main Component-based approaches 53

ArchJava

ArchJava [Aldrich et al., 2002] is an extension to the Java Programming Language that allows the
unification between the software architecture and its implementation using the same programming
language, thereby simplifying the development process. The main purpose of ArchJava is to intro-
duce a programming language to deal with components that guarantees communication integrity
between architecture and implementation. A system has communication integrity if components
only communicate directly with the components they are connected to in the architecture of com-
ponent classes. This property ensures that the software system implementation respects the desired
system architecture. The presence of a sound type system guarantees communication integrity be-
tween an architecture and its implementation, even in the presence of shared objects and run-time
architecture configuration.

The three main ingredients of the ArchJava programming language are components, ports and
connections. Components are obtained from the instantiation of component classes, and are seen
as special objects that communicate with other components in a structured way. Ports represent
logical communication channels between one component and the ones it is connected to, making
it the only possible way for two components to communicate with each other. Ports declare three
different sets of methods: requires, provides and broadcasts. The first set represents methods that
are implemented by another component but which are available at the current port (this implies a
connection between the component that implements the method and the one that uses it). Provided
methods are implemented by the current component, and are made available to other components
at the port that is being defined. Broadcast methods are very much like required ones except that they
can be connected to more than one implementation, while required ones only allow the connection
to a single implementation.

This approach also supports hierarchical software architectures where components have got in-
ternal component structures (components connected to each other) to define their functionality. The
outer components are called composite components, and the inner ones called sub-components.
ArchJava does not present ways for exporting the behavior of internal components to outside com-
ponents.

An interesting feature of ArchJava is the possibility to create dynamic architectures, i.e. architec-
tures that change during the execution of the program, where new components can be dynamically
instantiated and connected to each other.

ArchJava’s reflection package is an extension of Java reflection package which is mostly read-only,
i.e. supports introspection, not full reflection. The ArchJava reflection package offers the follwing
classes:

• Call - represents a particular run-time required method invocation on a connected port

• Connection (extends Element implements Serializable) - represents a connection between
ports at run time

• Connector - represents a custom connector. Methods typecheck and invoke can be overridden
by sub-classes to get custom checking and method invocation semantics. Has a connection as
its private attribute.

54 Chap 2. Component Models and their Implementations

• Element - represents an element of the parse tree. Used as a way to tell the system what syntac-
tic element caused a type error

• Method (extends Element implements Serializable) - represents a method in a port instance

• Port (extends Element implements Serializable) - represents a port instance

• Type - represents the type of a method argument or result

Component classes can inherit from other component classes, or from Java class Object. Com-
ponent sub-classes inherit methods, ports, and connections from their super-classes. Component
sub-classes may also override method definitions and specify new methods and ports. However, com-
ponent sub-classes may not specify new required methods because this could break sub-type substi-
tutability. ArchJava also supports architectural design with abstract components and ports, which
allow an architect to specify and type-check an ArchJava architecture before beginning a program
implementation.

Example The example developed in this section is an adapted example inspired by [Aldrich, 2003].
Listing 2.6 shows the code of composite WEBSERVER. In this example, the sub-component Router
accepts HTTP queries and transmits to a Worker who treats. With each new incoming request, the
Router requests a new Worker (see line 29) through its port request to process the request. This
port request is connected to the private port create of the composite WEBSERVER (see line 3). In the
implementation of the requestWorker method of WEBSERVER a new instance of WORKER is created
and connected through the port serve (see line 11). This dynamic connection is valid because
according to the connection pattern in line 4.

public component class WebServer {
2 private final owned Router r = new Router();

connect r.request, create;
4 connect pattern Router.workers, Worker.serve;

6 public void run() { r.listen(); }

8 private port create {
provides r.workers requestWorker() {

10 final owned Worker newWorker = new Worker();
r.workers connection = connect(r.workers, newWorker.serve);

12 return connection;
}

14 }
}

16
public component class Router {

18 public port interface workers {
group stream;

20 requires void httpRequest(stream InputStream in,stream OutputStream out);
}

22 public port request {

2.2. Presentation of the main Component-based approaches 55

requires this.workers requestWorker();
24 }

public void listen() {
26 unique ServerSocket<stream> server = new ServerSocket(80);

while (true) {
28 unique Socket<stream> sock = server.accept();

this.workers conn = request.requestWorker();
30 conn.httpRequest(sock.getInputStream(), sock.getOutputStream());

}
32 }

}
34

public component class Worker extends Thread {
36 public port serve {

group stream;
38 provides void httpRequest(stream InputStream in,stream OutputStream out) {

this.in = in; this.out = out; start();
40 }

}
42 public void run() {

/ / g e t s r e q u e s t e d f i l e and sends i t on the output stream
44 }

}

LISTING 2.6 : ArchJava’s code of components WEBSERVER, ROUTER and WORKER.

ACOEL

ACOEL [Sreedhar, 2002] is a component-oriented extensional language for creating and plugging
components together. The design of ACOEL was motivated by the following component design prin-
ciples.

• Pluggable Units. A component is a unit of abstraction with clearly defined external contracts
and the internal implementation should be encapsulated. The external contract should consist
of both the services it provides and the requirements it needs when it is plugged or (re-)used in
a system.

• Late and Explicit Composition. For a component to be composable by a third-party with other
components, it must support late or dynamic composition. During the development phase,
requirements of a component should only be constrained by some external contract. Then, at
run-time, an explicit connection is made with other “compatible” components to achieve late
composition.

• Types for Composition. Typing essentially restricts the kinds of services (i.e. operations or mes-
sages) that can be requested from a component.

• Restricted Inheritance. In OOP, it is well-known that one cannot achieve both true encapsula-
tion and unrestricted class inheritance with overriding capabilities. In ACOEL, classes (which
support inheritance) are second-class citizens, and are not visible to the external clients.

56 Chap 2. Component Models and their Implementations

The main construct in ACOEL is component. A component in ACOEL consists of (1) an exter-
nal contract made of typed input and output ports, and (2) an internal implementation consisting
of classes, methods, and data fields. A client can only see the external contract and the internal im-
plementation is completely encapsulated. A component provides services via its input ports, and
specifies the services it requires via its output ports. In ACOEL, a connect statement makes an explicit
connection between an output port of a component to a “compatible” input port of another compo-
nent. To each port a class implementing the behavior offered or demanded via the port is attached.
Any messages that arrive at an input port are forwarded to the instance of the class that is attached to
the input port. The class instance will either process the message or it will delegate to another class
instance inside the component.

ACOEL model supports a kind of behavioral inheritance by the extend statement which allows to
“decorate” inherited ports with mixins, as it is shown in Listing 2.7. This decoration makes it possible
to specialize inherited behavior when an inherited service is re-implemented in the decorating mixin.
A child cannot access any of the internals (implementation classes, methods) of a parent, except via
the input ports of a parent, i.e. This.<portname>.<servicename> (composition-like approach). The
advantage of this black-box approach is that it preserves encapsulation of parent components.

component Foo {
in I fin <mixin M <: I1>;
class Cy implements I;
class Cx = M + Cy;

}
component Goo extends Foo {
in I fin <mixin M <: I2>
...

}
mixin Moo implements I2 { ... }
Goo g = new Goo(){fin<Moo>}

LISTING 2.7 : ACOEL mixins

ComponenJ

ComponentJ [Seco et al., 2008] offers a general component model described in the form of a core
typed programming language whose first-class values are objects, components, and configurators
(see Figure 2.14). In this abstract programming model, objects are component instances (cf. class in-
stances) which aggregate state and functionality in the standard object-oriented sense. Components
are the entities that specify the structure and behavior of objects by means of a combination and
adaptation of smaller components and user-defined building blocks. Each component is defined by
a network of elements which is specified by a functional-like value, a configurator.

The implementation of services provided by component instances is defined by combination and
adaptation of services provided by smaller components. At the component level, ports play an im-
portant role as the connection unit between elements. A component declares a set of required ports,
which denote abstract implementations of external services, and a set of provided ports which it must

2.2. Presentation of the main Component-based approaches 57

Figure 2.14 : ComponentJ model ingredients and interactions.

implement. In fact, the implementation defined in a component is parameterized in its required
ports, which must be satisfied before the component is used to produce objects.

Configurator values denote composition operations which aggregate or connect existing ele-
ments in an implementation-independent way, and are uniformly used to produce components or
modify the internal structure of objects. Thus, this variety of values and language constructs allows
both the expression of dynamic construction of new components (based on run-time decisions) and
the unanticipated reconfiguration of component instances.

The ability to express component structures at a high-level of abstraction enable the static veri-
fication of structural soundness of components and objects, by means of a type system. In particu-
lar, typing configurators with intensional type information, revealing certain aspects of their internal
structure, permits type safe composition and reconfiguration actions to be performed on run-time
values. Reconfiguration actions are, to some extent, a violation of the encapsulation principle en-
sured by the type system.

The novelty of this approach when compared with other component models lays in the dynamic
construction and run-time modification of the structure and behavior of objects in a statically typed
Java-like setting. ComponentJ provides full computational power to build sophisticated and declar-
atively defined networks of objects while clearly maintaining the definition of architecture and com-
putation separate. The construction of new components and reconfiguration of objects and corre-
sponding soundness properties are defined together in a unique programming language and a single
type system. This provides the language with a higher level of expressiveness and statically ensures
the absence of run-time errors due to ill-formed component structures.

58 Chap 2. Component Models and their Implementations

ComponentJ is an inheritance-free language where authors prefer to avoid inheritance in favor of
object composition. Reflection is not explicitly advocated in ComponentJ. It however appears that a
running system certainly has a partial representation of itself to allow for dynamic reconfiguration of
internal architectures of components as described in [Seco et al., 2008] but it seems to be a localized
and ad.hoc capability. The reification process being neither explicited nor generalized.

Clic

CLIC [Bouraqadi et Fabresse, 2009], an extension of SMALLTALK to support full-fledged components.
It provides component features such as ports, attributes, or architecture. From the implementation
point of view, it fully relied on SMALLTALK reflective capabilities. Thus, from the SMALLTALK virtual
machine point of view, CLIC components are objects and their descriptors are extended SMALLTALK

classes. Because of this symbiosis between CLIC and SMALLTALK, the use of CLIC allows taking benefit
from modularity and reusability of components without sacrificing performance.

A CLIC component has ports. The model is a unidirectional model and thus distinguish provided
and required ports. All interactions with a component have to pass through one of its ports. CLIC
model allows components to have only one provided port. The idea of a single provided port is based
on the observation that developers do not know beforehand, which services will be specified by each
required port of client component. Therefore it is hard to split component functionality over multiple
ports. CLIC also support explicit architecture description and inheritance. A CLIC component inher-
its every part of the definition from its parent. A sub-component can override attribute initialization
directives and extend the other features (attribute declarations, required ports, architecture ...).

Bichon

Bichon [Xu et Ren, 2010] is a Java-based COL whose design seeks to address the needs of COP and
avoid lacks of component-based software design using OOP. Bichon do not extend the Java language
directly. It builds on top of Java with component composition instead of inheritance, retaining only
the basic data types of the Java language. Composition mechanism avoids problems such as fragile
base class caused by inheritance.

In Bichon, components are first-class core language abstractions. The model proposes a
class/instance-like approach and clearly distinguish these two concepts. A component instance is a
run-time entity while a component describes a template for possibly multiple component instances.
In order to achieve separations of static behavior and component run-time behavior, Bichon compo-
nent model defines two types of interfaces: mixinner and connector. Components are black boxes
and all the interactions between them happen only via the mixinner interfaces and the connector
interfaces.

By defining these two kinds of interfaces, the authors offer a way to separate run-time behaviors
from static behaviors. The principle of separation of concerns is also achieved. At compile time, static
mixin between components happened on the mixinner interface. At run-time, components interact
and communicate with each other via the connector interface. With this separation, overriding only
happens on mixinners, and message dispatch only happens on connectors. All interactions among

2.3. Comparison 59

components are achieved through these two kinds of interfaces. Bichon do not provide other decla-
rations of message passing.

The model introduces the bi-directional interface supporting bi-directional interactive relation-
ship. Required declarations define view points for the interface on the environment, while provided
declarations define viewpoints on the interface for the environment.

When interaction occurs, the interface of components involved must match each other. The type
system ensures that only the compatible interface could interact with each other and match with each
other.

The model does not reify component related concepts like ports or connection and its reflection
capabilities are the ones of Java reflection.

2.3 Comparison

The study plan presented in the end of Section 2.2.1 puts focus on the three following aspects: external
contract & architecture description, inheritance for structural and behavioral reuse and reflection
capabilities. In this section we present a comparison for each family of component-based approaches
regarding these three aspects.

Frameworks family All surveyed models support specification of the external contract of compo-
nents via declaration of ports. They differ in the terminology and the kinds of information they spec-
ify. For example, while SOFA uses terms provided and required interface for ports, CORBA CCM uses
terms facets and receptacles, respectively. COM, Javabeans does not support specification of require-
ments via required ports. EJB and OSGi enable users to define requirements (called dependencies)
in external files like manifest file (OSGi) or Deployment descriptor (EJB).

Only 4 of 13 models support explicit description of architecture and hierarchical modeling.

Behavioral inheritance is supported only by Javabeans, EJB and Kevoree where components are
described by Java classes following coding guidelines of the models. The similar applies for structural
inheritance, which is also supported thanks to Java inheritance. SOFA and Fractal are approaches
having their own ADLs, these enable users to reuse structural definition. Structural inheritance is
also partially supported with interface inheritance in COM, CCM, OpenCOM, OpenCORBA and Dy-
namicTAO.

Introspection aspect of reflection is well supported. However this is not the case for interces-
sion which is rarely supported and the actual intercession capabilities are usually limited to run-time
substitution of components in an architecture, as for example SOFA DCUP does. Fractal and FraSCAti
models provide extensible reflection capabilities thanks to the ability to put new controllers into com-
ponent membrane. Reification of component parts (ports or architecture) is achieved in MetaORB
where base-level components are realized as multiple components in meta-level.

Table 2.2 gives an overview of the approaches classified under the frameworks family.

Generative family All surveyed models support specification of component interfaces.They differ
in the terminology and the kinds of information they specify. For example, an interface point in

60 Chap 2. Component Models and their Implementations

WRIGHT is a port, and in UniCon a player. On the other hand, in C2 the entire interface is provided
through a single port; individual interface elements are messages.

Members of the generative family typically distinguish between interface points that refer to pro-
vided and required functionality. For example, provides and requires interface constituents in Rapide
refer to functions and specify synchronous communication. Finally, WRIGHT and UniCon allow spec-
ification of expected component behavior or constraints on component usage relevant to each point
of interaction. For example, UniCon allows specification of the number of associations in which a
player can be involved.

The static nature of ADLs and UML does not match with reflection and behavioral inheritance
well, hence these are not supported.

Structural definition reuse is usually supported in a limited notion of sub-typing or relying on
the mechanisms provided by the underlying programming language. For example, ACME supports
strictly structural sub-typing with its extends feature, while Rapide evolves components via OO in-
heritance. AESOP and C2 provide more extensive component sub-typing support. AESOP enforces
behavior-preserving sub-typing to create sub-styles of a given architectural style. An AESOP sub-
class must provide strict sub-typing behavior for operations that succeed, but may also introduce
additional sources of failure with respect to its super-class. C2, on the other hand, supports multiple
sub-typing relationships among components: name interface,behavior, and implementation. Differ-
ent combinations of these relationships are specified using the keywords and and not.

Rapide provides features for refining components across levels of abstraction. This mechanism
may be used to evolve components by explicating any deferred design decisions, which is somewhat
similar to extending inherited behavior [Medvidovic et Taylor, 2000]. Sub-typing is simply a form of
refinement in a general case. This is, however, not true of Rapide of which place additional constraints
on refinement maps in order to prove or demonstrate certain properties of architectures. Refinement
of components and connectors in Rapide is a by product of the refinement of configurations.

UniCon defines component types by enumeration, allowing no sub-typing, and thus structural
inheritance is not supported.

Table 2.3 gives an overview of the approaches classified under the generative family.

Component-oriented languages family All the studied COLs specify external contract of a compo-
nent with ports which are in the case of ACOEL called outputs (required ports) and inputs (provided
ports). Also, all the languages make it possible to explicitly describe component compositions.

On one hand Java-inheritance in ArchJava, SMALLTALK-inheritance in CLIC, mixin-like decora-
tors in ACOEL and mixinner interfaces in Bichon make it possible to reuse behavior definition. On
the other hand, structural inheritance is either not present at all (ComponentJ and Bichon) or it is
supported only partially (CLIC, ArchJava, ACOEL). For example, while it is possible to reuse external
contract definition in ACOEL or ArchJava, it is not possible to specialize inherited architecture15.

The goal of CLIC language is to be fully integrated with SMALLTALK and thus objects are consid-
ered to be “dirty” components. This, in turn, makes it possible to use SMALLTALK reflection in CLIC.

15Architecture specialization and other inheritance operations are detailed in Chapter 4

2.3. Comparison 61

The similar applies for ArchJava which benefits from Java reflection. A notion of intercession capa-
bilities is present in ComponentJ which supports dynamic reconfigurations of component’s architec-
tures.

Table 2.4 gives an overview of the approaches classified under the component-oriented languages
family.

62 Chap 2. Component Models and their Implementations
SO

FA
2

Fractal
C

O
M

C
C

M
Javabean

s

Extern
alcon

tract
requ

ired
p

orts
yes

-
called

in
terfaces

yes
-

called
in

terfaces
n

o
yes

-
called

recep
tacles

n
o

p
rovided

p
orts

yes
-

called
in

terfaces
yes

-
called

in
terfaces

yes
yes

-
called

facets
yes

A
rch

itectu
re

descrip
tion

exp
licitcom

p
osition

descrip
tion

yes
yes

n
o

n
o

-
fl

atm
odel

n
o

In
h

eritan
ce

beh
avioralreu

se
n

o
n

o
n

o
n

o
yes

-
Java

in
h

eritan
ce

stru
ctu

ralreu
se

yes
yes

n
o

-
on

ly
in

terfaces
in

h
eritan

ce
n

o
-

on
ly

in
terfaces

in
h

eritan
ce

yes
-

Java
in

h
eritan

ce
R

efl
ection

in
trosp

ection
yes

-
con

trolin
terfaces

yes
in

terface
discovery,IU

n
kn

ow
n

yes
yes

-
B

ean
In

fo
in

tercession
p

artially
su

p
p

orted
w

ith
D

C
U

P
dep

en
ds

on
con

trollers
n

o
n

o
n

o
reifi

cation
n

o
n

o
n

o
n

o
n

o

E
JB

O
p

en
C

O
M

O
p

en
C

O
R

B
A

O
SG

i
M

etaO
R

B

Extern
alcon

tract
requ

ired
p

orts
n

o
-

on
ly

in
fo

in
D

ep
loym

en
tdescrip

tor
yes

yes
-

called
recep

tacles
dep

en
den

cies
in

m
an

ifestfi
le

yes
-

called
in

terfaces
p

rovided
p

orts
yes

yes
yes

-
called

facets
yes

yes
-

called
in

terfaces
A

rch
itectu

re
descrip

tion
exp

licitcom
p

osition
descrip

tion
n

o
n

o
n

o
-

fl
atm

odel
n

o
yes

In
h

eritan
ce

beh
avioralreu

se
yes

-
Java

in
h

eritan
ce

n
o

n
o

n
o

n
o

stru
ctu

ralreu
se

yes
-

Java
in

h
eritan

ce
n

o
-

on
ly

in
terfaces

in
h

eritan
ce

n
o

-
on

ly
in

terfaces
in

h
eritan

ce
n

o
n

o
R

efl
ection

in
trosp

ection
yes

-
E

JB
M

etaD
ata

yes
yes

n
o

yes
in

tercession
n

o
p

artially
-

IM
etaIn

tercep
tion

yes
n

o
yes

reifi
cation

n
o

n
o

n
o

n
o

yes

D
yn

am
icTA

O
FraSC

A
ti

K
evoree

Extern
alcon

tract
requ

ired
p

orts
yes

yes
-

called
in

terfaces
yes

p
rovided

p
orts

yes
yes

-
called

in
terfaces

yes
A

rch
itectu

re
descrip

tion
exp

licitcom
p

osition
descrip

tion
yes

yes
n

o
In

h
eritan

ce
beh

avioralreu
se

n
o

n
o

yes
-

Java
in

h
eritan

ce
stru

ctu
ralreu

se
n

o
-

on
ly

in
terfaces

in
h

eritan
ce

yes
yes

-
Java

in
h

eritan
ce

R
efl

ection
in

trosp
ection

yes
yes

yes
in

tercession
yes

yes
-

C
on

trollers
yes

reifi
cation

n
o

n
o

n
o

Table
2.2

:Fram
ew

orks
fam

ily

2.3. Comparison 63

A
C

M
E

A
E

SO
P

C
2

D
ar

w
in

Ex
te

rn
al

co
n

tr
ac

t
re

qu
ir

ed
p

or
ts

ye
s

ye
s

-
ca

lle
d

in
p

u
tp

or
ts

ye
s

-
ca

lle
d

in
te

rf
ac

es
,e

xp
or

te
d

vi
a

p
or

ts
ye

s
-

ca
lle

d
se

rv
ic

es
p

ro
vi

de
d

p
or

ts
ye

s
ye

s
-

ca
lle

d
ou

tp
u

tp
or

ts
ye

s
-

ca
lle

d
in

te
rf

ac
es

,e
xp

or
te

d
vi

a
p

or
ts

ye
s

-
ca

lle
d

se
rv

ic
es

A
rc

h
it

ec
tu

re
de

sc
ri

p
ti

on
ex

p
lic

it
co

m
p

os
it

io
n

de
sc

ri
p

ti
on

ye
s

ye
s

ye
s

ye
s

In
h

er
it

an
ce

be
h

av
io

ra
lr

eu
se

x
x

x
x

st
ru

ct
u

ra
lr

eu
se

ye
s

ye
s

ye
s

n
o

-
ju

st
in

te
rf

ac
e

in
h

er
it

an
ce

R
efl

ec
ti

on
in

tr
os

p
ec

ti
on

x
x

x
x

in
te

rc
es

si
on

x
x

x
x

re
ifi

ca
ti

on
x

x
x

x

R
ap

id
e

U
n

iC
on

W
R

IG
H

T
U

M
L

Ex
te

rn
al

co
n

tr
ac

t
re

qu
ir

ed
p

or
ts

ye
s

-
ca

lle
d

co
n

st
it

u
en

ts
ye

s
-

ca
lle

d
p

la
ye

rs
ye

s
ye

s
p

ro
vi

de
d

p
or

ts
ye

s
-

ca
lle

d
co

n
st

it
u

en
ts

ye
s

-
ca

lle
d

p
la

ye
rs

ye
s

ye
s

A
rc

h
it

ec
tu

re
de

sc
ri

p
ti

on
ex

p
lic

it
co

m
p

os
it

io
n

de
sc

ri
p

ti
on

ye
s

ye
s

ye
s

ye
s

In
h

er
it

an
ce

be
h

av
io

ra
lr

eu
se

x
x

x
x

st
ru

ct
u

ra
lr

eu
se

n
o

-
ju

st
in

te
rf

ac
e

in
h

er
it

an
ce

n
o

ye
s

ye
s

R
efl

ec
ti

on
in

tr
os

p
ec

ti
on

x
x

x
x

in
te

rc
es

si
on

x
x

x
x

re
ifi

ca
ti

on
x

x
x

x

Ta
bl

e
2.

3
:G

en
er

at
iv

e
fa

m
ily

64 Chap 2. Component Models and their Implementations

A
rch

Java
A

C
O

E
L

C
om

p
on

en
tJ

C
LIC

B
ich

on

Extern
alcon

tract
requ

ired
p

orts
yes

yes
-

called
ou

tp
u

ts
yes

yes
yes

p
rovided

p
orts

yes
yes

-
called

in
p

u
ts

yes
yes

-
on

ly
on

e
p

ort
yes

A
rch

itectu
re

descrip
tion

exp
licitcom

p
osition

descrip
tion

yes
yes

yes
-

called
con

fi
gu

ration
yes

yes
In

h
eritan

ce
beh

avioralreu
se

yes
yes

n
o

yes
n

o
stru

ctu
ralreu

se
p

artially
-

n
o

arch
itectu

re
sp

ecialization
p

artially
-

n
o

arch
itectu

re
sp

ecialization
n

o
p

artially
n

o
R

efl
ection

in
trosp

ection
yes

n
o

n
o

yes
n

o
in

tercession
n

o
n

o
dyn

am
ic

recon
fi

gu
ration

yes
n

o
reifi

cation
objects

n
o

n
o

objects
n

o

Table
2.4

:C
O

Ls
fam

ily

2.4. Conclusion 65

2.4 Conclusion

The study made in this chapter shows that approaches of each family interpret components and re-
lated concepts differently. Despite this, it is possible to observe that there are certain concepts and
mechanisms common to all of them. The concepts are: components as unit of encapsulation, ports as
connection and communication points, connections as binding units, architectures as composition
descriptions and services as units of behavior. The mechanisms are: instantiation for creating new
components according to a description, service invocation for communication, composition for hier-
archical design and substitution for run-time adaptation of architectures. We have also observed that
there is an attempt to provide a reuse mechanism like inheritance and to provide reflection capabili-
ties like introspection among the studied component-based approaches.

The approaches in generative and frameworks families separate design and implementation. The
generative family uses high-level abstractions to describe component-based software and then gen-
erates code skeletons into standard OOP languages. The frameworks family also uses OOP languages
and forces developers to follow and respect conventions and programming guidelines in order to cre-
ate component-based software. Separating design and implementation stages and using the object
concept for building components cause problems in the analysis, implementation, understanding,
and evolution of software systems, because conformance between architecture design and final code
is not guaranteed [Fabresse et al., 2012 ; Aldrich et al., 2002]. Moreover, mixing the concepts makes
developers live harder, because it might be complicated to choose between objects and components
to implement a new entity in an application.

The third family, i.e. component-oriented languages, bridge this gap between design and imple-
mentation by providing conceptual continuum for developing component-based software. However
these languages differ in semantics. Besides, the focus they put on different concepts and mecha-
nisms of the component-based approach. Moreover these languages do not pay enough attention to
reflection and inheritance which are essential mechanisms for reuse, evolution and maintenance of
software.

It is in this context that we propose to present a new language in which we deeply studied the
core concepts and the mechanism of component-based approach and to define and build a reflective
component-oriented language on top of these.

C
H

A
P

T
E

R 3
COMPO’s basics

If a system is to serve the creative spirit, it must be entirely
comprehensible to a single individual.

Dan INGALLS

Preamble

This chapter introduces the heart of this thesis, a component-oriented programming and modeling
language named COMPO. In the beginning we acquaint readers with the philosophy of the language
that have guided us when designing COMPO. We try to identify the main concepts and mechanisms of
the component-based approach and then in each section we discuss how we think COMPO meets these
principals. All through this chapter we highlight and argue for the design choices that we have made
when building COMPO.

68 Chap 3. COMPO’s basics

3.1 The language philosophy

BEYOND rhetoric and the existence of different models and languages, the component-based ap-
proach has not yet reach the same level of maturity as, for example, the object-oriented ap-

proach has. Therefore our first task was to study existing component-based approaches and make
observations. From the study that we have made in the previous chapter, we do have two basic ob-
servations:

• The first observation is that there is a gap between the design stage and the implementation
stage of component-based development. The gap exists because while during the design stage,
usually, the concepts of the component-based approach are available and used. The same con-
cepts are not available during the implementation stage. The traditional programming lan-
guages (procedural or object based) are not yet perfectly suitable for component-based devel-
opment in every-day practice. They require programmers to respect conventions or design pat-
terns to implement the concepts and mechanisms on which the component-based approach
stands. For example, when programming a Javabeans component, one has to follow the Java
language naming conventions and use the Observer design pattern [Gamma et al., 1995a] (see
Section 2). This complicates the implementation but also the testing, maintenance and evolu-
tion of the source code of the application. The main reason for this is that the used program-
ming language does not allow to simply express and use the basic concepts and mechanisms of
the component-based approach.

• The second observation concerns the existing component-based programming languages such
as ArchJava, ComponentJ, Lagoona or Piccola. Although these languages effectively integrate
some concepts and mechanisms related to component-based approach, they do not all offer
the same, even if they use a common vocabulary. For example, both ArchJava and ComponentJ
present mechanisms that allow the building of composite components, however, in ArchJava it
is not possible, for instance, to export the behavior of internal components and to define new
component structures at runtime. Unlike ComponentJ, whose components are used to instan-
tiate objects, ArchJava’s components hold state variables, implemented methods and commu-
nication ports. By doing so, dynamic construction of component structures is only allowed
within pre-established connection patterns. We believe that the significant reason why is it so
is a missing definition of the core component concepts and mechanisms [Fabresse et al., 2008].

The first observation hints that there is a need for a component-oriented language (COL) that al-
lows component-based developers to express themselves easily, in all stages of development, without
the necessity to switch into lower-level concepts. As emphasized by J. Privat in his thesis [Privat, 2006]
“a good programming language should allow the programmer to express themselves easily, so it should
be as close as possible to the human way of thinking.” The focus on higher-level concepts improves
expressiveness of the language and lets the language users to easily preserve original architecture de-
signs in all stages of development process. In other words, it is possible to bridge the gap between
design and implementation stage by using higher-level concepts for all stages of development Also,
the presence and usage of higher-level concepts make solutions more understandable and therefore
the later evolution and maintenance easier.

3.1. The language philosophy 69

The second observation suggest that the disparity between existing COLs calls to better identify
and define the core concepts and mechanisms of the component-based approach. The results of
our predecessor[Fabresse, 2007 ; Fabresse et al., 2012] and the synthesis of existing component-based
approaches made in Chapters 1 and 2 shows that there are some concepts and mechanisms that
are common for relevant majority of component-based approaches. In order to facilitate a better
comprehension and in accordance with the objectives of this thesis, we define the core concepts and
mechanisms of the component-based approach as follows:

• Concepts:

Component - a run-time entity which provides and requires services through ports.

Descriptor - an entity which describes the structure and the behavior of a particular kind of
components in terms of declaration and definition of the external contract and the inter-
nal architecture.

Port - a named communication and connection point; described by a name and a list of service
signatures.

Service - a unit of behavior definition.

Connection - describes a binding from one to another port.

• Mechanisms:

Component creation (instantiation) - a mechanism for building new components according
to the description a descriptor defines. Such components are then called instances of the
descriptor.

Service invocation - a mechanism for run-time communication in between components

Composition mechanism - a mechanism for creating a new component by connecting off-
the-shelf components within the context of the new component

Substitution mechanism - a mechanism for replacing components

Having the definition of the core concepts and mechanisms, we define a component-oriented
language:

Definition 1 (Component-oriented language (COL)) A language used to design and implement soft-
ware components (development for reuse) with well defined external contracts; that can be stored in li-
braries (also called shelves) and, in the same time, to develop applications by assembling off-the-shelve
components, that is, to allow to describe software architectures in terms of connecting components se-
lected from libraries (development by reuse.)

The above paragraphs describe our intentions and desires we have in minds while designing
COMPO. In the rest we define all the core concepts and mechanisms we have described. For each
specification of a concept or a mechanism, we have adopted a constructive approach, that is, we
construct the specifications driven by the knowledge we have gained in Chapter 2. We believe that
this approach helps to fulfill the, so called, “COMPO’s philosophy”, which can be summarized into the
following:

70 Chap 3. COMPO’s basics

COMPO’s philosophy

Keep the language as simple, minimal and uniform as possible, while in the same time
incorporate all core concepts and mechanisms necessary for description and imple-
mentation of independent components and for description and implementation of
high-level component-based architectures.

3.2 Concepts

This section present the core component-based concepts. For each concept we present the general
motivation, definitions and design choices made for COMPO.

3.2.1 Components and Descriptors

Historically, the nowadays object-oriented languages went through the never-ending debate, when-
ever the languages should be class- or prototype- based [Lieberman, 1986a ; Abadi et Cardelli, 1996]. It
seems that the victory was claimed by the class-based languages, which are now very widespread, al-
though prototype-based languages dominate in specific domains, such as web and Javascript [Flana-
gan, 1998]. In the world of objects, the terms class (or descriptor) and instance denote the object
descriptions in the code and the objects themselves at run-time.

By analogy, one may ask whether a COL should be built on the descriptor basis 1 or on the proto-
type one.

Chapter 2 has shown that in opposite to the object world the component world has a problem with
terms for descriptors and instances. The ambiguity reflects in vocabulary differences in literature and
languages. For example, a descriptor is referred to as “component class” (keyword component class)
in ArchJava while the same concept is named “component” (keyword component) in ComponentJ.
Thus, when we speak about a “component”, we speak about an instance of a component class in
ArchJava and about a descriptor in ComponentJ.

Apart from this terminology problem, Chapter 2 has also shown that the majority of component-
based models is descriptor-based, not prototype-based. In fact, we are aware of only one prototype-
based COL proposed by [Zenger, 2002]. Component’s in that work have neither state nor identity
and they are created through refinement primitives of existing components. The bootstrap compo-
nent is called component and it provides and requires no service. The services of a component can
not be used directly and the latter must first be instantiated. Indeed, the language distinguishes the
notions of component and component instance. However, this proposal has the merit of raising the
question of whether a COL can be (or should be) prototype-based since most languages (ArchJava,
ComponentJ, etc..) are descriptor-based.

The arguments for or against the use of descriptors in the world of components seem similar to
those in the world of objects [Dony et al., 1992].

1We prefer to not use the “class” term to avoid ambiguity with the object world.

3.2. Concepts 71

The arguments in favor of prototype-based languages are:

• simplicity: this argument was not accepted in the world of objects as most object-oriented
languages are descriptor-based and does not seem to prevail in the world of components;

• independence - prototypes are not associated with a descriptor: this argument does not consti-
tute a limitation of descriptor-based approach in the component world since a component is
packaged as an archive containing a particular descriptor (cf. Chapter 2) to be easily deployed
or put on shelf.

In contrast, drawback of the prototype-based approach is the difficulty to find the right place
where to store all what is common to members of a given family and should not be duplicated, for
example a link to a given method. The global dynamic handling of what is store by a given family is still
a challenging issue. Although satisfactory solutions have been proposed, such as traits in SELF [Ungar
et Smith, 1987]. In order to make large applications, this lack of abstraction and thus structuring is a
strong limitation, therefore in COMPO, we chose the descriptor-based approach.

Choice 1 A component is a run-time entity, instance of a descriptor, which provides and requires ser-
vices via ports.

The choice to design COMPO as a descriptor-based language raises three questions.

The first question: Who do we put on the shelf and reuse later, the descriptors or components?
First, we recall that as a shelf we consider here an archive library (jar files, for example) containing
reusable software entities in different architectures (applications). In most of the component-based
approaches, the archive put on a shelf contains one or more descriptors. Indeed, a component is a
run-time entity and it can be hardly put on the shelf for reuse. However, the Javabeans model offers
the possibility to include a serialized Javabeans component (saved to disk) in an archive. This allows
to put on the shelf already initialized (with values) components. In other approaches, the initial values
can be specified in a configuration file included in the archive and read during the instantiation of the
descriptor. Both approaches therefore offer the same opportunities and in COMPO we chose to put
on the shelf only descriptors. If we had chosen the approach proposed by the Javabeans model we
would have had to deal with the archives containing descriptors and those containing components
differently.

Choice 2 The descriptors can be placed on the shelf.

The second question: Can we combine descriptors or not?

An assembly of components is a set of inter-connected components. There are basically two ways
how to describe an assembly: either we describe how components will be connected or we combine
descriptors [Lau et Wang, 2005b ; Lau et Wang, 2005a]. For example, while Javabeans and ArchJava
enable to describe an assembly of components only, ComponentJ and Scala [Odersky et Zenger, 2005]
can combine descriptors in order to define an assembly. In Scala, descriptors are classes and to create
an assembly of components is essentially a mechanism for combining classes based on mixins. It is

72 Chap 3. COMPO’s basics

typical for these approaches that the instantiation of a descriptor is possible only if all requirements
are satisfied. These models are generally safe, but prohibit late connections between components,
because requirements cannot be satisfied later. In contrast, in ArchJava, all requirements does not
have to be satisfied if only a part of its functionality is used in the application.

Moreover, it seems that combining descriptors is more the matter of static design then the matter
of run-time. For example, in object-oriented languages supporting multiple inheritance, a class (i.e.
a description) could be defined as a combination of multiple super-classes. In opposite,to create
an assembly of instances (i.e. components) is a matter of run-time and it offers better perspectives
considering the dynamical aspects of languages.

We believe that an ideal COL should offer a unified combination mechanism for both descriptors
and their instances. There is currently no language that integrates such a mechanism but it seems that
this goal could be addressed by a reflection approach, where descriptors would be just a special kind
of components. In this thesis we design a reflective language and based on the above observations
we have made the two following choices:

Choice 3 A component (not a descriptor) is a subject for connecting.

Choice 4 Descriptors cannot be combined.

The third question: Should architectures be separated from descriptors? Before we answer this
question, it is essential to present our understanding of the architecture of a component:

Definition 2 (The architecture of a component) The architecture of a component is a description of
an internal composition, i.e. a system of internal components and their inter-connections, according
to which the component will be initialized.

Indeed, two components could have the same architecture and a component could have more ar-
chitectures. For example, SOFA separates architectures and component-types (a component-type de-
fines the external contract, i.e. provided and required ports), thus, two architectures could implement
the same component-type, hence the type is reused, but an architecture cannot be reused for two
different component-types. For example, a pipeline architecture implementing a filter component-
type (with one input and one output port) cannot be used as an implementation of a dispatcher
component-type (with one input and two output ports.) In general, it seems that architectures are
coupled with “component-types” and their separation does allow for type reuse but not for archi-
tecture reuse. Moreover, the separation may cause incompatibilities in case one of the two (an ar-
chitecture and its component-type) evolves. We think that the reuse of architectures description
could be achieved differently, for example with inheritance. With COMPO we follow the majority of
component-based approaches and we chose the following:

Choice 5 The description of the architecture of a component is a part of a descriptor of the component
(i.e. it is not separated).

3.2. Concepts 73

By answering the three questions we are now ready to define a COMPO-descriptor:

Definition 3 (COMPO-descriptor) A descriptor defines the structure and behavior of its instances
called components. The behavior is defined by a set of services definitions. The structure is defined by
description of ports and by description of the architecture of its instances. Descriptions of external (resp.
internal) ports define an external contract (resp. an internal contract) of instances of the descriptor.

The definition was described in MOF [OMG, 2011a]2 and it is visualized in the Figure 3.2.

A descriptor owns several PortDescription entities in order to describe the external and inter-
nal contract of its instances. It also owns zero or more ConnectionDescription entities in order to
capture the the architecture of its instances. Finally it owns zero or more Service entities to capture
the behavior of its instances.

In fact, the external and internal contract together with the architecture specification define an
Architecture Description Language, as it is shown in Figure 3.1. In the following we will show that
COMPO contains all concept necessary for architecture description. Later in Chapter 5 we will show
the descriptors can be used for generating code, as it is done by standard ADLs like WRIGHT or Fractal
ADL. Descriptors facilitate the modeling aspect of COMPO language.

Figure 3.1 : A parallel between descriptors and ADLs.

When it is declared that an instance of a descriptor offers a service, but the service is not defined,
then the descriptor is considered as an abstract component descriptor. Abstract descriptors cannot be
instantiated and they are present for code factorization and reuse purposes.

2MOF is a graphic language, the core of UML, used for definition of Domain Specific Languages

74 Chap 3. COMPO’s basics

Ports and connections between them are created according to the PortDescriptions and
ConnectionDescriptions, i.e. they realize3 them. More about ports and connections between them
can be found in Sections 3.2.2 and 3.2.4

3In UML modeling, a realization relationship is a relationship between two model elements, in which one model ele-
ment realizes the behavior that the other model element specifies

3.2. Concepts 75

ow
ne

r

0.
.n

in
te

rn
al

 c
om

po
ne

nt
s

«r
ea

liz
es

»

0.
.n

co
nn

Po
rts

co
nn

ec
tio

ns

«E
nu

m
er

at
io

n»
Vi

si
bi

lit
y

- i
nt

er
na

l
- e

xt
er

na
l

ow
ne

r
po

rts
2.

.n
ha

s

«r
ea

liz
es

» de
sc

«C
on

ce
pt

»
Po

rt

«E
nu

m
er

at
io

n»
R

ol
e

- r
eq

ui
re

d
- p

ro
vi

de
d

0.
.n

ite
m

s

«C
on

ce
pt

»
In

te
rfa

ce
- n

am
e

«C
on

ce
pt

»
Se

rv
ic

eS
ig

na
tu

re
Li

st

su
b-

de
sc

rip
to

r
0.

.nsu
pe

r-d
es

cr
ip

to
r

in
he

rit
s

«C
on

ce
pt

»
Se

rv
ic

eS
ig

na
tu

re
se

le
ct

or
pa

ra
m

et
er

ssi
gn

de
sc

rip
to

r
0.

.n
se

rv
ic

esow
ns

«C
on

ce
pt

»
Se

rv
ic

e

de
st

in
at

io
nP

or
tD

es
c

so
ur

ce
Po

rtD
es

c

«C
on

ce
pt

»
C

on
ne

ct
io

nD
es

cr
ip

tio
n

- i
sD

is
co

nn
 :

Bo
ol

de
sc

rip
to

r

0.
.n

ar
ch

ite
ct

ur
e

ow
ns

de
sc

rip
to

r
2.

.n
po

rtD
es

cs
ow

ns
«C

on
ce

pt
»

Po
rtD

es
cr

ip
tio

n
- n

am
e

: S
ym

bo
l

- r
ol

e
: R

ol
e

- v
is

ib
ilit

y
: V

is
ib

ilit
y

- i
nt

er
fa

ce
 :

Se
rv

ic
eS

ig
nL

is
t

- i
sC

ol
le

ct
io

n
: B

oo
l

«r
ea

liz
es

»

«C
on

ce
pt

»
C

om
po

ne
nt

«C
on

ce
pt

»
D

es
cr

ip
to

r
- n

am
e

:S
ym

bo
l

Fi
gu

re
3.

2
:D

es
cr

ip
to

r
co

n
ce

p
td

efi
n

it
io

n
in

M
O

F
la

n
gu

ag
e

76 Chap 3. COMPO’s basics

Definitions 2 and 3 together with the Choice 1 imply that a component might be composed of
other components called internal components. Such a component is than called a composite and we
will discuss them in detail in Section 3.3.3.

The HTTPServer example

At a glance, the Listing 3.1 shows a definition of a descriptor named HTTPServermodeling very simple
HTTP servers. It defines a default provided port through which it provides the services run and
status. It states that a server is composed of two internal components, an instance of FrontEnd
accessible via the internal required port fE, and an instance of BackEnd accessible via the internal
required port bE. These internal components are connected together so that the front-end can invoke
services of the back-end. The HTTPServer descriptor explicitly defines the implementation of the
status service. The provided service run is implemented by a delegation connection to the provided
port default of the front-end. Figure 3.3 shows a diagram that represents a component, instance of
the HTTPServer descriptor.

Descriptor HTTPServer {
provides {
default : { run(); status() }

}
internally requires {
fE : FrontEnd;
bE : BackEnd;

}
architecture {
connect fE to default@(FrontEnd.new());
connect bE to default@(BackEnd.new());
delegate default@self to default@fE;
connect backEnd@fE to default@bE;

}
service status() {
if(fE.isListening())
{
return name.printString() + ’ is running’

}
else
{
return name.printString() + ’ is stopped’

}
}

}

LISTING 3.1 : The HTTPServer descriptor.

Let’s look at each point more precisely. A descriptor defines the structure and behavior of its in-
stances. The behavior is given a set of services definitions, for example a part of an HTTPServer’s
behavior is defined with the status service. The structure is given by descriptions of ports and con-
nections. Descriptions of external (resp. internal) ports define an external contract (resp. an internal

3.2. Concepts 77

contract). For example the external contract of HTTPServer instances is defined by the declaration
of the provided port default and its internal contract is defined by the declaration of the fE and bE
internal required ports .

A component may be composed of (internal) components (e.g. a HTTPServer is composed of
an instance of FrontEnd connected to an instance of BackEnd) and it is then called a composite. A
composite is connected to its internal components via its internal required ports. The services of
a composite can then invoke the services of its internal components through such ports. The sys-
tem composed of internal components and their connections is called the internal architecture of a
composite. An example is given in the architecture section in Listing 3.1.

Figure 3.3 : The diagram shows a logical representation of an instance of the HTTPSERVER descriptor
presented in Listing 3.1, after it has been created and initialized.

3.2.2 Ports

In the beginning of this chapter we have defined ports as named communication and connection
points described by lists of service signatures. In this section, we will try to determine the nature of
these communication and connection points and their exact role in the world of components.

The original idea behind ports was to strengthen the encapsulation of components. A component
is seen as a capsule which cannot be acceded otherwise than by one of its ports (or interfaces).

“a component can only be accessed through well defined interfaces” [Szyperski, 2002]

This explicit description of component’s contract increase the independence of components from
their environment (other components) because limits the number of connections and also restricts
the communication by stating which services are provided and required.

The terms port and component interface are often confused with the term interface in the litera-
ture. In the following, we understand the terms port and component interface as labels for the concept

78 Chap 3. COMPO’s basics

of connection and communication point. While the interface term represents the concept of the con-
tract description (syntactic, behavioral, quality) of a port, often used for assembly verification or for
validating the use of a component.

The study of existing approaches has shown that ports might be classified as unidirectional
and bidirectional. Through unidirectional ports a component either provide services or require ser-
vices, such a port is than called provided or required port. ComponentJ or Fractal are representing
the unidirectional understanding of ports. By contrast ArchJava or UML represent the bidirectional
approach where services might be both provided and required through a port.

In both cases, a port defines a view-point and a security policy for a component. Required ports
define the views that the component may have on external components while provided ports define
views that external components can have on this component. Similarly, when a component is ac-
cessed via one of its ports, the port is the guarantor of a security policy, i.e. the client components may
only use the services available through this port. By allowing to mix required and provided services
within the same port, the bidirectional approach can describe more accurately the dependencies and
collaboration (in the sense of UML) between components.

Although this may seem restrictive at first, we chose to integrate unidirectional ports for COMPO.
This choice is essentially motivated by the non-anticipation politics of our predecessor SCL. Indeed,
using two ports, one required and one provided, instead of a single bidirectional port in the design
of a component seems to be redundant, but it lets the architect to decide whether the component
that will use the provided services provided is the same that the one that will provide the required
services. By declaring a bidirectional port, it is imposed that both required and provided services will
be provided and required by one client. That could be considered as a unnecessary restriction for
usage contexts. Our idea is to provide simple and as little as possible constrained components, so
that they can be adapted and reused in different contexts. The unidirectional ports are also easier to
understand and use in practice. In addition, if necessary, it is still possible to emulate bidirectional
ports with two unidirectional ports.

Choice 6 A component has unidirectional ports.

Following this choice, the definition 4 sets up the vocabulary we use.

Definition 4 (Required (resp. provided) port) Required (resp. provided) port of a component is a
named connection and communication point through which the component requires (resp. provides)
a set of services.

The definition raises a new question: How should we describe the concrete contract of a compo-
nent? In general, interfaces are used to specify how components can be assembled or used in an
architecture. interfaces are defined either at a local level (associated with a port) at a global level (as-
sociated with a component). According to [Beugnard et al., 1999] interfaces for contracts definition
are generally classified into four levels

Syntax : These contracts specify the signatures of the provided and required services (name, param-
eters, result, exceptions).

3.2. Concepts 79

Behavioral : These contracts specify how a set of services can be used .

Synchronization : These contracts are required in a distributed and/or concurrent context to specify
the behavior of components in terms of synchronization between service invocations.

Quality of service (QoS) : These contracts are usually crucial in the field of embedded or real-time
systems to ensure quality constraints in an overall architecture.

Component-based approaches offer formal or informal notations tailored to their needs to de-
scribe contracts at these levels. Syntactic contracts are simpler and can be defined using an interface
definition language, such as Interface Definition Language (IDL), or directly with the notion of inter-
face in the object-oriented languages, e.g. interfaces in Java. Moreover, the mature component-based
languages like Fractal, ArchJava or ComponentJ are generally limited to the syntactic contract level.
In ArchJava, an interface specifies for each service if it is provided or required, because each port is
bidirectional and is described by a single interface. SOFA supports behavioral contracts with a for-
malism based on regular expressions to be able to describe the sequences of invocations of valid
services (protocols.) Such a formalism has also been used to describe web services protocols [Trem-
blay et Chae, 2005]. For example, a component dedicated for networking provide the following three
services: open(adr) (opens a network connection for the address specified by the addr), send(data)
(sends data data through the connection) and close (close the connection). A protocol for such a
component used to describe the order of invocation of these three services for a valid use is: open
(invoked only once), then send (as many times as necessary) then close (once) which can be ex-
pressed as open;send*;close. Other formalisms can be used to express behavioral contracts as state
machines of UML, automata languages [de Alfaro et Henzinger, 2001] or symbolic protocols [Pavel et
al., 2005]. The synchronization and QoS contracts are poorly supported in the existing component-
oriented languages and component frameworks. These kinds of contracts are addressed in ADLs,
which are dedicated to the specification and not to directly produce an executable application.

From the syntactic point of view, we see that the compliance between interfaces is often deter-
mined by the compatibility of the types that have been associated with them. When two components
are connected via their ports, it implies that the types of their interfaces are compatible. For exam-
ple, a required port typed by a I1 interface and connected to a provided port typed by a I2 interface
supposes that the type defined by I1 is a super-type of the type defined by I2. There are generally two
kinds of type systems: those based on names (named type systems), e.g. Java, and those based on the
structure (structure type systems), e.g. Objective CAML [E. Chailloux et B. Pagano, 2004]. The use of
names makes it easier to capture the semantics [Büchi et Weck, 1998]

“ [...] types stand for semantical specification. While the conformance of an implemen-
tation to a behavioral specification cannot be easily checked by current compilers, type
conformance is checkable. By simply comparing names, compilers can check that several
parties refer to the same standard specification. ”

The structure type systems [Cardelli, 1997] are less expressive but offer better decoupling between
entities because the sub-typing relation is derived from the structure of interfaces and not from a
common name. For example, to specify that “a component requires a stack” is more semantic than

80 Chap 3. COMPO’s basics

“a component requires two services push and pop.” However, in the first case, there must be a stack
interface (global) defined and the component may not be connected to any component but only
to components providing the same stack interface or one of its sub-types. In the second case, an
interface may be a sub-type of another even if there is not a direct relationship, because the sub-
typing relation is derived from the structure.

In COMPO, we chose to integrate a simple model regarding the descriptors. Thus, an interface is
local and attached to a port.

Choice 7 A interface is associated with a port.

We restrict ourselves to check the syntactic level of contracts.

Choice 8 A interface specifies a set of signatures of services. The interface compatibility is based on
sub-typing relationship between their types which is based on the inclusion of sets of signature services.

An interface does not need a name in COMPO and sub-typing relationship is structural. This deci-
sion is motivated by our desire to decouple components. Indeed, with a type system based on names,
two components can only be connected if the types of their interfaces are directly related. A struc-
tural approach seems to offer greater independence components in their definition at the expense of
semantics as we have seen. This view is sometimes called the “Duck typing” [Anantharam, 2001]

“ This method . . . [of] . . . just relying on what methods it supports is known as “Duck Typ-
ing”, as in “if it walks like a duck and quacks like a duck . . . ”. The benefit of this is that it
doesn’t unnecessarily restrict the types of variables that are supported. If someone comes
up with a new kind of list class, as long as it implements the join method with the same
semantics as other lists, everything will work as planned.”

However, for the reuse purposes, we support the global named interfaces in COMPO. The users
can define named interfaces by use of interface statement. These interfaces can be associated with
ports. The interface compatibility rules apply also for named interfaces, i.e. their conformance is
derived from their structure.

In COMPO, ports realize port descriptions (similarly to slots realizing classes’ attributes in
UML [OMG, 2011c]). A port description define the name, interface, role (provided or required) and
visibility (external or internal) of a port. A port description also define whenever a port is a collection
port or not. In the following we describe each of these aspects in detail.

Names The name of a port is a standard identifier conforming to the following regular expression
[a-z][a-zA-Z_0-9]*. In COMPO, the ports names are unique identifications used to refer to a par-
ticular port. The uniqueness means that in the definition of a descriptor it is not possible to define
two ports with the same name.

3.2. Concepts 81

Interfaces The interface of a port is a set of service signatures which could be given in three forms:

• as an explicit list (we call such a list an anonymous interface), for example the default port
declaration in Listing 3.1

• as a named interface, e.g. printer : IPrinting where the interface IPrinting was created
with the statement: interface IPrinting {print(text);};

• as a descriptor name (e.g. cd); in this case, the list is the list of signatures of services associated
to cd’s default provided port (the fE port declaration in Listing 3.1 is an example).

A special case of a named interface is the universal interface *which we introduce by the following
definition:

Definition 5 (Universal interface *) In case of provided ports, the universal interface * means that a
port offers all services already provided by the descriptor of a component that owns the port. In case of
required ports, it means that any service could be invoked through such a port.

Visibility The visibility of a port specifies whenever the port can or cannot be accessed from the
outside environment of the component which owns the port. There are two basic visibilities of ports:
external and internal. External ports are visible from the outside environment and are used for com-
municating with neighboring components in the environment. Internal ports of a composite are used
for communication with internal components, see Section 3.3.3 for more details. Internal ports and
the internal architecture of the owner are not accessible from the outside environment. If the visibility
of a port is not specified, then the port is by default external.

Roles Since we choose to use unidirectional ports in COMPO, we have to impose port roles to be
able to distinguish ports directions. The role provided (resp. required) specifies the direction of a port,
i.e. it represents the fact that the port offers services to (resp. demands services from) the environ-
ment. Unfortunately, there is no consensus in the literature on which terms should be used for roles.
For example Fractal use “server” (aka provided) and “client” (aka required) role names while SADL
“input” (aka provided) and “output” (aka required) role names. Required ports are communication
points through which a component invokes services it requires. fE.isListening() is an example
of a service invocation expression in the code of the status() service defined in the HTTPServer
(cf. Listing 3.1) descriptor, made through the fE required port. These required services are provided
by components connected to required ports. A component provide services through provided ports
making them accessible from outside.

Collection port Collection ports address the problem of multiple relationships between compo-
nents. For example, the relationship between a Bank component and Client components, where a
bank may have many clients. Support for multiple relationships between components make it possi-
ble to design dynamic architectures where the number of connections between component vary dur-
ing application lifetime. For example, the BackEnd of the HTTPServer component shown in Figure 3.3
may need to dynamically create new requests-handler components, one for each HTTP request.

82 Chap 3. COMPO’s basics

Two approaches described in Section 2 address the question of the multiple relationships:

• SOFA (see Section 2.2.2) and Fractal (see Section 2.2.2) allow to set a multiple cardinality for an
interface of a component. The cardinality is constant value during computation. When the
code for such an interface is generated, an attribute of type table or list is created.

• ArchJava (see Section 2.2.4) allows for dynamic addition of ports through the notions of port
interface and connect pattern. Thus, for each new component Client , the component Bank is
automatically equipped with a port for the link to the new component.

The solution we propose for COMPO represents a compromise between these two.

Choice 9 A component can have collection ports.

Definition 6 (Collection port) A named and ordered collection of required or provided ports. Each
port of the collection can be accessed by an index.

By this choice 9 and the definition 6 we state that a COMPO component can own collection ports.
Collections ports are declared by putting empty square brackets after the name of a port. For example,
the statement marshalling[] : {serialize(); materialize();} defines a collection port named
marshalling through which services serialize and materialize are accessible. However, the size
of these collections (cardinality) is not set by the programmer unlike SOFA and an COMPO interpreter
may decide to adopt the on demand allocation policy, such as ArchJava. In the following we use the
term collection port to denote a collection of ports. This is a misnomer because a collection of ports
is not a port. However, this term is intuitive and it makes reading easier.

In general, collection ports resemble arrays in standard programming languages. In theses lan-
guages the developers often use other kinds of collections, for example unordered collections like
stacks and dictionaries. For these collections we do not have a component-based analogy. Never-
theless, our reflection level (presented in the Chapter 5) enables COMPO’s users to define new kinds
of ports and so, a new version of collection ports could be designed to simulate unordered behavior.
The question of unordered collection ports remains open as a perspective for the future development
of COMPO.

In OOP, it is very common to have a sizeof operator to determine a size of an object, array, type,
etc, for example sizeof in C# or PHP. In accordance, we provide sizeof operator to determine the
count of connection a collection port has. For example, suppose that items[] is a collection port
with 5 connections to 5 item components, then the expression sizeof(items) returns 5.

Definition 7 (The sizeof operator) The sizeof operator, when applied on a port, returns the count
of connections the port participate in.

3.2. Concepts 83

Default port By default, every component owns one externally provided port named default port
through which it offers its all services which have already been provided. This solution directly comes
from SCL and it unifies the vision of objects and components in our model [Fabresse, 2007]. Objects
are seen as primitive components equipped with a single external provided port through which they
provide their methods (called services.)

Choice 10 Every component has a port named default through which all services already provided
by the component are available. The instantiation mechanism of descriptors returns a reference to the
default port of the newly created component.

Since all components have the default port we usually omit it in our figures.

Graphic conventions Figure 3.4 presents the UML-like graphical conventions used in the rest.

Figure 3.4 : Overview of the UML-like graphic conventions used for COMPO

Example in COMPO

In the HTTPServer example (see Section 3.2.1) we have presented a HTTP server component which
receives HTTP requests from network, processes the requests and finally it create and send the re-
sponds. While the FrontEnd component of the server is responsible for receiving requests, the (
BackEnd) component process and creates responds for the requests. For each request, it creates a
RequestHandler component. The BACKEND descriptor represent an example of a dynamic architec-
ture, because for each HTTP request an instance of the REQUESTHANDLER descriptor is created.

Listing 3.2 shows the BACKEND descriptor. The descriptor specifies one provided port named
reqHa4, providing the handleReq(r) service. Internally, it defines three internal required ports. The

4The “reqHa” abbreviation stands for request handler.

84 Chap 3. COMPO’s basics

Descriptor BackEnd {
provides {
reqHa : { handleReq(httpRequest); }

}
internally requires {
analyzer : RequestAnalyzer;
logger : Logger;
handlers[] : RequestHandler

}
architecture {
delegate reqHa to inReqHa@analyzer;
connect logger to default@(Logger.new());
connect analyzer to default@(RequestAnalyzer.new());
connect logger@analyzer to logging@logger;

}

service addHandler() {
|i|
i := connect handlers to default@(RequestHandler.new());
connect outReqHa@analyzer to reqHa@handlers[i];

}
}

LISTING 3.2 : The BackEnd descriptor

Descriptor RequestAnalyzer {
provides {
inReqHa : { handleReq(req, index); }
}
requires {
logger : { log(str) };
outReqHa[] : { handleReq(httpRequest); };
}
...

}

LISTING 3.3 : The RequestAnalyzer descriptor

3.2. Concepts 85

first port is named analyzer and described by the interface of the default provided port (see Sec-
tion 10) of the REQUESTANALYZER. The second port is named logger and described by the interface
of the default provided port of the LOGGER. The third port is a collection port named handler and
described by the interface of the default provided port of the REQUESTHANDLER. In the architecture
section, we declare one delegation connection and three regular connections (see Section 3.2.4 for
more details about delegation and regular connections.) The delegation connection says that the
external provided port reqHa delegate service invocations to the inReqHa port of the internal com-
ponent connected to the analyzer internal required port. The first two regular connections connect
new instances of LOGGER and REQUESTANALYZER descriptors to the internal required ports logger and
analyzer respectively. The last regular connection defines that the two internal components are inter-
connected between the logger and logging ports. Finally we can see the implementation of the ser-
vice addHandler service which dynamically adds and connects new instances of the REQUESTHANDLER

descriptor. The newly created components are connected to the handlers internal required collec-
tion port and then each newly created component is connected to the outReqHa external required
collection port of the analyzer component, which is an instance of the REQUESTANALYZER shown in
Listing 3.3.

Figure 3.5 : An example of a dynamic architecture with a collection port in an instance of BackEnd

3.2.3 Services

The services are units of behavior (functionalities) which a component may provide, for example a
simple math component may provide services for addition, subtraction, multiplication and division.
In some systems, a component has only one functionality. For example, a Unix process can be con-
sidered as a component performing operations on input (stdin), output (stdout) and error (stderr)
streams. Two processes can be combined by redirecting the output stream of the first to the stan-
dard input stream of the second. Such an architectural style is often called pipes and filters [Shaw et
Garland, 1996].

However, in the majority of component-based models, a component has several functionalities
that are represented by services. A service is generally a function (or an operation) defined by a com-
ponent that has a name, parameters5 and a result. In some models, a service is defined as a set of

5The term “parameter” (or “formal parameter”) can refer to a variable bound in a lexical closure, e.g. x is a parameter in

86 Chap 3. COMPO’s basics

functions. For example, a service account management can be divided into three “sub-services”:
consultation, withdrawal and deposit.

The service invocation is the term used in this thesis to describe the mechanism (presented in a
more comprehensive and detailed way in Section 3.3.2) of a component to run a service as an effect
of receiving an invocation and to emit invocations of services to other connected components. This
mechanism should not be confused with the message sending mechanism in the the world of objects.
As we will see later, the difference with the message sending is related to the specific assembling
mechanism in the world of components. The following definition captures the consensus made by
the majority of the current models:

Definition 8 (Provided service) a functionality defined in the source code of a component, which is
offered to other components through ports, so they can invoke it later.

In general, provided services resemble public methods from the object-oriented world. A descrip-
tor introduces services to specify functionality of its instances. When a service is listed in the interface
description of one of its provided ports, then the service is public. The descriptor may also define ser-
vices which are not provided through ports in order to factorize its implementation. Such services
then resemble protected methods from the object-oriented world.

Definition 9 (Internal service) a service which is not offered trough any provided port of the compo-
nent (that defines it) is not accessible from outside of the component.

A descriptor also expresses, via required ports, the services that its instances require from other
components. These required services are not defined by the descriptor of the component, but they
may be invoked in its code, i.e. the provided and internal services may invoke required services.

Definition 10 (Required service) a service which is necessary for implementation of the behavior of a
component X (invoked in the code of its services), provided by an external component connected to the
required port of the component X.

In COMPO, services are defined inside descriptors. Each service has a signature given by the
following template: <selector> (<parameter1-name>, <parameter2-name>, ...). A definition of a
service consist of the service keyword followed by the service signature and a source code written in
brackets after the signature, for example, see the service add in Listing 3.4.

Definition 11 (Service signature) Each service has a signature given by the following template:
<selector> (<parameter1-name>, <parameter2-name>, ...). Two service signatures are compati-
ble if they have the same selector and the same count of parameters.

the following function definition f (x) ..., while the term “argument” (or “real parameter”) represents the value substituted
for a parameter when such a function is used, e.g. 3 is an argument in the following function call f(3).

3.2. Concepts 87

At run-time, services have access to ports and architecture of an instance of the descriptor (com-
ponent) they are associated with and thereby they are able to control the state of the instance.

The syntax of COMPO is mainly a java-like syntax with a few Smalltalk syntax constructs which
we kept alive of SCL (the predecessor of COMPO). To describe the desired functionality, the body
of services can be composed from the temporal variables definition like |temp, sum|; the stan-
dard program flow control structures like if-else, for, etc.; the service invocation expression like
calc.add(1,1) or the connection statement connect-to. The complete grammar can be found in
Appendix A We have chosen the java-like syntax, because we consider it more readable and expres-
sive for structural descriptions, and hence more suitable for architecture descriptions.

Example in COMPO

In the following example (see Listing 3.4) we present the descriptor CALC of a very simple calculator
component providing three arithmetic services and one probability service. calculator provides
these services through ports arithmetic and probability. To fulfill its commitment to provide the
probability service rand, the component requires a random generator via required port randGen. The
definitions of services add and mul show the use of arithmetic operators and value return. Service
pow shows program flow control structure for, assignment and a service invocation. An example of a
required service invocation is captured in the definition of the rand service. Listing 3.5 and Figure 3.6
show an example of how the calculator component can be instantiated and used.

3.2.4 Connections

Connections represent the central concept for binding in the component world (see Section 2) and
they are present in various forms in the existing component-based proposals. In general, a compo-
nent has ports in order to be able to establish connections to ports of other components. In COMPO,
there is not other way how to bind two components than to establish a connection between their
ports. In the following, when we say that two components are connected, then it is an admitted
shortcut to say that a port of the former component is connected to a port of the later component.

The literature presents two basic approaches to bind components: n-ary and binary connections.
For example, ArchJava offers primitive n-ary connect statement to bind a set of ports directly, while
Fractal offers primitive binary bindFc that binds a required port to a provided port. Although these
approaches include respectively bidirectional and unidirectional ports, they raise the following ques-
tion: Should connections be binary or n-ary?

In COMPO, we chose to provide binary connections, because they are less prone to ambiguity
existing when n-ary connection are present, as it is for example in ArchJava where there might be
more provided service candidates for one required service. Furthermore, the n-ary connections can
be factorized into binary connections in most cases. The only cases when this is not possible are
those where it is needed to combine services provided by different provided ports to connect them
to a single required port. These cases can be easily treated with adapter components [Gamma et al.,
1995a]. Moreover, in the case of binary connections, the validity of a connection between ports is easy
to verify in opposite to the n-ary case, since it is based only on the compatibility of two interfaces that
are associated with them.

88 Chap 3. COMPO’s basics

Descriptor Calc {
provides {
arithmetic : { add(x, y); mul(x, y); pow(base, exp) };
probability : { rand() };

}
requires {
randGen : { getRandVal(seed); }

}
service add(x, y) { return x + y }
service mul(x, y) { return x * y }
service pow(base, exp) {
| res i |
res := 1;
/* the exp times multiply the base */
for(i := 0; i < exp; i := i + 1)
{
res := self.mul(res, base);

}
return res;

}
service rand() {
return randGen.getRandVal(101);

}
}

LISTING 3.4 : The Calc descriptor. The self is an internal provided port referencing the current
context (it resemble this in Java.)

c := Calc.new();
connect randGen@c to default@(SomeRandomGenerator.new());
c.add(c.rand(),1);
c.mul(3,c.pow(2,3));

LISTING 3.5 : Using an instance (a component) of the Calc descriptor. The invocations of the add,
mul, pow and rand services are made through the default port of the component (see Definition 10
and Section 3.3.1)

3.2. Concepts 89

Choice 11 A required port can be connected to a single provided port by a regular connection if their
interfaces are compatible.

Connections allow for the invocation of required services through a port leading to the execution
of provided services via another port. A required port can be connected to a single port provided.
In COMPO, connections are oriented in the sense of service invocations. Invocations are sent from
required ports to provided ports, while computation results (return values) are sent from provided
ports to required ports. Currently, the contracts defined by the interfaces of ports are verified only
on the syntactic basis and compatibility between interfaces is based on set inclusion as indicated by
the choice 8. Figure 3.6 shows a connection between the port required randGen of an instance of the
CALC (see Listing 3.4) and the provided port default of a random numbers generator component.
The graphical notation is based on the UML notation [OMG, 2011b].

Figure 3.6 : A connection example, the connection we created by the connect statement in the second
line of Listing 3.5

Until now, we have been talking about connections from required to provided ports, i.e. ports
having different roles. These connections are sometimes called “assembly connections” in the litera-
ture, for example [OMG, 2011b]. When the connections have first-class status, then the literature talks
about “assembling connectors”. From time to time, software architects need to bind port of the same
role. For example, when the facade pattern [Arnout, 2004] is used in the component-based context,
then it is needed to pass invocations from provided ports of a facade component to provided ports
of its internal components. To bind ports of the same role, i.e. provided to provided or required to
required, the “delegation connections” [OMG, 2011b] link the external contract of a component (as
specified by its ports) to the realization of that behavior. Delegation connections represent the for-
warding of invocations. A delegation connection is a declaration that behavior that is available on a
component instance is not actually realized by that component itself, but by its internal components
Delegation can be used to model the hierarchical decomposition of behavior, where services pro-
vided by a component may ultimately be realized by one that is nested multiple levels deep within it.
Required-to-required delegation can be used to export requirements of an internal component of a
component to required ports of the component.

Choice 12 A port can be delegated to another port with the same role by a delegation connection if
their interfaces are compatible.

90 Chap 3. COMPO’s basics

In COMPO, a regular (resp. delegation) connection is specified by the expression as follows:
(connect | delegate) <port-address> to <port-address>.

Definition 12 (Port-address) The port-address expression is written in the following form
<port-name-A>@<port-name-B> and returns a reference to the <port-name-A> port of a compo-
nent connected (the target) to the <port-name-B> port. If, the <port-name-B> port is the self port
then the <port-name-A> port can be either external or internal else the <port-name-A> port can only
be a name of an external port.

For example the last connection connect backEnd@fE to default@bE; from the architecture sec-
tion of Listing 3.1 connects the backEnd port (of the component connected to the fE internal required
port) to the default port (of the component connected to the bE internal required port.)

The <port-name-B> part of the port-address expression can be substituted by any expression re-
turning a port. For example the following port-address expression arithmetic@(Calc.new()) returns
the arithmeticport of a newly created instance of the CALC descriptor, where the instantiation mech-
anism (see Section 3.3.1) returns the default port of the created instance.

In case of collection ports it is sometimes needed to address a specific port of a collection. In such
case, the <port-name-A> and <port-name-B> parts of the port-address expression can be written
with an integer index specified within brackets. For example the following port-address expression
default@regHa[2] returns the default port of the second component connected to the collection
port reqHa. An error occurs when brackets are used for a single (not collection) port and when the
specified index does not exist.

With COMPO we address the problem of capturing dynamic architectures. When an architecture
changes in the time, e.g. a component is substituted with another compatible component, it is of-
ten needed to disconnect a connection between components. Therefore we provide the disconnect
statement. The statement is specified by the template as follows: disconnect <port-address> from

<port-address> and it simply removes the connection between the specified ports. As we will see
in Chapter on inheritance (Chapter 4), the disconnect statement can be used for specialization of
inherited architectures.

3.3 Mechanisms

Similarly to the previous section, here we present in detail the core component-based mechanisms.
For each mechanism we present the general motivation, definitions and design choices made for
COMPO in order to provide a suitable solution.

3.3.1 Component instantiation

An instance, in object-oriented programming, is a specific realization of any object. An object may
be varied in a number of ways and each realized variation of that object is an instance. The cre-
ation of an instance is called instantiation. In languages that create objects from classes, an object
is an instantiation of a class. That is, it is a member of a given class that has specified values rather

3.3. Mechanisms 91

than variables. Similarly, instantiation in descriptor based COLs is a mechanism for building new
components according to the specification a descriptor defines. Such components are then called
instances of the descriptor. For example in ComponentJ [Seco et al., 2008], instances (called “objects”
in ComponentJ’s terminology) are created by applying the instantiation operator new on a component
definition (called “component” in ComponentJ’s terminology.)

In general, the majority of current programming languages use a form of the instantiation opera-
tor. As pointed by [Cointe, 1987] the instantiation mechanism has two phases: to allocate a memory
for the new instance and to give an initial value to each instance slot6 described in the descriptor of
the instance.

In COMPO, descriptors define the structure of components (their instances). In the allocation
phase of the instantiation mechanism, we analyze descriptor’s external and internal contract, i.e. the
ports it defines, and for each port the mechanism allocates a memory space. The structure and the
amount of the memory needed for each port depends on a COMPO’s interpreter implementation. The
initialization phase happens in two steps. During the first step we set the references associating each
port with its corresponding port description. These references can later be used to query the inter-
face, the name, etc. of each port. The second step works with the architecture section of descriptors
which describe connections between ports of the created component and ports of internal compo-
nents. We process each connection description, i.e. evaluate both port-address expressions and then
we set the binding reference between ports. The above lines are captured in the Algorithm 1.

Algorithm 1: Instantiation pseudo-algorithm
Data:

d : a descriptor
forall the pd ports declarations in d do

allocate memory space for a new port;
set reference from the port to pd

forall the c connection declarations in d do
process c

class X {
private Point p;
public X(Point x) { p = x }

}
Point mp = new Point();
X x = new X(mp)

LISTING 3.6 : Breaking encapsulation with parameterized constructor in Java. After the last line was
executed, the mp reference should be invalid, otherwise someone has a reference to the object which
should be private for the new instance of X

In fact, the architecture section of descriptors resemble the constructors in the object-oriented
world. The resemblance raises new questions: Should we allow for multiple architecture sections

6Here we follow the UML terminology, where slots realize class attributes

92 Chap 3. COMPO’s basics

within a descriptor? and Should be the architecture section parameterized? In fact, the answer to the
second question answers the first question, because the usual practice is to use overloading [Meyer,
2001 ; Beugnard et Sadou, 2007] and dynamic dispatch [Lippman, 1996] to distinguish multiple con-
structors by their parameters count and types. The answer for the second question is related to the
encapsulation of instances. Consider the Java example in Listing 3.6 where the x argument passed to
the constructor of X is assigned to the private slot of the new object. Hence the encapsulation of the
new object is broken because someone else is able to manipulate with the object (via the mp refer-
ence) that should be private for the instance of X. The encapsulation could be preserved by invoking
the X’s constructor with the following expression: X x = new X(new Point()). Unfortunately it is not
easy to ensure that such constructors will be always invoked in the same fashion. Therefore, in the
current version of COMPO, we have made the following choice:

Choice 13 The architecture section of descriptors could not be parameterized.

3.3.2 Service invocation

The service invocation mechanism requires the following data:

• a port through which the invocation is sent,

• a name of the service to be invoked (similar to selector in the object world)

• a set of arguments

For example: aPort.selector(arg1, arg2)

The emitting port The service invocations are made in the source code of services . Syntactically, a
service invocation is similar to sending a message but it is done through a port called emitting port.
On other words, service invocations are not sent to the actual implementor of the behavior (as it is in
OOP, for example) but they are send to the ports.

Choice 14 A service invocation is always made via a port of a component.

The Choice 14 is motivated by the need to ensure the communication integrity in software archi-
tectures [Luckham et al., 1995b ; Aldrich, 2003] which say that any communication between compo-
nents must happen through a well described connection.

Definition 13 (Communication integrity) Each component in the implementation may only com-
municate directly with the components to which it is connected in the architecture

Because connections are established between the ports, it is imposed that the service invocations
are also performed via ports making explicit all the dependencies they induce. Indeed, it was possible
to directly invoke a service of component from another component, but it would introduce a “hidden

3.3. Mechanisms 93

dependency in the code” between these two components which is not described by any connection.
In addition, for invocations made through a required port, as shown in Figure 3.7, the receiver is
unknown for the pm component in the implementation and therefore it cannot be referenced directly.
When one assemble an application, he select and connect the receiver component through ports.
Invocations of services through a required port then cause the execution of services of the component
that receives them.

Figure 3.7 : Invocation of the required service getRandomNumber made through the port randomizer
of component pm

Invocations via the required ports allow for better decoupling since the establishment or removal
of connections permits to set the receiving component which then effectively treats the service in-
vocations. In this context another question raises: Do we need to invoke services through provided
ports? Unlike invocations made through required ports, provided ports do not promote decoupling
as the emitting port referenced in the code is a provided port and therefore it belongs to the receiver
component that actually process the invocation. Although they do not promote decoupling and fix
receiver’s component in the code, the service invocations made through provided ports seems to be
necessary for two reasons: (i) to invoke internal services and (ii) to invoke services provided by inter-
nal components of a composite.

Because service invocations are always made through a port and, in the same time, there can
be services which are not provided through any port (internal services), how is it possible to invoke
an internal service? Is surprising, that this problem is addressed weakly by existing COLs. In Julia
and ArchJava the components are implemented by a Java class and therefore it is possible to invoke
an internal service by sending a message using the pseudo-variable this . In COMPO, we make the
following choices:

Choice 15 Any component possesses an internal provided port named self through which all services
defined in the component are available.

The self port provide an integrated and uniform solution for the invocation of internal services.
Any component has the internal self port and this is why we usually omit it in our figures .

94 Chap 3. COMPO’s basics

Parameters The parameters of services and arguments passing raises many questions when invok-
ing services: What is a parameter? Do we really need parameters or would it be possible to use con-
nections instead? If yes, what happen when we pass arguments? These questions were well addressed
in SCL and therefore we take over the following choices made for SCL:

Choice 16 The parameters of the service invocations are references to ports .

The Choice 16 answers the initial question because it determines the nature of the parameters. It
helps to overcome the problem of violating the communication integrity [Léger et al., 2006], because
service invocations sent to arguments are made through ports. If the parameters are references to
ports, then what is the difference between a parameter and a required port? SCL’s answer is: The
difference between the parameters of the required services and ports is, apart from the syntax, the
scope of the identifier and its lifetime (extent). Parameter’s scope is the context of a single service,
while the scope of a required port is the context of a component. Moreover, parameters live only for
the time of the service’s execution, but required ports exist as long as the component that owns them
exist. SCL and COMPO integrate the following solution:

Choice 17 Arguments passing is made by the automatic establishment and removal of connections.
Any component has a required collection port named args. During a service invocation, the argu-
ments, i.e. ports, 〈a1, a2, ..., an〉 are each respectively connected to 〈ar g s[1], ar g s[2], ..., ar g s[n]〉. The
identifiers of the parameters are actually alias identifiers of ports args . At the end of the execution of
the service, all connections to args ports are removed. In the case when a service invocation is dele-
gated, because the receiving port is delegated, the appropriate delegation connection for the args port
is also automatically established and removed.

This choice propose a uniform mechanism respecting the communication integrity since it is
impossible for components to communicate otherwise than though connected ports.

Figure 3.8 shows an example of using this service invocation mechanism processing steps as fol-
lows:

1. Emitting a service invocation through a port. In Figure 3.8 component calculator emits
through its port randGen a service invocation for service getRandVal with a sole argument be-
ing a reference to the default port of an instance of some SEED descriptor.

2. The receiver (component gen in our example) receives and processes the invocation. We will
return to the way a component processes a service invocation later in this Section.

3. The ports passed as an argument to the invocation are connected to the args ports of the re-
ceiver component (see Figure 3.8).

4. Then the service is executed. A mechanism for transparent aliasing (managed by an COMPO’s
interpret) allows the programmer to use names specified for the parameters in the implemen-
tation and does not require him to use the args ports directly. In our example, the source code
of the service getRandVal of gen component uses the identifier seed as parameter name and
not args[1].

3.3. Mechanisms 95

5. At the end of the execution of the service, all connections to the args ports are removed.

Figure 3.8 : Illustration of service invocations treatment in COMPO

There are two last questions to be answered: How return values are treated? and How one can
store an argument of a service invocation or a return value? When a service foo invokes (through a
port) another service bar and bar returns a value, the value is (in the code of foo) either passed as
an argument for another service invocation (then it is treated as usual) or the value is about to be
stored7. First, it is important to note that a value is always a reference to a provided port. In the
case of arguments an argument value is the reference to a provided port which is connected to the
appropriate args port. In the case of return value the following code snippet show four basic cases:

return 1; /* Case 1 */
return Calc.new(); /* Case 2 */
return providedPort; /* Case 3 */
return requiredPort; /* Case 4 */

As we will see in the chapter about reflection (cf. Chapter 5), numbers, strings, symbols, etc....
are also components, thus Case 1 actually means that a reference to the default port of component

7Indeed, there is the third option that nothing is done, in that case the return value is simply destroyed.

96 Chap 3. COMPO’s basics

representing number 1 is returned. Case 2 is an example of instantiation, as we will in the section
about instantiation mechanism (cf. Section 3.3.1), the mechanism returns a reference to the default
port of the new instance. Case 3 already returns a reference to a provided port. In Case 4, we return
a reference to the provided port to which the required port is connected. Or there is an error if the
required port is not connected.

There are two options for storing or referencing a value in COMPO: connections (regular or dele-
gation) and assignment operator :=. Both options may lead to many dangerous situations (see List-
ing 3.7) when internals of the component owning the port representing return or argument value
might be exposed, referenced and potentially abused. Therefore to preserve the encapsulation of
components, we make the following two choices:

Choice 18 It is forbidden to use, in the code of a service, a value of a service parameter (argument) to
build a regular or delegation connection.

Choice 19 Assignment operator always stores a clone of the value being on the left side of the assign-
ment expression.

/* suppose existence of:
- an internal required port ’irp’
- an internal provided port ’ipp’
suppose that:
- invocation x.bar() returns a reference to the provided port

of an internal component of the component connected to x

*/
service foo(x) {
|temp|
/* connect ’irp’ to the default port of a component connected to x */
connnect irp to default@x;

/* connect required port reqPort of a component connected to x to the ’ipp’ */
connnect reqPort@x to ipp;

/* connect ’irp’ to the default port of an internal
component of the component connected to x */

connect irp to default@(x.bar());

/* storing a reference to a foreign internal component */
temp := x.bar();

}

LISTING 3.7 : Dangerous behavior when referencing or storing return values and invocation argu-
ments.

In the following we define two basic algorithms of the service invocation mechanism in COMPO.
The two algorithms concern:

3.3. Mechanisms 97

• emitting a service invocation through a required port

• receiving a service invocation through a provided port

Algorithm 2 captures the treatment of a service invocation in a required port. This algorithm
consists of three cases. The first (see Fgure 3.9 case 1) corresponds to a regular connection between a
required port and a provided port. The invocation in this case is forwarded to the specified connected
provided port and treated according to the algorithm 3 (described below after). The second case (see
Fgure 3.9 case 2) corresponds to a delegation connection. The invocation is then transmitted to the
delegated required port which treats the invocation by the same algorithm 2. The third and last case
corresponds to a unsatisfied dependency when the required port is not connected at all. Such case
produces an error. The treatment of this error should result in an exception being thrown. However,
this is beyond the scope of this thesis because it would require to introduce a exception handling
system for COMPO which should be adapted to the component-based context at it has been studied
in [Souchon, 2005].

Algorithm 2: Sending a service invocation through a required port
Data:

i : a service invocation
r1 : the required port through which i is emitted

if r1 is connected to a provided port p2 then /* case 1 */
transmit i through p2;

else
if r1 is delegated to a required port r2 then /* case 2 */

delegate i through r2;
else /* r1 not connected */

error case;

Algorithm 3 captures the treatment of a service invocation in a provided port. This algorithm
consists of four cases. The first (see Fgure 3.10 case 1) is to delegate the service invocation to another
provided port that deals with it by the same algorithm. This happens only if the requested service is
not implemented by the current component. In the second case (see Fgure 3.10 case 2), the requested
service is performed as defined by the component to which the receiver port belongs. In the third case
(see Fgure 3.10 case 3), the component to which the port belongs does not implement the requested
service and so the lookup mechanism specified in Chapter 4 has to be executed. The last case is an
error case where the receiving port is not connect, nor delegated and the demanded service is not
implemented by the current component.

These algorithms have been designed to take into account issues or cases requiring special at-
tention, such as the one shown in Figure 3.11. Where a service invocation is transmitted through the
port r1 of the internal component c1 in the code of the service foo . The treatment of this invocation
according to algorithm 2 resulted in error. There is not a rule to automatically run the service bar of
the composite. Such a rule would be problematic when providing various services for two internal
components that require a service named bar . In our example, the service invocation of bar service

98 Chap 3. COMPO’s basics

Figure 3.9 : The basic cases concerning service invocations through required ports

Figure 3.10 : The basic cases concerning service invocations through provided ports

through r1 in component lead c1 to the execution of the service bar of composite c2, the architect
must establish a connection between the port r1 of the internal component c1 and port self of the
composite c2.

3.3. Mechanisms 99

Algorithm 3: Receiving a service invocation via a provided port
Data:

i : a service invocation
p1 : the provided port through which i was received

if selector(i)∈ interface(p1) then
if p1 is delegated to a provided port p2 then /* case 1 */

delegate i through p2;
else

if descriptor(component(p1)) possesses the service demanded in i then /* case 2 */
execute s

else
if descriptor(component(p1)) does not implement
the service demanded in i then /* case 3 */

lookup s
else /* p1 not connected */

error case;

else /* service is not listed in the interface */
error case;

3.3.3 Composition mechanism

The composition mechanism represent one of the core ideas behind components. It permits users
to create a new component by connecting off-the-shelf components within the context of the new
component, i.e. to achieve (“development by reuse” [Fabresse et al., 2012]). These new components
are then called composite because they are themselves made of more elementary components called
internal components. Internal components are sometimes referenced as sub-components in the liter-
ature. We chose to not use the sub-component terminology, because it might confuse COMPO’s users,
in case they use inheritance to define sub-descriptors (see Chapter 4.) Composition is comparable to
the composition relationship between UML classes.

Naturally, the first question which comes to one’s mind is: Do we need composites? To answer this
question, we recall the decoupling aspect of required ports which increases the potential for reuse.
This technique for extracting dependencies from the source code in the form of required services is
sometimes called factoring out [Seco et Caires, 2000]. In the example of Figure 3.6, an instance of
CALC can be used with any component providing a service for generating random numbers. Although
this factoring out technique allows for a better decoupling, it also poses problems of transition to the
scale and reuse. Indeed, it is currently impossible to directly reuse an assembly of components, e.g.
an instance of CALC connected to an instance of SOMERANDOMGENERATOR Figure 3.6. This means that
for every application where the architect wants to integrate an instance of CALC, it must include an
instance of SOMERANDOMGENERATOR again and establish the necessary connection between these two
components. Composites include a response to these needs, namely:

• encapsulate an assembly of several components to hide certain details in a software architec-

100 Chap 3. COMPO’s basics

Figure 3.11 : An example of a problematic case of service invocations

ture,

• directly reuse assemblies of components.

The ADLs were the forerunners in providing the concept of configuration. In WRIGHT for exam-
ple, configuration is a set of components connected through connectors. Unlike a configuration, a
composite is component. The models such as Fractal and ArchJava propose the concept of compos-
ite to represent assemblies of components. These models are called hierarchical as a composite can
be decomposed into a collection of interconnected sub-components, each sub-component may be a
composite or a simple component. We chose to incorporate a similar approach.

Choice 20 A composite is a component having one or more internal components.

Considering composites as components (cf. Choice 20) allows :

• to put on the shelf and reuse;

• to create partially configurable architectures by use of required ports;

• to make them more understandable, since complex architectures can be examined at different
levels of granularity depending on whether or not we detailed the content of a composite.

Before going further, it seems necessary to present a problem — often overlooked in existing ap-
proaches — regarding the design of composites requiring to not apply the factoring out principle. In-
deed, when a programmer develops a composite, it selects and sets the internal components it uses.

3.3. Mechanisms 101

This necessarily leads to a coupling between a composite and its internal components. The design of
a composite thus requires a choice between what needs to be outsourced (via required ports) to keep
a high potential for reuse and what needs to be made using internal components to hide details. The
systematic use of composites without outsourcing does not define reusable components. However, it
is impossible to prevent this in a COL. We can limit the adverse effect of the composition by requiring
that each descriptor is defined separately (cf. choice 21).

Choice 21 A composite does not contain the descriptors of its internal components, but possess refer-
ences to them.

By this Choice 21, we prohibit nesting of descriptors (the parallel in Java would be to prohibit inner
classes). Our goal is that all descriptors are placed on the shelf to be reused. This choice is motivated
by the fact that a component should not just be seen as an encapsulated set of internal components
but as a composite component to be putted on the shelf and possibly used as an internal component
in another context. Figure 3.12 empathizes the difference between an assembly of components and a
composite.

Figure 3.12 : Empathizing the difference between an assembly of components and a composite. The
COMPILER can be easily putted on the shelf and reused later.

To preserve the communication integrity [Léger et al., 2006], i.e. the fact that components com-
municate uniquely via ports and each communication channel has to be described by a connection,
we have to answer the following question: How should we communicate with internal components?
It is surprising that this question is not addressed by existing COLs. For example, the communication
integrity is strictly abide in ArchJava, but there is no description of a communication channel (a con-
nection) between a composite and its internal component. Internal required ports are the COMPO’s
answer to this question. The architect of a composite has to define an internal required port (in a
descriptor of the composite) for every internal component he/she wants to reference.

Choice 22 A composite communicates with its internal components through internal required ports,
one per an internal component.

102 Chap 3. COMPO’s basics

The Choice 21 preserves the communication integrity and simplifies COMPO’s design because
there now only one communication protocol.

3.3.4 Substitution mechanism

One of the main difficulties of software evolution is that all artifacts produced and used during the
entire software life-cycle are subject to changes, ranging from early requirements over analysis and
design documents, to source code and executable code [Mens, 2008]. Updating the executable code
is the last step to reflect the changes required by the new requirements. The substitution mechanism
focus only on this last step: how to change a component in the running system.

Run-time change seems to the stimulus for many component-based approaches, as for example
Kevoree, ArchJava, OpenCOM, Fractal, Darwin, WRIGHT, SOFA, ACME, MetaORB, DynamicTAO, ...
Besides, some approaches provide languages for dynamic update description like Fractal’s FScript or
SOFA’s DCUP. It is surprising that instead of the usual heterogeneity in terminology, etc., there is a
certain consensus in the case of component’s substitution. The widely accepted criterion to deter-
mine whenever a component can or cannot be change to another component in an architecture is
that these two components has to be substitutable, i.e. their external contracts have to be compati-
ble. For example ACOEL, ArchJava and CompJava define the subtitutability constraint and sub-type
relation as defined by Liskov substitution principle:

“In a computer program, if S is a sub-type of T, then objects of type T may be replaced
with objects of type S (i.e., objects of type S may be substituted for objects of type T) with-
out altering any of the desirable properties of that program (correctness, task performed,
etc.)” [Liskov et Zilles, 1974].

In general, a component type is a sub-type of another one if it provides at least the same and re-
quires at most the same. One solution to avoid the problem is to forbid substitutability [?]. However
substitutability is important; most of reuse design patterns [Gamma et al., 1995b] use it and more
globally it the mechanism represent the heart of many frameworks and of the product line technolo-
gies. With respect to others, we consider the choice to constraint substitutions with such sub-type
relation as a unnecessary limitation. In stead of saying that a component a is substitutable with a
component b if b provides at least the same and requires at most the same as a, we chose the follow-
ing:

Definition 14 (Substitutability) A component a is substitutable with a component b if the descriptor
of a is compatible with the descriptor of a and all requirements of component b will be satisfied after
the substitution.

Such a non-restrictive system delegates responsibility for requirements satisfaction to the users.
To define the compatibility relation between descriptors the external contract is used. An exter-
nal contract is defined by a descriptor and computed as a set of tuples, each tuple being a triplet
portname-interface-role. For example, the contract for descriptor CALC from Listing 3.4 is:

3.3. Mechanisms 103

{
{arithmetic-{add(x, y); mul(x, y); pow(base, exp)}-provides},
{probability-{rand()}-provides},
{randGen-{getRandVal(seed)}-requires}

}

A contract cannot be computed as a set of all provided and required interfaces, because infor-
mation about interfaces’ roles (provided or required) is missing [Seco et Caires, 2000]. For example a
component providing the service compile and a component with a required service compile will be
then indistinguishable. Also port structure has to be respected, component providing a run service
via a port a and a component providing a service run via a port B, are structurally different.

External contracts permit us to define compatibility relationship between descriptors:

Definition 15 (Descriptors’ compatibility) Component descriptor A is compatible with descriptor B
if for each tuple of the external contract of A there is at least one unique unused tuple in the external
contract of B having a compatible interface and the same role.

Very important is the word “unused” in the Definiton 15, it empathizes the fact that once a tuple
of the external contract of B is matched with a tuple of the external contract of A, it cannot be matched
again. The interface compatibility were already defined in Choice 8.

Every time when a user tries to substitute components, he/she uses the replace routine imple-
menting the substitution mechanism. The replace routine, in first step, checks if a descriptor of the
new component is compatible with descriptor of the original component and, in second step, if all
requirements of a new component will be satisfied after the substitution. If everything is OK, the rou-
tine performs the substitution, i.e. is disconnects the original component from an architecture and
connects the new component to the architecture. The replace routine performs each substitution as
an atomic operation, which means that no service invocation can be emitted or received during this
operation. If the routine fails an error occurs and the substitution is not performed. The syntax and
semantics of the replace routine is as follows: replace <portA> with <portB>. Where <portA> is a
port to which the original component (that should be replaced) is connected. <portB> is a port to
which the new component (that should replace the original component) is connected.

Figure 3.13 shows an example where the replace routine is used to substitute an instance of the
CALC (defined in Listing 3.4) with an instance of the EXTCALC (defined in Listing 3.8).

104 Chap 3. COMPO’s basics

Descriptor ExtCalc {
provides {
arithmetic : { add(x, y); mul(x, y); pow(base, exp) };
probability : { rand() };
combinatoric : { fib(x); }

}
requires {
randGen : { getRandVal(seed); };
stack : { push(val); pop(); empty(); }

}
service add(x, y) { return x + y }
service mul(x, y) { return x * y }
service pow(base, exp) {
| res i |
res := 1;
/* the exp times multiply the base */
for(i := 0; i < exp; i := i + 1)
{
res := self.mul(res, base);

}
return res;

}
service rand() {
return randGen.getRandVal(101);

}
service fib(x) {
| tot a |
tot := 0 ;
while(stack.empty() == false) {
a := stack.pop()
if(a < 1) { tot := tot + 1; }
else {

stack.push(a - 1);
stack.push(a - 2);

}
}
return tot;

}
}

LISTING 3.8 : The EXTCALC descriptor.

3.4. Recapitulation 105

Figure 3.13 : An example of a substitution. The replace routine is used to substitute an instance of the
CALC (defined in Listing 3.4) with an instance of the EXTCALC (defined in Listing 3.8.) The compatibility
of the descriptors is illustrated by the tuples checking in the bottom of the figure.

3.4 Recapitulation

In this section we repeat the definitions and the choices that we have made in this chapter.

106 Chap 3. COMPO’s basics

3.4.1 Definitions

Component-oriented language (COL) A language used to design and implement software compo-
nents (development for reuse) with well defined external contracts; that can be stored in libraries
(also called components on shelves) and, in the same time, to develop applications by assem-
bling off-the-shelve software components, that is, to allow to describe software architectures in
terms of connecting components selected from libraries (development by reuse.) (cf. 1)

The architecture of a component The architecture of a component is a description of an internal
composition, i.e. a system of internal components and their inter-connections, according to
which the component will be initialized. (cf. 2)

COMPO-descriptor A descriptor defines the structure and behavior of its instances called compo-
nents. The behavior is given as a set of services definitions. The structure is given by description
of ports and by description of the architecture. Descriptions of external (resp. internal) ports
define an external contract (resp. an internal contract) of instances of the descriptor. (cf. 3)

Required (resp. provided) port Required (resp. provided) port of a component is a named connec-
tion and communication point through which the component requires (resp. provides) a set of
services. (cf. 4)

Universal interface * In case of provided ports, the universal interface * means that a port offers
all services already provided by the descriptor of a component that owns the port. In case of
required ports, it means that any service could be invoked through such a port. (cf. 5)

Collection port A named and ordered collection of required or provided ports. Each port of the col-
lection can be accessed by an index. (cf. 6)

The sizeof operator The sizeof operator, when applied on a port, returns the count of connections
the port participate in. (cf. 7)

Provided service a functionality defined in the source code of a component, which is offered to other
components through ports, so they can invoke it later. (cf. 8)

Internal service a service which is not offered trough any provided port of the component (that de-
fines it) is not accessible from outside of the component. (cf. 9)

Required service a service which is necessary for implementation of the behavior of a component
X (invoked in the code of its services), provided by an external component connected to the
required port of the component X. (cf. 10)

Service signature Each service has a signature given by the following template: <selector>

(<parameter1-name>, <parameter2-name>, ...). Two service signatures are compatible if
they have the same selector and the same count of parameters. (cf. 11)

Port-address The port-address expression is written in the following form
<port-name-A>@<port-name-B> and returns a reference to the <port-name-A> port of a
component connected (the target) to the <port-name-B> port. If, the <port-name-B> port

3.4. Recapitulation 107

is the self port then the <port-name-A> port can be either external or internal else the
<port-name-A> port can only be a name of an external port. (cf. 12)

Communication integrity Each component in the implementation may only communicate directly
with the components to which it is connected in the architecture (cf. 13)

Substitutability A component a is substitutable with a component b if the descriptor of a is com-
patible with the descriptor of a and all requirements of component b will be satisfied after the
substitution. (cf. 14)

Descriptors’ compatibility Component descriptor A is compatible with descriptor B if for each tuple
of the external contract of A there is at least one unique unused tuple in the external contract
of B having a compatible interface and the same role. (cf. 15)

3.4.2 Choices

Choice 1 A component is a run-time entity, instance of a descriptor, which provides and requires services
through ports.

Choice 2 The component descriptors are placed on the shelf.

Choice 3 A component (not a descriptor) is a subject for assembling.

Choice 4 Descriptors cannot be combined.

Choice 5 The description of the architecture of a component is a part of a descriptor of the component.

Choice 6 A component has unidirectional ports.

Choice 7 A interface is associated with a port.

Choice 8 A interface specifies a set of signatures of services. The interface compatibility is based on sub-
typing relationship between their types which is based on the inclusion of sets of signature
services.

Choice 9 A component can have collection ports.

Choice 10 Every component has a port named default through which all services provided by the com-
ponent are available. The instantiation mechanism of descriptors returns a reference to the
default port of the newly created component.

Choice 11 A required port can be connected to a single provided port by a regular connection if their in-
terfaces are compatible.

Choice 12 A port can be delegated to another port with the same role by a delegation connection if their
interfaces are compatible.

Choice 13 The architecture section of descriptors could not be parameterized.

Choice 14 A service invocation is always made via a port of a component.

108 Chap 3. COMPO’s basics

Choice 15 Any component possesses an internal provided port named self through which all services
defined in the component are available.

Choice 16 The parameters of the service invocations are references to ports .

Choice 17 Arguments passing is made by the automatic establishment and removal of connec-
tions. Any component has a required collection port named args. During a service
invocation, the arguments, i.e. ports, 〈a1, a2, ..., an〉 are each respectively connected to
〈ar g s[1], ar g s[2], ..., ar g s[n]〉. The identifiers of the parameters are actually alias identifiers
of ports args . At the end of the execution of the service, all connections to args ports are
removed. In the case when a service invocation is delegated, because the receiving port is dele-
gated, the appropriate delegation connection for the argsport is also automatically established
and removed.

Choice 18 It is forbidden to use, in the code of a service, a value of a service parameter (argument) to build
a regular or delegation connection.

Choice 19 Assignment operator always stores a clone of the value being on the left side of the assignment
expression.

Choice 20 A composite is a component having one or more internal components.

Choice 21 A composite does not contain the descriptors of its internal components, but possess refer-
ences to them.

Choice 22 A composite communicates with its internal components through internal required ports, one
per an internal component.

3.5 Related work

The COMPO language builds on diverse fields of related work, including architecture description lan-
guages, component frameworks, module systems or modeling tools. COMPO integrates ideas from
many of these areas in order to provide a rich architecture specification language and a practical pro-
gramming language.

Among the component-based approaches, only some are consistent with Definition 1, for exam-
ple: ArchJava ComponentJ Piccola or Lagoona. Indeed, all these languages allow for component-
based development and offer, even if called differently, the core concepts and mechanisms of the
component-based approach, unlike the proposals that primarily use standard languages to design
frameworks for creating component-based solutions, such as Fractal’s Java implementation called
Julia.

COMPO shares with SCL (the predecessor of COMPO) many features like unique communica-
tion protocol, unplanned connections support or services’ arguments passing. With respect to SCL,
COMPO tries to push further in modeling aspect, its explicit architectures support, meta-model and
inheritance system (described in next sections) boots modeling power of the language and provide
basis for Model Driven Development.

3.5. Related work 109

In opposite to COMPO, some COLs, like ArchJava or CLIC model are not implementation indepen-
dent. For example, CLIC focus on symbiosis between CLIC and Smalltalk plus it enables to benefit
from modularity and reusability of components without sacrifice performance. Compared to COMPO,
modeling powers of CLIC are limited, the model allows components to have only one provided port.
The authors argue that it is hard to split component functionality over multiple ports, because de-
velopers do not know beforehand, which services will be specified by each required port of client
component. ArchJava is an extension of the Java language to express application architecture directly
in the source code and ensure the adequacy of the architectural descriptions and implementation.

The framework family focus primarily on practical issues such as deployment, packaging or non-
functional services. They are lacking some concepts of pure component models, as for example ex-
plicit internal composition description. With the CCM model, the OMG aims in building a bridge
between the pragmatic problems and concepts of architecture description. Fractal is a component
model which highlights the concepts of composites and sharing. SOFA focuses on the dynamic nature
with the dynamic replacement of component or to the connectors that are reification of connections
between components.

Except from COM, Javabeans and EJB approaches, the composition mechanism is a central
mechanism in the most of approaches. It is based on different types of connections between ports
(or interfaces for models without ports). The majority of approaches distinguishes delegation links
between a composite and one of its internal components and the “normal” connections between two
components. CCM also distinguishes connections types required/provided (for synchronous com-
munication) and event connections (for asynchronous communication). ArchJava also proposed in
its first the concept of service versions released (broadcast) that resembles the event links.

Verification of connections between components is, as in COMPO, based on the sub-typing rela-
tionship between the interfaces for syntax compliance. ArchJava also offers the most advanced typing
system more complete control of the communication integrity between components.

In the generative family, a number of architecture description languages (ADLs) have been de-
fined to describe, model, check, and implement software architectures. Many of these languages
support sophisticated analysis and reasoning. For example, WRIGHT allows architects to specify tem-
poral communication protocols and check properties such as deadlock freedom. SADL formalizes
architectures in terms of theories, shows how generic refinement operations can be proved correct,
and describes a number of flexible refinement patterns. The SADL system formalizes architectures
in terms of theories, providing a framework for proving that communication integrity is maintained
when refining an abstract architecture into a concrete one. However, the system did not provide au-
tomated support for enforcing communication integrity. While SADL and WRIGHT are pure design
languages, other ADLs have supported implementation in a number of ways. UniCon’s tools use an
architectural specification to generate connector code that links components together. 2̧ provides
run-time libraries in C++ and Java that implement 2̧ connectors. Darwin provides infrastructure sup-
port for implementing distributed systems specified in the Darwin. Although the code generation
tools are convenient to programmers, they do not automatically enforce communication integrity.
Furthermore, these tools support a limited number of built-in connector types, and developers can-
not easily define connectors with custom semantics. Architectures in Rapide can be filled in with im-
plementations in an executable sub-language or in languages such as C++ or Ada. The Rapide system

110 Chap 3. COMPO’s basics

includes a tool that dynamically monitors the execution of a program, checking for communication
integrity violations. The Rapide papers also suggest that integrity could be enforced statically if sys-
tem implementers follow style guidelines, such as never sharing mutable data between components.
However, the guideline forbidding shared data prohibits many useful programs, and the guidelines
are not enforced automatically.

3.6 Summary

In this chapter, we presented the heart of this thesis, a component-oriented programming and mod-
eling language named COMPO. We began by the philosophy of the language where we have defined
the core concepts and mechanisms the component-based approach. Then in each section we have
detailed the concepts and mechanisms, one by one. For each concept or mechanism we have pre-
sented COMPO’s realization and design choices together with the reasons which led us to incorporate
this particular solution.

Thus, we believe that COMPO offers a reasonable solution for all the core concepts and mech-
anisms and thus it is suitable for component-based development, which is not always the case of
languages like Julia, ArchJava or ComponentJ as we have tried to show throughout the chapter. Sec-
tion 3.4 is a recapitulation of the definitions and the choices that we have made for COMPO yet. How-
ever, remember the points that make the COMPO language specific:

• the service invocation mechanism and in particular the arguments passing in terms of tempo-
rary connections and preserving the integrity of communications,

• the internal port named self to make self-references using the standard service invocation,

• the internal required ports used for communication with internal component of a composite.

C
H

A
P

T
E

R 4
Integrating inheritance

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

Don’t Repeat Yourself Principle

Preamble

In this chapter, we present an original and complete inheritance system for our component-based pro-
gramming and modeling language. We first motivate the need for an inheritance system by showing
cases where an inheritance mechanism is inevitable for reusing the structural definition of descriptors.
Then we identify the subjects for inheritance in a component-oriented programming language and for
each subject we present (section by section) our solution for extending descriptors and specializing in-
herited subjects. Finally, this chapter ends with a summary.

112 Chap 4. Integrating inheritance

4.1 Introduction: Do we need inheritance?

ALOWER development time/cost and an elimination of bugs are the main advantages and mo-
tivations for achieving code-reuse in software development. Despite its well-known patholo-

gies [Taenzer et al., 1989 ; Hürsch, 1994 ; Boyland et Castagna, 1996], class-based inheritance is and
has been the essential mechanisms for code-reuse in object-oriented programming (OOP). To over-
come the problems of inheritance, new code-reuse techniques1 like mixins [Bracha et Cook, 1990],
traits [Curry et al., 1982] or aspects [Kiczales et al., 2001] have been invented.

Inheritance is indeed not mandatory; many efficient languages do not integrate it (C for exam-
ple). Inheritance also introduces some complexity in language implementation and in programmers
code. However, the success of the object-oriented paradigm do demonstrate that its advantages are
greater than its drawbacks, especially if we take into account the fact that better specifications and
implementations continue to be developed [Ducournau, 2011]. Therefore we see inheritance as the
major cornerstone of code-reuse in OOP for the tow following reasons:

1. For the ability it gives developers to organize their ideas on the base of an incremental concept
classification (a list is a kind of collection, such an architecture is a kind of visitor, ...) which is
itself one key of human abstraction power.

2. For the calculus model that makes it possible to not only reuse but adapt software, by executing
an inherited code in a new context (the receiver environment).

Even if it has been successful in the world of objects, inheritance as a reuse mechanism has
been underrated and considered to be controversial by the component community [Szyperski, 2002 ;
Opluštil, 2003 ; Lahire et al., 2004]. In ECOOP’96, Weck and Szyperski presented a contribution [Weck
et Szyperski, 1996] entitled: “Do we need inheritance?”. In their work, they argue in favor of composi-
tion as a code-reuse mechanism and say that inheritance should rather be used as a modeling aid to
express relationships between different classes. Indeed, composition is already a present code-reuse
mechanism in the component world (see Section 3.3.3) and introducing an inheritance mechanism
seems to be redundant in this perspective. In this section we try to show that sole composition is
not enough and that it is worth to integrate an inheritance mechanism into a component-oriented
language.

There are also some approaches proposing component sharing to improve software reuse (black-
box reuse type) as in Fractal [Bruneton et al., 2006] or Ernie [Outhred et Potter, 1998]. The developer
can specify an internal component that is accessible from multiple composite components. Although
sharing may save resources, it breaks the encapsulation of the composite components, which is as
dangerous as for example when two instances of different classes hold a private reference to a unique
object in OOP.

It is true that inheritance causes problems ranging against the decoupling and encapsulation
principles of the component-based approach. Before explaining these problems, remember that
in OOP, a class has two types of customers: (i) those who instantiate (instantiating customer); and

1See for a good survey [Lahire et Quintian, 2006]

4.1. Introduction: Do we need inheritance? 113

(ii) those who inherit (inheriting customer). These are the customers of the second category that
are both powerful and problematic. Problematic, because a sub-class is a privileged customer of its
super-class and thus it can access the internal details and therefore it makes the encapsulation of the
super-class “fragile” [Snyder, 1987 ; Mikhajlov et Sekerinski, 1998]. Figure 4.1 illustrates this problem.
Assume the existence of a class Set whose instances represent sets. This class owns methods add to
add an item and addAll to import all the elements of another set. Suppose we want to write a class
CountingSet inheriting class Set and adding the code to count elements. To do so, the programmer
of the class CountingSet must be aware of the implementation of the two methods add and addAll
defined in the class Set. Indeed, if the add method is invoked in the code of addAll method, the class
CountingSet should redefine the addmethod (see Figure 4.1 case (a)). In opposite, if the implementa-
tion of the addAll method does not use the add method and imports items directly, the CountingSet
must override both methods add and addAll (see Figure 4.1 case (b)). This example shows that in
many cases, the implementation of a super-class has to be known to make a sub-class, hence, the
internals are exposed.

Figure 4.1 : Illustration of the fragile base class problem

The fragile base class problem shows that inheritance is in contradiction with the encapsulation
and decoupling principles of the component-based approach on at least the following two points:

• it requires having access to the source code (i.e. to have a detailed description of the imple-
mentation)

• induces an implicit coupling between a class and all its super-classes (direct and indirect) as
the modification of a super-class changes all its sub-classes.

The white box nature of inheritance goes against the black box nature of components. It seems
that it would be better [Stein, 1987] to use composition which is a black box reuse mechanism to

114 Chap 4. Integrating inheritance

Figure 4.2 : Analogies between inheritance and composition

achieve incremental description and specialization. Such a solution was, for example, proposed by
the authors of ComponentJ [Seco et Caires, 2000]. Figure 4.2 illustrates the composition solution for
the following two cases:

Case (a) Building a subclass by adding new properties can be achieved by creating a composite that
exports all the features of its internal components (see Fgure 4.2 case (a)).

Case (b) A class with abstract methods can be likened to a component with the required services (see
Figure 4.2 case (b)).

A Java example in Listing 4.1 illustrates a class Parent which defines two methods named bar and
foo. In the body of the foo method the bar method is invoked. Class Child inherits class Parent and
it specializes its method bar. When the foo method is invoked on an instance of Child, the Parents’s
code of foo is executed. Because the pseudo-variable this represents the current receiver, i.e. the
instance of Child, method bar of class Child is executed.

However the same inheritance scenario realized with composition causes the “initial receiver lost”
problem [Lieberman, 1986b], as it is shown in Listing 4.22. In this example class Child emulates in-
heritance by the attribute p of type Parent to which it assigns a reference to an instance of Parent.
Then Child defines a method foowhich invokes foo on p, i.e. the Parent’s implementation of foo. In
fact, the foo method of class Child implements a delegation of invocations similar to delegation con-
nection defined in Section 3.2.4. When the foo method is invoked on an instance of Child, the foo’s

2In fact, the example uses aggregation (the private attribute p of class Child) which is a kind of internal composi-
tion [OMG, 2011b]

4.1. Introduction: Do we need inheritance? 115

class Parent {
public String foo() { return this.bar(); }
public String bar() { return "bar() of Parent"; }

}

class Child extends Parent { // inheritance
public String bar() { return "bar() of Child"; }

}

public class Example{
public static void main(String[] args){
Parent p = new Child();
System.out.println(p.foo()); // prints "bar() of Child"

}
}

LISTING 4.1 : Executing an inherited code in a new context (the receiver environment), a Java example.

code is executed and invokes method foo on the p instance of class Parent. Because the pseudo-
variable this represents the current receiver, i.e. the instance of Parent, method bar defined in class
Parent is executed instead of the expected method bar of Child.

class Parent {
public String foo() { return this.bar(); }
public String bar() { return "bar() of Parent"; }

}

class Child {
private Parent p = new Parent(); // composition
public String foo() { return p.foo(); } // message forwarding
public String bar() { return "bar() of Child"; }

}

public class Example{
public static void main(String[] args){
Child c = new Child();
System.out.println(c.foo()); // ERROR: prints "bar() of Parent"

// instead of "bar() of Child"
}

}

LISTING 4.2 : Composition and message forwarding to avoid inheritance leads to the “initial receiver
lost” problem.

The same problem exists in the component context, where the child is a composite and the par-
ent is its internal component, as we show in the top of Figure 4.3. ComponentJ proposes a solution
for this problem in the component world. The solution (see the bottom of Figure 4.3) is based on ad-
ditional required ports, delegations, a wrapping component and a feedback connection. Even if the
ComponentJ’s solution produces correct results its practical applicability is clumsy and requires a lot

116 Chap 4. Integrating inheritance

of additional work.

Figure 4.3 : An example of the initial receiver lose in case of composition and it possible solution as
proposed in ComponentJ

It is the additional work needed (delegations3 and interface repetition) when emulating inheri-
tance with composition that makes its use difficult in practice. This stems from the fact that a com-
posite is not necessarily a sub-type of types of all its internal components. In the component world,
where descriptors define external contracts, the additional work contains redefinition of contracts,
i.e. the descriptor of a child component has to define the same contract as the descriptor of a par-
ent component. For example in Figure 4.3, a component c (an instance of a descriptor CHILD) has to
provide the same as it is defined by the descriptor PARENT. In opposite to inheritance, the external
contract of descriptors is not reused in case of composition.

This problem of composition can be generalized for the all cases when a structural definition,
i.e. ports declarations or architecture, should be reused. We can say that structural reuse cannot be
achieved with composition. Figure 4.4 shows an example of architecture reuse. The original archi-
tecture defined in the HTTPSERVER were reused and specialized by QUEUEDHTTPSERVER which adds a
buffer component in between front-end and back-end internal components.

The above shows that inheritance is useful in case of descriptors, where it is advantageous and
desired to be able to reuse definitions they contain. Our opinion is that composition and inheri-

3or redirecting, or forwarding

4.1. Introduction: Do we need inheritance? 117

Figure 4.4 : An example of architecture reuse.

tance are complementary and that their combination is significantly more efficient especially when
structural reuse is to be considered. We have thus designed an inheritance mechanism for COMPO in
conjunction with composition to maximize software reuse capabilities and the language expressive
power.

Moreover, in the component-based development context, as pointed by [Gamma et al., 1995b], a
set of available (off-the-shelf) components cannot cover all possible scenarios of usage, and therefore
an adaptation mechanism is needed. Inheritance can be the mechanism, which enables program-
mers to easily extend or specialize such components.

As we have seen in Chapter 2, there are component-based approaches which somehow propose
inheritance or inheritance-like [McVeigh et al., 2006] mechanisms, but they have various limitations
like: limitation to the architecture description side, limitation to the implementation side which is
frequently not achieved with component-based languages or limitation to some part of components
descriptions.

This chapter aims at contributing to that question by showing the interest of a specification and
an operational integration of a full inheritance system, in the context of a component-oriented pro-
gramming language (COL) that supports reuse of components’ structure and behavior. By “structure”,
we mean descriptions of interfaces, ports and architectures; and by “behavior”, we mean implemen-
tations of services that make them executable. Our language, COMPO, ranges in this category and

118 Chap 4. Integrating inheritance

proposes components as run-time entities, instances of descriptors, as defined in Section 3.2.1. We
introduce an inheritance link between descriptors on which we base an operational system to reuse,
i.e. to inherit, extend and specialize descriptions.

In the rest of this chapter we address the specific questions of stating what, among port declara-
tions, architectures and services definitions, can be inherited, extended or specialized, and how. We
notably discuss the interest of enabling requirements extension or specialization, because required
ports make dependencies explicit, reducing coupling between components and promoting under-
standing of components in isolation. We will consider various solutions, but will develop an answer
to that question which goes in the direction of enabling covariant specialization [Boyland et Castagna,
1996], because it corresponds to the way human naturally think about concept classification [Ducour-
nau, 2002] and it promotes modeling power.

4.2 Inheritance for structural and behavioral reuse

This section presents the rationale and the operational description of our descriptor-based inheri-
tance embedded in COMPO. The inheritance mechanism of COMPO enables users to achieve struc-
tural and behavioral reuse that is:

1. to reuse the structure definition (external & internal contracts and architectures) captured in
descriptors. In the rest we call this case structural inheritance.

2. to reuse the behavior definition (services implementations) captured in descriptors. In the rest
we call this case behavioral inheritance.

In OOP, there is a structural (attributes and method declarations) inheritance and behavioral one
(method bodies). All these declarations are subjects of the structure and behavior inheritance.

In a COMPO descriptor the behavior is given as a set of services definitions and the structure is
given by port descriptions and by description of the architecture, i.e. the set of connection descrip-
tions. We see no reason why these should not be subjects for the inheritance mechanism in COMPO.
Therefore we chose the following:

Choice 23 Port descriptions, architectures (connection descriptions sets) and services are subjects of
COMPO inheritance

As in OOP, where a sub-class may extend and specialize its super-class. We desire to be able to
extend and specialize component descriptors. The “extends” operation means adding new subjects
to the parent’s definition. The “specialize” operation means the modification of subjects previously
defined without introducing new subjects. These operations can be separated into the two following
categories:

1. The operations affecting the external contract of a descriptor, i.e. addition and specialization
of ports.

4.2. Inheritance for structural and behavioral reuse 119

2. The operations affecting the architecture of a descriptor, i.e. addition and specialization of
internal components and connections.

In case of architecture, the extension and specialization are sometimes related. For example
adding new internal component usually requires some re-connections, i.e. specialization of origi-
nal connections.

The incremental (extend) description philosophy of inheritance does not provide means for re-
moving subjects, although an inheritance-like mechanism called resemblance [McVeigh et al., 2006]
has been proposed in the component context. We believe that the philosophy of removing does not
match well with the way people usually think of and design hierarchies of concepts.

4.2.1 Multiple inheritance, yes or no?

We argue that integrating multiple inheritance into COMPO is undesirable for the following reasons:

1. In the world of objects, different languages actually have different expectations for how mul-
tiple inheritance (MI) works. For example, how conflicts are resolved and whether duplicate
bases are merged or redundant. Before we can even think about MI for a COL, we have to do a
survey of all the OOP languages, figure out the common concepts, and decide how to express
them in a language-neutral manner. Then we would have to transfer these concepts from the
object world into the world of components, where even more conflicts may occur, because the
contracts of components are richer than contracts of objects.

2. The number of places where MI is truly appropriate is actually quite small. In many cases, it
is possible to use encapsulation and delegation. Moreover, the alternatives for MI like mix-
ins [Bracha et Cook, 1990] or traits [Curry et al., 1982] should also be considered.

3. Multiple inheritance implementation injects a lot of complexity into the implementation. This
complexity impacts dispatch, port access, identity comparisons, reflection and probably lots of
other places.

The amount of work needed to integrated multiple inheritance into a COL seems to be inadequate
compared to the value added, thus, we chose the following.

Choice 24 The inheritance mechanism in COMPO is single inheritance.

In fact, this choice is very usual in the world of components. We are aware of few component-
based approaches integrating multiple inheritance. For example, SOFA model has chosen concatena-
tion inheritance mechanism for its frames [Oplustil, 2002] to solve name conflicts related to multiple
inheritance. UML also allow multiple inheritance, but it provides no explicit solution or recommen-
dations for well known issues and ambiguities, such as the diamond problem [Boyland et Castagna,
1996].

120 Chap 4. Integrating inheritance

4.3 Descriptors and basic inheritance

In this section we introduce the inheritance link between descriptors. In parallel to OOP, where the
inheritance link between classes organizes them into a hierarchy of sub-classes and super-classes,
we define sub-descriptors and super-descriptors. In this chapter we also use terms child and parent
which are nothing more than aliases for terms sub-descriptor and super-descriptor respectively.

Definition 16 (Sub-descriptor) A descriptor may extend and specialize another descriptor, such a de-
scriptor is then called a sub-descriptor.

Definition 17 (Super-descriptor) If a descriptor C is defined as a sub-descriptor of a descriptor D, then
we say that D is a super-descriptor of C.

Having the terminology set and in accordance with the arguments we have presented in Sec-
tion 4.2 we make the following choice:

Choice 25 A sub-descriptor inherits all subjects of its super-descriptor (its parent), i.e. all ports descrip-
tions, the architecture and all services definitions.

The natural consequence of the Choice 25 is that we do have common problems of inheritance,
such as the fragile base class problem (see Section 4.1). The intent of this chapter is not to speak
about these problems, but discuss the new issues, which arise when using inheritance as the reuse
mechanism for a COL.

In COMPO, a new sub-descriptor is defined by the extends operator. For example, to create
a descriptor of an extended calculator component, we define a new descriptor EXTCALC as a sub-
descriptor of an existing descriptor CALC by the following declaration: Descriptor ExtCalc extends

Calc {...}.

For code factorization and reuse purposes we enable to create abstract descriptors

Definition 18 (Abstract descriptor) When it is declared that an instance of a descriptor offers a ser-
vice, but the service is not defined, then the descriptor is considered as an abstract component descriptor.

Although, an abstract descriptor cannot be instantiated its sub-descriptor may provide imple-
mentation of the missing service and thus make itself instantiable, i.e. non-abstract.

4.3.1 The ExtCalc Example

In the previous chapter in Section 3.3.4, we presented the substitution mechanism of COMPO on the
example of the calculator component which is substituted by the extended calculator component.
The components were instances of descriptors CALC (see Listing 3.4) and EXTCALC (see Listing 3.8)
respectively. Both components are shown in Figure 4.5.

4.3. Descriptors and basic inheritance 121

Figure 4.5 : The instances of the CALC (defined in Listing 3.4) and the EXTCALC (defined without inher-
itance in Listing 3.8 and with inheritance in Listing 4.3.)

The descriptor CALC defines a very simple calculator component providing three arithmetic ser-
vices and one service for generating random numbers. calculator provides these services through
ports arithmetic and probability. To fulfill its commitment to provide the probability service rand,
the component requires a random generator via required port randGen. The definitions of services
add and mul show the use of arithmetic operators and the returned value. Service pow shows a pro-
gram flow control structure for, an assignment and a service invocation. An example of a required
service invocation is captured in the definition of the rand service. Listing 3.5 and Figure 3.6 show an
example of how the calculator component can be instantiated and used.

The EXTCALC descriptor defines the same as descriptor CALC and through a new port
combinatoric it provides a new service fib to calculate Fibonacci numbers. In order to calculate
the Fibonacci numbers, services push, pop and empty of a stack component are required through
port stack.

It is obvious that EXTCALC descriptor should be defined as a sub-descriptor of descriptor CALC.
In Listing 4.3 we present descriptor EXTCALC2 which uses the inheritance mechanism of COMPO to

122 Chap 4. Integrating inheritance

extend descriptor CALC with declaration of ports combinatoric and stack and with the definition of
service fib.

Descriptor ExtCalc extends Calc {
provides {
combinatoric : { fib(x); }

}
requires {
stack : { push(val); pop(); empty(); }

}
service fib(x) {
| tot a |
tot := 0 ;
while(stack.empty() == false) {
a := stack.pop()
if(a < 1) { tot := tot + 1; }
else {

stack.push(a - 1);
stack.push(a - 2);

}
}
return tot;

}
}

LISTING 4.3 : The EXTCALC2 descriptor is defined as a sub-descriptor of descriptor CALC (defined in
Listing 3.4).

4.4 Addition & specialization of services

The services are units of behavior which a component provides. For example, the calculator com-
ponent provides services for addition, subtraction, multiplication and division. The services are sub-
jects of behavioral inheritance similarly to methods being subjects of behavioral inheritance in OOP.

Behavioral inheritance means the ability to access and modify the implementation of the parent.
To be able to inherit, extend and specialize the behavior defined by a component descriptor we make
the following choice:

Choice 26 A sub-descriptor can introduce new services and its instances can invoke, redefine and spe-
cialize services defined by its super-descriptor.

This gives us the ability to define behavior the that is specific to a particular sub-descriptor, i.e.
achieve polymorphism of descriptors. A new service can be introduced in a sub-descriptor as it is
illustrated in Listing 4.4 where the descriptor B extends descriptor A with a new service bar.

An inherited service can be redefined or specialized in a sub-descriptor. The difference between
redefinition and specialization is that in case of specialization, the super-descriptor’s implementation

4.4. Addition & specialization of services 123

Descriptor A {
provides { default : { foo(); } }
service foo() { return 0.0; };

}
Descriptor B extends A {

service foo() { super.foo(); return 0; } /* specialization */
service bar() { ... } /* addition */

}

LISTING 4.4 : Specialization and addition of services.

of the service being specialized is invoked (manually by user) in the code of the new implementation
of the service.

Services specialization raises a new question: How to invoke services of super-descriptors? An
inspiration for answering this question can be found in Java’s inheritance mechanism. Suppose that
we have defined two Java classes A and B, where class B is a sub-class of class A and B specialize an
inherited method foo. In the code of B’s foomethod we need to invoke method foo of A. To do so, Java
uses the super pseudo-variable of Java. In Java, the pseudo-variable super is statically computed and
represents a super-class of the class in which the method using super is defined. Back to the ArchJava
example, we can use super.foo() in the code of B’s foo to invoke foo of A.

In the previous chapter, we have made the Choice 14 saying that all service invocations are al-
ways made via ports. Consequently, the invocations of services of a super-descriptor should be made
through a port. The following choice captures this consequence:

Choice 27 Every sub-descriptor has, by default, the super internal provided port. Service invocations
sent through this port are looked up starting from the super-descriptor of the descriptor owning the
service in which code the service invocation is emitted.

For example, the descriptor B (in Listing 4.4) extends descriptor A and specializes A’s service foo
by use of the super port. The Choice 27 mentions the service lookup mechanism which handles ser-
vice invocations of services which are not defined by a receiver component. We detail this mechanism
in the following sub-section.

4.4.1 The service lookup mechanism

Service invocations in COMPO resembles message sending in OOP. Objects in OOP communicate by
sending messages. But, what exactly happens when an object receives a message? First, there is
not a universal answer to that question, because there is not a universal object-oriented language.
Therefore, to answer this question we have take a look on a language which is considered to be a pure
object-oriented language, such as SMALLTALK [Ingalls, 1981].

“When a SMALLTALK object receives a message, the class of the receiver looks up the method
to use to handle the message. If this class does not implement the method, it asks its
super-class, and so on, up the inheritance chain, as shown in Figure 4.6. When the method

124 Chap 4. Integrating inheritance

is found, the arguments are bound to the parameters of the method, and the virtual
machine executes it.

It is as simple as that, but there is a question that needs some care to answer: What
happens if the method we are looking for is not found? Suppose we send the message
foo to our ellipse. First the normal method lookup would go through the inheritance
chain all the way up to class Object looking for this method. When this method is not
found, the virtual machine will cause the object to send itself the doesNotUnderstand:
#foo message. So the lookup starts again from the class EllipseMorph, but this time
searching for the method doesNotUnderstand:. As it turns out, class Object imple-
ments doesNotUnderstand:4. This convoluted path offers developers an easy way to
intercept such errors and take alternative action. One could easily override the method
doesNotUnderstand: in any sub-class of Object and provide a different way of handling
the error5.” [Black et al., 2009].

Figure 4.6 : An example of the method lookup mechanism in SMALLTALK. The mechanism follows the
inheritance hierarchy.

Inspired by the method lookup mechanism of SMALLTALK we define the service lookup mecha-
nism of COMPO as follows:

4This method will create a new MessageNotUnderstood object which is capable of starting a Debugger in the current
execution context.

5In fact, this can be an easy way to implement automatic delegation of messages from one object to another. A Delega-
tor object could simply delegate all messages it does not understand to another object whose responsibility it is to handle
them, or raise an error itself!

4.4. Addition & specialization of services 125

Definition 19 (The service lookup mechanism) When a provided port receives a service invocation, it
treats the invocation according to the Algorithm 3. In the case of lookup, the port looks up the requested
service in the descriptor of the component that owns the port. If this descriptor does not implement
the service, the port asks its super-descriptor, and so on, up the inheritance chain. When the services is
found, the arguments are connected to the parameters ports of the service, and the service is executed.
When the service is not found, then the doesNotUnderstand service of the port is executed.

Algorithm 4 is a modification of the Algorithm 3 (see Section 3.3.2 of the previous Chapter) taking
into account the service lookup mechanism as it is defined in Definition 19. As we will see in the next
chapter, ports are also components having their own services and the doesNotUnderstand service is
one of them. It actually enables the users to customize the method lookup, because it is possible to
design new kinds of ports. In fact, the possibility to customize the method lookup was inspired by the
method lookup objects technique [Vraný et al., 2012].

Algorithm 4: Taking into account the service lookup mechanisms when receiving a service in-
vocation via a provided port

Data:
i : a service invocation
p1 : the provided port through which i was received

if selector(i)∈ interface(p1) then
if p1 is delegated to a provided port p2 then /* case 1 */

delegate i through p2;
else

if descriptor(component(p1)) possesses the service demanded in i then /* case 2 */
execute s

else
if descriptor(component(p1)) does not implement
the service demanded in i then /* case 3 */

d := descriptor(component(p1));
while super-descriptor(d) does not implement the service demanded in i do

d := super-descriptor(d);

if d != null then
execute s of d ;

else /* does not understand error */
execute does −not −under st and of p1;

else /* p1 not connected */
error case;

else /* service is not listed in the interface */
error case;

126 Chap 4. Integrating inheritance

4.5 Addition & specialization of provided port descriptions

The ability to add a new port declaration into a sub-descriptor improves modeling power of the lan-
guage. For example, sub-descriptors are able to export an internal behavior via newly added ports.
Such an export does not break the encapsulation of the internal component, because it exports be-
havior which has already been made public (i.e. provided via external port). We show an example of
such an export in Listing 4.5. The descriptor CONTROLABLEFRONTEND extends a FRONTEND descriptor
with a new description of port control and a delegation connection which delegates service invoca-
tion sent via the port to the control port of the internal component regRecv (instance of descriptor
REQUESTRECEIVER.) The example is shown in Figure 4.7. With the Choice 28, we allow for addition of
new provided ports in sub-descriptors.

Choice 28 A sub-descriptor can introduce a new provided port description.

Descriptor ControlableFrontEnd extends FrontEnd
{

provides {
control : {start(); isRunning(); stop()}

}
architecture {

delegate control@self to control@regRecv;
}

}

LISTING 4.5 : The CONTROLABLEFRONTEND descriptor. Extends a FRONTEND descriptor with a new pro-
vided port named control. Instances of the both descriptors are shown in Figure 4.7

Similarly to OOP, where the name of a new attribute cannot clash with the names of super-class
attributes, the majority of component-based approaches with inheritance support does not allow for
port-names clashing. In accordance with that, we chose the following:

Choice 29 A name of a newly added port of a sub-descriptor cannot clash with existing port names
(inclusive inherited port names).

If a sub-descriptor introduces a port description with a clashing name, then it means that the
sub-descriptor specializes the inherited port description with that name. In the previous chapter
in Section 3.2.2, we have defined that ports are described by the names, a visibility, a role and an
interfaces. The question of port specializations has then the three following sub-questions:

1. Does it make sense to specialize the role?

2. Does it make sense to specialize the visibility?

3. How do we specialize interfaces?

4.5. Addition & specialization of provided port descriptions 127

Figure 4.7 : Descriptor CONTOLABLEFRONTEND (cf. Listing 4.5) exports the controlling behavior of the
inherited internal component reqRecv via the newly added port control and a delegation connec-
tion. Greyed parts denote inherited subjects.

The specialization of port roles comes into consideration in two directions. A change from the
provided role to the required role does not make sense. It could make sense in the opposite direction,
i.e. from the required role to the provided role. Indeed, this kind of role specialization means that a
sub-descriptor does no longer require the services exported via this port and therefore it is equivalent
to removing that port, which is in contradiction to the incremental (extend) description philosophy
of inheritance. Thus, there is no reason for allowing specialization of the roles of ports.

The specialization of the visibility contains two cases: (i) change from the external to the internal
visibility; and (ii) change from the internal to the external visibility. In fact, the first case is compa-
rable to removing a port, because it removes the description of the port from the external contract
definition of a sub-descriptor, which is also in contradiction to the incremental (extend) description
philosophy of inheritance. The second case affects the internal contract of a sub-descriptor. The ar-
chitecture of the super-descriptor is designed on the basis of the internal contract and a change to the
contract may cause internal incompatibilities. Therefore, we forbid the visibility specialization and
we make the following choice.

128 Chap 4. Integrating inheritance

Choice 30 It is not possible to specialize the visibility nor the role of an inherited port description in a
sub-descriptor.

In opposite to the role and visibility specialization, the specialization of interfaces is desired and
needed, because it makes possible to publish new services via existing (inherited) ports. Therefore,
we make the following choice:

Choice 31 A sub-descriptor can specialize the list of service signatures (the interface) of an inherited
port description.

We remind (cf. Section 3.2.2) that the interface of a port is a set of service signatures which could
be given in three forms:

• as an explicit list (we call such a list an anonymous interface), for example the default port
declaration in Listing 3.1

• as a named interface, e.g. printer : IPrinting where the interface IPrinting was created
with the statement: interface IPrinting {print(text);};

• as a descriptor name; in this case, the list is the list of signatures of services associated to default
provided port of the descriptor. For example, the fE port declaration in Listing 3.1.

There are three scenarios how to specialize the list of service signatures of an inherited port:

1. a specialization by adding new service signatures to its list of service signatures (i.e. extending
an anonymous inherited interface). The RESTARTABLEFRONTEND descriptor in the example in
Listing 4.6 shows the specialization of the control port defined by the CONTROLABLEFRONTEND

super-descriptor. The specialization is used in order to provide the restart service defined by
the descriptor RESTARTABLEFRONTEND.

2. a specialization using a named interface. In this case the set of service signatures defined in the
named interface has to be a super-set of the set of service signatures used to describe the origi-
nal port. A specialization of a port named portA looks like: provides { portA : Ispec2}. In
the super-descriptor, portA could have been declared by the two following statements:

provides { portA : { ser1(); ser2() }} /* anonymous interface */

or

provides { portA : Ispec1 } /* named interface */

The Ispec1 interface was defined with the statement interface Ispec1 { ser1(); ser2(); }

and the Ispec2 interface extends Ispec1with a service signature: interface Ispec2 extends

Ispec1 { ser3() }. The named interface Ispec2defines the set of service signatures, which is a
super-set of a set representing the anonymous interface or the set given by the Ispec1 interface
of the original portA port. Therefore it can be used for the specialization.

4.6. Addition & specialization of external required ports descriptions 129

3. a specialization using an anonymous interface. This case is very similar to the previous one, i.e.
the set of service signatures defined in an anonymous interface has to be a super-set of the set
of service signatures used to describe the original port.

Descriptor RestartableFrontEnd extends ControlableFrontEnd
{

provides {
control : { restart(); }

}
service restart() {

reqRecv.stop();
reqRecv.start();

}
}

LISTING 4.6 : The RESTARTABLEFRONTEND descriptor. Specializes the control port of CONTROLABLE-
FRONTEND descriptor (cf. Listing 4.5).

The addition and specialization of ports descriptions changes the external contract of a super-
descriptor. From the substitutability perspective, any changes made on the external contract are risky.
Luckily changes on the provided part of the external contract are not critical, simply because of the
nature of provisions. Changes on the required part of the external contract modify dependencies of
descriptors. Therefore extension and specialization of required ports is considered as a risky opera-
tion, as we will detail in the next section.

4.6 Addition & specialization of external required ports descriptions

In general the rules about addition and specialization of external required ports descriptions are sim-
ilar to those we present in the previous section about provided ports. But, in opposite to provided
ports, the question whenever we allow or not for addition and specialization of external required
ports descriptions needs some care to answer.

The usual practice with differential descriptions is incrementation. A colored circle is like a circle
and, in addition, it has a color. The reverse perspective saying that a circle is a colored circle without
a color does not conform to the way people usually think. To have a color assigned is a requirement
for a colored circle. To make requirements explicit is one characteristic of the component-based ap-
proach. In the object-oriented world, it is common to define an additional attribute in a sub-class. It
is however an issue to know whether it is allowed to define a new required port on a sub-descriptor.
In fact it raises the same issue in both worlds: it possibly breaks child-parent substitutability [Spacek
et al., 2012]. More precisely, it may lead to incorrect substitutions.

In OOP, substitutability between instances of classes and instances of their sub-classes is guar-
anteed. To be more precise, interface compatibility is guaranteed, behavior compatibility is still not
guaranteed, as pointed by [Martin, 2002]. However the situation is different in case of components,
where requirements are explicit.

130 Chap 4. Integrating inheritance

Figure 4.8 : An example of an extension and specialization of required ports. Grayed parts of the figure
illustrate inherited parts.

In CompJava, a component type inherits all ports of its super-type and it may extend the interfaces
of inherited provided ports or may add provided ports. Addition of required ports is not allowed due
to the substitutability policy of the CompJava model (cf. Section 3.3.4).

Port specialization achieved using interface redefinition is implemented in SOFA model by the
following statement

frame ComponentName inherits InheritedCompName changes
InterfaceIntance1:: OriginalInterfaceType1 => NewInterfaceType1

SOFA constraints the above statement by saying that the interface type NewInterfaceType1 is a
sub-type of the OriginalInterfaceType1 interface type.

The problem of addition and specialization of external required ports has in fact three possible
solutions:

1. Forbid extension of sub-descriptor with additional requirements. But, requirements have been
made explicit in components and they are considered as important entities to make it possible
to introduce new connections. Therefore it is undesirable to limit expressive power of modeling
by forbidding extension and specialization of requirements. For example, without possibility to
add a required port it is complicated to design the Emailer example shown in Figure 4.8.

2. Constrain substitutions - define a rule saying that an original component can be substituted by
a new one, only if the new one provides at least the same and requires at most the same as the
original one, i.e. to follow the Liskov substitution principle [Liskov et Zilles, 1974].

3. Allow additional requirements and delegate responsibility for additional requirements satisfac-
tion to the language users, while providing verification support for substitutions.

4.6. Addition & specialization of external required ports descriptions 131

With COMPO all alternatives could have been implemented, but since the language is oriented to-
ward modeling flexibility, we have experimented with the third alternative. We will thus support co-
variant specialization if and when needed, because it corresponds to the way human naturally think
differential description [Ducournau, 2002]. For the sake of expressive power, we choose to enable
declaration of new required ports in sub-descriptors. For the same reason we enable the covariant
specialization of required ports in sub-descriptors.

Choice 32 A sub-descriptor can introduce a new external required port description or it may specialize
the interface of an inherited description of an external required port.

The Choice 32 prevent static checking of the correctness of substitutions and of course a different
choice could be made. But, without such capabilities, the modeling power of the language would be
limited. For example, we would not be able to extend the EMAILER descriptor shown in Figure 4.8 with
a new required port semanticsChecker or specialize its required port syntaxChecker with a new
required service signature grammarChecking(). In order to combine additional requirements and
substitutability we propose an alternative approach with a dynamic checking of substitution correct-
ness.

Substitutions in COMPO are supported by the replace routine which were detailed in Section 3.3.4.
Here we remind the substitutability definition (see Definition 14). A component a is substitutable
with a component b if the descriptor of a is compatible with the descriptor of a and all requirements
of component b will be satisfied after the substitution.

Our inheritance mechanism does not apply any restrictions to implicitly guarantee substitutabil-
ity. However, we are providing a support service newCompatible to return a component compat-
ible with the super-descriptor. The service is automatically created for each sub-descriptor which
extends its parent with additional requirements. The service has a unique parameter, an array of
pairs port-component and it is able to create an instance, which is substitutable with instances of
the super-descriptor. That is, all additional requirements are satisfied by connections to components
given in the array argument. The service shows a little bit from the reflection features of COMPO. As
we will see in the next chapter, descriptors are also components having their own services and the
newCompatible service is one of them. The following example shows an application of the replace
routine and the newCompatible service.

4.6.1 The DynamicHTTPServer example

The dynamic http server example presents an application of the replace routine (cf. Section 3.3.4)
and the newCompatible service presented above. In this example, we create a sub-descriptor
of the QUEUEDHTTPSERVER descriptor (see Listing 4.8) called DYNAMICHTTPSERVER. The DY-
NAMICHTTPSERVER descriptor (see Listing 4.7) extends the QUEUEDHTTPSERVER descriptor with two
new services switchToStandardQueue and switchToRandomQueue, in order to be able to dynami-
cally substitute the queue internal component in server instances. The switchToRandomQueue ser-
vice causes that the instance of the REQUESTQUEUE descriptor (connected to the internal required
port queue of the server) is substituted with an instance of the RANDOMREQUESTSQUEUE descriptor.
The switchToStandardQueue switches the queues back. The substitution is illustrated in Figure 4.9.

132 Chap 4. Integrating inheritance

Figure 4.9 : Dynamic substitution with a sub-descriptor having additional required port may lead to
unsatisfied requirement in the architecture. Grayed parts of the figure illustrate inherited parts.

It is important to note that the RANDOMREQUESTSQUEUE descriptor is a sub-descriptor of the
REQUESTSQUEUE descriptor, which has an additional required port to connect a random generator
component (instance of the RANDOMGENERATOR descriptor shown in Listing 4.7.) This additional
requirement makes the substitution complicated because the original architecture of the QUEUED-
HTTPSERVER descriptor was not designed for this kind of queue.

In order to make substitutions possible, the switchToRandomQueue service uses the
newCompatible service of the RANDOMREQUESTSQUEUE descriptor to create an instance of RAN-
DOMREQUESTSQUEUE compatible with instances of the REQUESTSQUEUE descriptor and thus easily
substitutable in the architecture. The newCompatible takes as an argument an array of pairs port-
component, in our case the array contains only one pair: randomGen-RandomGenerator.new().
The pairs in the array are used to satisfy the additional requirements of the RANDOMREQUESTSQUEUE

descriptor. To perform the substitution the service uses the replace routine.

4.6. Addition & specialization of external required ports descriptions 133

Descriptor RequestsQueue
{

provides { in : { handleReq(httpRequest); }
requires { out : { handleReq(httpRequest); }
...

}

Descriptor RandomRequestsQueue extends RequestsQueue
{

requires { randomGen : { getNextInt(); }
...

}

Descriptor RandomGenerator {
provides { generator : { getNextInt(); }
...

}

Descriptor DynamicHTTPServer extends QueuedHTTPServer
{

service switchToRandomQueue()
{

| pair randomQueue |
pair := Pair.new(’randomGen’,(RandomGenerator.new()));
randomQueue := RandomRequestsQueue.newCompatible(Array.newWith(pair));
replace queue with randomQueue;

}

service switchToStandardQueue()
{

replace queue with RequestsQueue.new();
}

}

LISTING 4.7 : An example of unsatisfied required port problem and its solution using the replace
routine and newCompatible service. The DYNAMICHTTPSERVER descriptor can dynamically substitute
the queue internal component in its instances. The RANDOMREQUESTSQUEUE descriptor extends the
REQUESTQUEUE descriptor with an additional required port to which an instance of the RANDOMGEN-
ERATOR descriptor should be connected.

134 Chap 4. Integrating inheritance

4.7 Extension & specialization of architectures

In case of the internal architecture description (architecture in short), the extension and specializa-
tion are usually related. For example, addition of a new internal component very often requires some
re-connections, i.e. specialization of original connections, as we show in Figure 4.9. In the example,
an instance QUEUEDHTTPSERVER descriptor is like an instance of HTTPSERVER descriptor, but instead
of having a direct connection between the fE component (instance of FRONTEND descriptor) and the
bE component (instance of BACKEND descriptor), an adaptor, here a queue, is inserted in between fE
and bE and the original bE-fE connection is replaced by two connections to and from the queue.

In software evolution, architectures often need to be reused and the used description language
should support such a feature [Cioch et al., 2000]. This observation is based on general experience
with building object-oriented applications, where it is common that a class describes objects, which
are composed of many objects communicating together. Such classes are often sub-classed. The sub-
classes modify and extend original composition and communication system of their parent. This also
applies in the component world and we can think of many situations in which a new architecture will
be based on an existing one.

Although useful, architectures reuse by extension and specialization of internal components and
connections has to be used carefully. These operations carry certain risks because they may destroy
an internal architecture defined by a super-descriptor. For example a missing connection or usage of
an incompatible internal component may make the composite in-operational, as we have detailed in
Section 3.3.4. The extension and specialization of architectures involves the following operations:

• addition of new internal components

• replacement of inherited internal components

• replacement of connection descriptions

To be able to achieve these operations, a sub-descriptor has to have access to the architecture
specification of its super-descriptor. For that reason, we make the following choice:

Choice 33 A sub-descriptor inherits the architecture of its super-descriptor. It may introduce new in-
ternal required ports descriptions and new connection descriptions. It may specialize the inherited
connection descriptions and the interfaces of inherited internal required ports descriptions.

In the previous chapter in Section 3.3.3 we made the Choice 21 saying that: a composite commu-
nicates with its internal components through internal required ports, one per an internal component.
Therefore, the addition of new internal components is realized by addition of new internal required
ports which follow the same rules which apply for external required ports (see the previous section.)
Specialization of an inherited internal component in a sub-descriptor can be achieved by modify-
ing the interface description of the internal required port associated with the internal component.
The descriptor of PriorityQueuedServer in Listing 4.8 specializes an inherited internal component
queue by describing it with the PriorityRequestsQueue descriptor.

4.7. Extension & specialization of architectures 135

Figure 4.10 : Specialization and extension of an internal architecture. Grayed parts of this figure illus-
trate inherited parts.

Newly added connection description cannot clash with inherited connections, for this case a spe-
cialization of connection descriptions is used. When specializing connection descriptions, it is some-
times hard for the architects to determine if a new connection description replaces the inherited one
or if it just defines a new connection. For that reason we use the combination of the connect-to and
disconnect-from statements to specialize inherited internal connections. The disconnections clearly
specify the connections to be replaced making the specialization well defined. The statements have
the following syntax: disconnect <port-address> from <port-address> and connect <port-address>

to <port-address> (disconnections and connections were explained in Section 3.2.4.) Every time the
disconnect statement is used, the removed connection has to be superseded by a new connection.
Extension and specialization of internals is illustrated in Figure 4.10 with COMPO code in Listing 4.8.

136 Chap 4. Integrating inheritance

Descriptor QueuedHTTPServer extends HTTPServer
{

internally requires {
queue : RequestsQueue

}
architecture {

connect queue@self to default@(RequestsQueue.new());
disconnect backEnd@fE from default@bE;
connect backEnd@fE to in@queue;
connect out@queue to default@bE;

}
}

Descriptor PriorityQueuedServer extends QueuedHTTPServer
{

internally requires {
queue : RandomRequestsQueue;

}
architecture {

connect queue@self to default@(RequestsQueue.new());
connect queue@self to default@(RandomRequestsQueue.new());

}
}

LISTING 4.8 : Specialization and extension of an internal architecture.

4.8 Related work

The study made in Chapter 2 shows that if (at all) inheritance is present the it is interpreted differ-
ently by each component-based approach. For example, the meta-model of UML defines that class
Component inherits from class Class, giving the possibility to participate in generalization relation-
ships to class Component, i.e. to inherit all properties (attributes and methods) and all parts (internal
components) defined in another class Component or even a class Class. The possibility to inherit all
properties from classes exists also in ArchJava where a component class can inherit a standard Java
class or another component class.

The situation is different in ADLs, since specification languages inherently do not contain imple-
mentations, behavioral inheritance cannot be used. Thus, the inheritance can usually be used only
for two purposes: creating conceptually specialized hierarchies (then inheritance is typically equiva-
lent to the sub-typing) and for the structure reuse. This limited use of inheritance in ADLs is the main
reason why it is implemented either insufficiently or not at all [Opluštil, 2003].

For example, Rapide allows its interface types to inherit from other types by using OO methods,
resulting in structural sub-typing. ACME also supports structural sub-typing via its extends feature.
Fractal ADL enables users to define new component type as an extension of an existing type and to
override a component definition, but not to specialize inherited bindings.

4.8. Related work 137

SOFA CDL6 uses the frame term for component types. One frame can inherit from another frame
and then port declarations are reused. To compose several frames, SOFA introduce architecture con-
struct, where an architecture implements a frame and may inherits from an another architecture.
In this way, internal components and connections are reused. Ports are specialized using inter-
face redefinition i.e. by the following statement frame ComponentName inherits InheritedCompName

changes InterfaceInstance1:: OriginalInterfaceType1 => NewInterfaceType1. Specialization of
inherited connections is supported by the statement: newTie1, newTie2 replacing originalTie

subsume subcompInstName:intInstName to intInstName exempt: subcompInstName:intInstName.

Other ADLs do not specify inheritance between descriptors, they usually use inheritance uniquely
for creation of sub-interfaces. In UML, the component entity inherits from the structured class entity
and therefore they can participate in generalization relationship in the same way as classes do. In
C2 [Medvidovic et al., 1997] it is possible to define subtypes of all internal building blocks. Darwin
[Magee et al., 1995] can derivation descendants from one or more interface types. Rapide [Luckham
et al., 1995a] and its sublanguage for types allows deriving a new interface type by inheritance, includ-
ing the capability of dynamic substituting of sub-types for super-types; inheritance of higher levels
(Architecture, ...) is not supported. In xADL 2.0 [Dashofy et al., 2001] provides single inheritance
for type extensions, and introduces some artificial dependencies among schemas. Wright [Allen et
Garlan, 1994] use connector as composition patterns among components.

If we exclude component frameworks which implement components by use of OOP and its class-
based inheritance, there only component-oriented languages support behavioral inheritance. In the
rest of this section we compare how related COLs integrate inheritance aspects such as: the structure
inheritance , the behavior inheritance and abilities to extend and specialize particular definitions in
a component descriptor (i.e. ports, internal components and connections.)

As related COLs we consider ACOEL [Sreedhar, 2002], ArchJava [Aldrich et al., 2002],
CLIC [Bouraqadi et Fabresse, 2009] and CompJava [Schmid et Pfeifer, 2008], because these languages
combine implementation and architecture specification. We do not compare with ComponentJ [Seco
et Caires, 2000 ; Seco et al., 2008] and Bichon [Xu et Ren, 2010].

ComponentJ is an inheritance-free language where authors prefer to avoid inheritance in favor
of object composition. ComponentJ emulates standard object-oriented implementation inheritance
by feedback connection to the component itself and method calls forwarding. Authors show that the
initial receiver lose problem can be solved using additional required port (“self” port) and feedback
connections to handle the context. This solution increases rapidly the complexity of the system. In
larger systems, where hierarchical concept modeling is used, code becomes difficult to maintain.

Bichon defines composition-oriented components for reuse. The authors analyze interaction be-
tween classes, which occurs via inheritance. Their reuse system is based on the observation that
super-class needs to provide declarations, which sub-class requires and its consequence saying that
when overriding occurs, a sub-class provides declarations which a super-class requires. This bi-
directional interaction is performed via the Bichon’s mixinner interface. Rather then seeing inher-
itance as a bi-directional interaction between classes describing components, we try to apply the
widely accepted semantics of inheritance in the component description context

6CDL means Component Definition Language

138 Chap 4. Integrating inheritance

Structure inheritance is partially supported in all related COLs. We say partially, because Comp-
Java do not allow the reuse of internal components and connections specification. Ports declarations
can be reused via component type definition. Except that they use a different terminology, the lan-
guages define component type as a set of port names including interface references and roles speci-
fication. And then a component type can be defined as an extension of an existing component type

Behavior inheritance is fully supported only in CLIC and ArchJava languages. ACOEL model sup-
ports implementation inheritance by the extend statement, but a child cannot access any of the in-
ternals (implementation classes, methods) of a parent, except via the input ports of the parent, i.e.
this.<portname>.<servicename> (composition-like approach). The advantage of this black-box
approach is that it preserve encapsulation of parent components. We support white-box approach to
be able to specialize services implementations which are not provided by a parent.

Ports specialization is not supported in ArchJava, because adding new provided methods to an
existing port might cause ambiguities if these provided methods were required by a connected com-
ponent, and provided by a different component. There would then be two components providing the
same required method, breaking ArchJava’s connection rules. Adding required methods to an exist-
ing port would make the component class non-substitutable for the component super-class, because
connections made to the super-class might not provide the sub-class’s required methods. Required
methods in a new port are also problematic, because the new port might not be connected at all.

Ports extension is well supported. CLIC model does not support additional provided port, because
this model allows components to have only one provided port. The idea of a single provided port is
based on the observation that developers do not know beforehand, which services will be specified
by each required port of a client component. Therefore it is hard to split component functionality
over multiple ports. We see this as a unnecessary limitation of modeling power.

On the other hand, in the CompJava, a component type may extend another component type and
it inherits all ports. It may extend the interface of inherited provided ports or may add provided ports.
Extension of required ports is not allowed due to the substitutability policy of the CompJava model.

Architecture extension and specialization. ACOEL and ArchJava treat internal components as reg-
ular instance variables of classes and therefore there is no way to specialize inherited internal com-
ponents. CompJava supports inheritance of component types only. Component types do not involve
internal components and connections declarations, therefore architecture cannot be reused.

Substitutions. ACOEL, ArchJava and CompJava define sub-type relation as defined by
Liskov [Liskov et Zilles, 1974]. In general, a component type is a sub-type of another one if it pro-
vides at least the same and requires at most the same. To ensure ACOEL use a type system checking.
CompJava and ArchJava forbid additional requirements (in inherited types) and then they restrict
substitutability by the sub-type relation.

In Table 4.1, we make a summary of this comparison.

4.9. Summary 139

CBPLs
criterium/model ACOEL ArchJava CLIC CompJava COMPO

Structure inheritance yes yes yes yes yes
Behavior inheritance yes yes yes no yes

Addition of:
Provided ports yes yes no yes yes
Required ports yes yes yes no yes

Internal components yes yes yes no yes
Connections yes yes yes no yes

Specialization of:
Provided ports yes no yes yes yes
Required ports yes no yes no yes

Internal components no no yes no yes
Connections no no yes no yes

Substitution
with additional requirements no no yes no yes

Table 4.1 : Comparative table of inheritance in related COLs

4.9 Summary

In this chapter, we have proposed an original and complete inheritance system for a component-
based programming language. In the beginning, we have motivated the need for an inheritance
system in a COL by showing cases where an inheritance mechanism is inevitable for reusing struc-
tural definition of descriptors. Then we have specified what are the subjects for inheritance in case
a component-oriented language. For each identified subject we discussed the impact of extending
descriptors and specializing inherited subjects together with the reasons which led us to incorporate
this particular solution.

We believe that COMPO inheritance mechanism offers a reasonable solution for structural and be-
havior reuse, because our solution does not make separation of modeling (designing architectures)
and implementation (designing behavior). The system promotes reuse over type-safe substitution,
and thus enables developers to create new component descriptors by specializing and extending ex-
isting descriptors without a lot of constraints. Existing object-oriented programming languages that
succeeded in the few last decades, prove the inheritance usefulness and practicalness, because it has
been used extensively in existing applications. Indeed, developers are much more interested in spe-
cializing and extending at the same time provisions and requirements of a component, and less on
substitutability, which they can manage manually (by satisfying additional requirements, if needed).

We have shown that descriptor-based inheritance is useful for both development-for-reuse and
development-by-reuse. Indeed, on the one hand, it allows developers to build new component de-
scriptors, to be put in component libraries, by inheritance links between descriptors. On the other
hand, developers can build their applications by extending or specializing existing component de-
scriptors. They can thus inherit existing architectures and capitalize on good designs where well-

140 Chap 4. Integrating inheritance

established architecture styles or patterns are applied.

We conclude this chapter by recalling the definitions and the choices that we have made in this
chapter.

4.9.1 Definitions made

Sub-descriptor A descriptor may extend and specialize another descriptor, such a descriptor is then
called a sub-descriptor. (cf. 16)

Super-descriptor If a descriptor C is defined as a sub-descriptor of a descriptor D, then we say that
D is a super-descriptor of C. (cf. 17)

The service lookup mechanism When a provided port receives a service invocation, it treats the in-
vocation according to the Algorithm 3. In the case of lookup, the port looks up the requested
service in the descriptor of the component that owns the port. If this descriptor does not imple-
ment the service, the port asks its super-descriptor, and so on, up the inheritance chain. When
the services is found, the arguments are connected to the parameters ports of the service, and
the service is executed. When the service is not found, then the doesNotUnderstand service of
the port is executed. (cf. 19)

4.9.2 Choices made

Choice 23 Port descriptions, architectures (connection descriptions sets) and services are subjects of
COMPO inheritance

Choice 24 The inheritance mechanism in COMPO is single inheritance.

Choice 25 A sub-descriptor inherits all subjects of its super-descriptor (its parent), i.e. all ports descrip-
tions, the architecture and all services definitions.

Choice 26 A sub-descriptor can introduce new services and its instances can invoke, redefine and special-
ize services defined by its super-descriptor.

Choice 27 Every sub-descriptor has, by default, the super internal provided port. Service invocations sent
through this port are looked up starting from the super-descriptor of the descriptor owning the
service in which code the service invocation are emitted.

Choice 28 A sub-descriptor can introduce a new provided port description.

Choice 29 A name of a newly added port of a sub-descriptor cannot clash with existing port names (inclu-
sive inherited port names).

Choice 30 It is not possible to specialize the visibility nor the role of an inherited port description in a
sub-descriptor.

Choice 31 A sub-descriptor can specialize the list of service signatures (the interface) of an inherited port
description.

4.9. Summary 141

Choice 32 A sub-descriptor can introduce a new external required port description or it may specialize
the interface of an inherited description of an external required port.

Choice 33 A sub-descriptor inherits the architecture of its super-descriptor. It may introduce new internal
required ports descriptions and new connection descriptions. It may specialize the inherited
connection descriptions and the interfaces of inherited internal required ports descriptions.

C
H

A
P

T
E

R 5
Integrating reflection

One can and should "open languages up," allowing users to
adjust the design and implementation to suit their particular

needs.
Gregor KICZALES.

Preamble

In this chapter we describe a meta-model which equips COMPO with reflection capabilities making it
possible to achieve architecture reasoning, and static or run-time model and program transformations,
all within the context of one language. In sections 5.3 and 5.4, we propose the meta-model architecture.
Sections 5.5, 5.6 and 5.7 describe how we have reified concepts: component, descriptor, port and ser-
vice in order to make them accessible in COMPO programs. In the end of the chapter we discuss related
work.

144 Chap 5. Integrating reflection

5.1 MDE, the motivation for reflection

MODEL Driven Engineering (MDE) raises the level of abstraction of artifacts in the development
life cycle by shifting its emphasis from code to models and model transformations. Accord-

ing to the separation of concerns principle, MDE advocates the isolation of business concerns from
their technical achievement. The idea is that the business concerns can be modeled independently
from any platform concerns. Therefore, business models are not corrupted by technical concerns.
In this way, the main part of the development becomes an activity upstream, dedicated to business
aspects through the elaboration of the application model that abstracts away technical details [Blanc
et al., 2007]. These primary models are then enhanced into final software products by a chain of
transformations. MDE provides a method for developers to master these complexities by both sepa-
rating concerns and systematically describing the design, implementation and validation processes
of development [Terrier et Gérard, 2006].

However, when applying an MDE process, different languages have to be learned and mas-
tered to design and develop a final solution, e.g. an ADL for the architecture design, a pro-
gramming language for the implementation (model transformations only generate skeleton imple-
mentations), a language for expressing architecture constraints (such as OCL) and possibly a lan-
guage for model transformations. This problem of a missing conceptual continuum, similar to the
continuum that exists between object-oriented design and implementation [Muller et al., 2005 ;
OMG, 2011c], makes it difficult to apply MDE techniques and processes in a straightforward way, be-
cause it requires the experts from different domains (constraints, transformations, etc.) to cooperate,
which is not always an easy task.

Indeed, the continuum encompasses the activity of writing all kinds of meta-programs. This glob-
ally means to allow software engineers to achieve, using the same language defined by a unique
component-based meta-level M, not only applications (architectures and code) but also all those
meta-programs, e.g. constraint-checking or model transformation or program transformation pro-
grams, that use or manipulate M constitutive elements and their instances, either statically or at run-
time.

It appears that a reflective component-oriented programming and modeling language is a pos-
sible original solution to such a requirement. A reflective language or system provides a principled
(as opposed to ad hoc) means of achieving open engineering [Blair et al., 1998]. We believe that a
reflective component-oriented language is a way to do MDE in the context of component, similarly
to reflective OOP languages make it possible to do MDE for object-oriented designs and programs.
Reflection enables language users to reason about architectures, to perform model transformations,
to examine and modify the structure and behavior of entities (components, in our case) at run-time.
Such a language contributes to solve the above issues by having the same description of architectures
at design and run-time.

In this chapter we present entities involved in the component-based development integrating
reflection capabilities. In the core of this chapter, we reify, following the idea of “everything is a com-
ponent”, the core component concepts to build up an executable meta-model, allowing introspection
and intercession on programs elements and their instances. The meta-model can be used at all stages
of component development to manipulate standard and “meta”-components as first-class entities.

5.2. Reflection & Reification 145

Using such a language opens the possibility that architectures, implementations and transformation
can all be written at the component level and possibly (but not mandatorily) using a unique language.

5.2 Reflection & Reification

Because some readers may not be aware of the field and vocabulary, this section provides a short
introduction. Experts can omit it.

Reflection is a concept arised from the artificial intelligence field, as the ability of a system
to reason about and act upon itself. Reflection is about meta-computation, i.e. computation
about computation. This was considered as an emergent property responsible for intelligent be-
havior [Costa Soria, 2011]. More then 30 years passed since Smith introduced the reflection con-
cept in his doctoral dissertation [Smith, 1982]. Meanwhile, reflection become popular and spread
to other fields, such as object-oriented systems [Cazzola, 1998], middleware [Kon et al., 2000 ;
Costa et al., 2006], software architectures [Cuesta et al., 2002] or dynamic petri nets [Capra et Cazzola,
2009]. This was mainly thanks to the contributions of Pattie Maes, who contributed to summarize the
existing notions about reflection:

“Computational Reflection is the activity performed by a computational system when
doing computation about (and by that possibly affecting) its own computation.

A reflective system is a computational system which is about itself in a causally con-
nected way. ” [Maes, 1987]

Reflective systems are generally structured in two levels: the base-level and the meta-
level [Costa Soria, 2011].

The base-level provides the system’s functionality. It defines a computational system (i.e. a set
of computational elements) that reasons about and acts upon some part of the world, usually called
the domain of the system. This level incorporates internal structures representing the domain and a
program prescribing how these structures may be manipulated.

On the other hand, the meta-level1 provides the reflective capability. It defines a computational
system that reasons about and acts upon another computational system, i.e. the defined in the base-
level (the base-system). Thus, it incorporates structures representing the base-level and a program
that manipulates and changes such structures.

Both levels, the meta-level and the base-level, are causally connected: the structures defined in
the meta-level and the domain they represent (i.e. the base-level) are linked in such a way that if one
of them changes, this leads to a corresponding effect upon the other [Maes, 1987]. In other words, the
changes performed by the meta-level on its data structures are reflected somehow in the real system,
i.e. the base-level. In order to observe or change something, this must be represented in a way that a
program can manipulate it.

1In general, the term meta- refers to an artifact that reasons and acts upon another artifact. For instance: a meta-
component is a component that acts upon components.

146 Chap 5. Integrating reflection

This is addressed in the notion of reification, which is the action of exposing the internal repre-
sentation of a system in terms of programming entities that can be manipulated at run-time. The
opposite process is called reflection2, which effects the changes made to the reified entities into the
system. There are many definitions of reification, like [Malenfant et al., 1996], but these definitions
may induce to confusion since they do not refer to the base-level and meta-level a reflective system
is characterized by. This is taken into account in the definition from Carlos E. Cuesta:

“Reification is the process that shifts-up an artifact from the base-level to the meta-level,
where this artifact will be manipulated. Reflection is then the inverse process that shifts-
down the artifact from the meta-level to the base-level. Thus, the reification and re-
flection processes implement the causal connection among the base-level and the meta-
level.” [Cuesta et al., 2002]

Finally, there are two kinds of operations that can be performed at the meta-level: introspection
and intercession. Introspection is the ability of a program to observe, and thus reason, about itself.
That is, it comprises the operations of a program defined at the meta-level which examines the data
structures and program operations of the base-level. Intercession is the ability of a program to modify
its execution state. That is, it comprises the operations of a meta-level program which change the data
structures and program operations of the base-level (see Figure 5.1).

2Some authors prefer not to use the term reflection to define the action of reflecting changes on the base-level, and use
the term absorption instead. The reason is to avoid confusions with the global term of Reflection. However, we prefer the
use of this term to preserve the symmetry of operations, in accordance with [Cuesta et al., 2002].

5.3. Requirements for the meta-model architecture 147

Figure 5.1 : Reflection of software systems [Costa Soria, 2011]

5.3 Requirements for the meta-model architecture

In accordance with COMPO’s philosophy (see Section 3.1), which states that COMPO should be simple,
minimal and uniform as much as possible we need a meta-model architecture with the following
requirements:

Everything is a component to access the reified concepts of COMPO (descriptors, ports , connection
and services) from COMPO itself. This will make it possible to write transformations and verifi-
cations of COMPO applications in COMPO. For example, our previous work [Tibermacine et al.,
2011] shows that architectural constraints can be successfully realized as components. The idea
is attractive when it comes to verification of architectures quality attributes, especially, after an
evolution was performed. In COMPO, a descriptor describes the architecture of its instances
and therefore constraints should be evaluated on descriptors. If we want to apply constraints
realized as COMPO components on an architecture, we need to be able to connect a descriptor
to a constraint component. Consequently, because connections are connecting components
(i.e. instances of descriptors), descriptors should be reified (realized) as components.

Explicit meta-descriptors to model new kinds of descriptors, ports or constraint components. The
ability to design new meta-descriptors opens up the language. The language can be then
adapted to ones needs because it is possible to extend and customize the core concepts of the
language. For example a new communication protocol can be designed by creating a new kind
of port, as we show in Section 5.6.

148 Chap 5. Integrating reflection

Among reflective class-based object-oriented languages (like SMALLTALK [Goldberg et Robson,
1989] or CLOS [Bobrow et al., 1986]), ObjVlisp [Cointe, 1987] provides minimal (only two classes) self-
described definition of its reflective architecture which makes it possible to satisfy these requirements
(in the OO context). The architecture is based on only five postulates (listed below) and is really
minimal, because there is only one kind of object: a class is an object and a meta-class is a class that
creates classes. In other words, there is no distinction between classes and instances. The only sole
difference is the ability to respond to the creation message: new. Only a class knows how to deal with
it. A meta-class is only a class that can create new classes.

ObjVlisp in 5 postulates [Cointe, 1987]

P1 : object = <data, behavior>

P2 : Message passing is the only means to activate an object

P3 : Every object belongs to a class that specifies its data (slots or instance variables)
and its behavior. Objects are created dynamically from their class

P4 : Following P3, a class is also an object therefore instance of another class its meta-
class (that describes the behavior of a class).

P5 : A class can be defined as a sub-class of one or many other classes.

The postulates introduce an infinite recursion: A class is an object and therefore it is
an instance of another class (its meta-class) that is an object too (instance of a meta-
meta-class) that is an object too (instance of another meta-meta-meta-class), etc. To
stop this infinite recursion, ObjVlisp defines Class as both the initial class and meta-
class. Class is an instance of itself and all other meta-class are its instances, as shown
in Figure 5.2.

We adopt the reflection architecture of ObjVlisp for the component-based context and we build
our meta-model by reifying descriptors, ports and services as components. In the following, we refer
this as the component-oriented reification.

Choice 34 Descriptors, ports and services are true components, instances of descriptors DESCRIPTOR,
PORT and SERVICE respectively.

The reason why we do not reify connections is given in Section 5.6 .

5.4. The meta-model 149

Figure 5.2 : ObjVlisp Class is an instance of itself to solve the infinite recursion of the 5 ObjVlisp
postulates.

5.4 The meta-model

This section introduces an adaptation and extension of COMPO’s model presented in Chapters 3 and 4
to allow for structural reflection, i.e. “to provide a complete reification of both a program currently
executed as well as a complete reification of its abstract data types” [Demers et Malenfant, 1995]. At
this point we do not deal with behavioral reflection, although, our global solution makes it possible
to define new kind of ports (see the example later on in this chapter) in which service invocation can
be modified. This is a very limited kind of behavioral reflection.

The MOF model presented in Figure 5.3 describes how its elements, representing the component-
level concepts introduced in COMPO, are organized (inheritance and instance-of relations), as we reify
them as first-class entities accessible in COMPO’s programs. To keep our contextual component-level
terminology: all elements in Figure 5.3 are descriptors. Our reflective architecture is based on the two
following choices:

Choice 35 Descriptor COMPONENT is a basic descriptor and the root of inheritance tree, all descriptors
inherit it

Choice 36 Descriptor DESCRIPTOR is a sub-descriptor of descriptor COMPONENT. It describes descriptors
(it is a meta-descriptor) and is the instance of itself.

Descriptor is the descriptor of descriptors (it resembles to class Class of ObjVlisp), all descriptors
are instances of it. All descriptors inherit from Component, except Component itself which is the root

150 Chap 5. Integrating reflection

2..n

{subset ports}

{subset ports}

owner
prim

itivePorts
has

owner
/ports {union}

has

Prim
itivePort

AbstractPort

Com
ponent is root of inheritance tree

owner

0..n

internal com
ponents

Com
ponents

are instances
of Descriptors

Com
ponent inherits Descriptor

Descriptor is instance of itself

«instanceO
f»

«realizes»

All descriptors are com
ponents

«instanceO
f»

0..n

connectedPorts

«Enum
eration»

Visibility
- internal
- external

owner
norm

alPort
has

«realizes»desc

«Descriptor»
Port

«Enum
eration»

Role
- required
- provided

0..n

item
s

«Descriptor»
Interface

- nam
e

«Descriptor»
ServiceSignatureList

sub-descriptor
0..n super-descriptor

inherits

«Descriptor»
ServiceSignature

selector
param

eters sign

descriptor
0..n

services owns
«Descriptor»

Service
destinationPortDesc

sourcePortDesc

«Descriptor»
ConnectionDescription

- isDisconn : Bool

descriptor

0..n
architecture

owns

descriptor
2..n

portDescs
owns

«Descriptor»
PortDescription

- nam
e : Sym

bol
- role : Role
- visibility : Visibility
- interface : ServiceSignList
- isCollection : Bool

«Descriptor»
Com

ponent

«Descriptor»
Descriptor

- nam
e :Sym

bol

Figu
re

5.3
:T

h
e

m
eta-m

odelofC
om

p
o

sh
ow

in
g

th
e

in
tegration

ofrefl
ection

.
A

llelem
en

ts,excep
tth

e
p

rim
itive

p
orts,in

th
e

sch
em

e
w

ere
reifi

ed
as

C
O

M
P

O
descrip

tors.T
h

e
grayed

color
den

otes
origin

alcon
cep

ts
sh

ow
n

in
Figu

re
3.2.

5.5. First-class descriptors and components 151

of the inheritance tree. All descriptors are components. Descriptor is instance of itself, it is its own
descriptor. This solves at the model level the infinite regression on descriptions (similar to the one of
ObjVlisp 5 postulates).

Our modeling scheme to represent descriptors as components conforms to the MOF solution for
reflection:

“Reflection introduces Object as a super-type of Element in order to be able to have a Type
that represents both elements and data values. Object represents ’any’ value and is the
equivalent of java.lang.Object in Java.” [OMG, 2011a].

Component in Figure 5.3 conforms to MOF::Reflection::Object. Descriptor conforms to
UML::Classes::Kernel::Classifier.

The following sections describe the COMPO’s reflective implementation of the main meta-model
elements of in Figure 5.3. The sections present the associated language constructs and give some
primary examples of their use. Each element of our meta-model is implemented as a COMPO de-
scriptor. The inheritance relations in the meta-model are directly implemented in COMPO using its
descriptor-level inheritance system and its ability to create sub-descriptors of descriptors.

5.5 First-class descriptors and components

The conceptual meta-model in Figure 5.3 and its simplified excerpt in Figure 5.4 show the two ba-
sic concepts: component and descriptor. The component-oriented reifications of those concepts are
represented by descriptors COMPONENT and DESCRIPTOR. The descriptor DESCRIPTOR inherits from the
descriptor COMPONENT, which makes any descriptor a component, and where DESCRIPTOR and COM-
PONENT are descriptors. The fact that DESCRIPTOR is an instance of itself solves the potential infinite
regression induced by the need for anything to have a descriptor.

Figure 5.4 : Excerpt of the meta-model (see Figure 5.3) showing the two basic elements: component
and descriptor with their relations.

COMPONENT defines the basic structure and behavior shared by all components. Definition in
Listing 5.1 shows that all have an external provided port named default described by the univer-

152 Chap 5. Integrating reflection

Descriptor Component {
provides {
default : { getPorts(); getPortNamed(name);

getDescriptor(); getOwner();
getIdentityHash();
}

}
requires { args[] : * }
internally requires {
super : * ofKind SuperPort;
self : * ofKind SelfPort;

}
service getPorts() {...}
service getPortNamed(name) {...}
service getDescriptor() {...}
service getOwner() {...}
service getIdentityHash() {...}

}

LISTING 5.1 : The COMPONENT descriptor.

sal interface * (see Definition 5), an external required collection port args[] to connect arguments
(see Section 3.3.2) and two internal provided ports named self and super. The self port allows a
component to invoke its own services. Service invocations sent through the super port are looked
up starting from the super-descriptor of the descriptor owning the service in which code the service
invocation is emitted (see Chhoice 27).

Our meta-model enables users to define new kinds of ports by creating sub-descriptors of de-
scriptor PORT (see Listing 5.5). In order to be able to define the type of a port in its declaration in a
descriptor, we choose (cf. Choice 37) to provide an operator ofKind.

Choice 37 A port declaration can be made more specific by putting the following statement ofKind
<descriptor> after interface specification. The statement specifies that a port will be created as an
instance of the specified descriptor <descriptor>.

For example, in case of the self and super ports, the ofKind SelfPort and ofKind SuperPort
statements specify that these ports will be created as instances of descriptors SELFPORT and SUPER-
PORT respectively.

Descriptor COMPONENT defines the four following services:

• services getPorts() and getPortNamed(name) return all (external and internal) ports (resp. a
particular port) owned by the receiver. When these services are invoked via the super port, they
return port(s) owned by a component, which are defined by the super-descriptor of the descrip-
tor of the component. For example for a component defined with the following descriptor:

Descriptor A { requires { reqA : { ser1() } } }

5.5. First-class descriptors and components 153

An invocation of service getPorts() sent through port default returns a collection compo-
nent referencing ports default, self, super and reqA of an instance of descriptor A. The ser-
vice return the same result if it is invoked through port self. In case of invocation via port
super the service returns only references to ports default, self and super, because only those
are defined by the super-descriptor (COMPONENT) of descriptor A.

• service getDescriptor() returns the receiver’s descriptor.

• service getIdentityHash() returns the primitive (VM) identity hash of components.

• service getOwner() returns the owning component of the receiver or null if the receiver is not
an internal component

Descriptor Descriptor extends Component
{
internally requires {
name : Symbol; /* an identifier string */
ports[] : PortDescription;
architecture[] : ConnectionDescription;
services[] : Service;

}
service getPorts() {...}
service getPortNamed(name) {...}
service getDescriptor() {...}
service getOwner() {...}
service getDescribedPorts() {...}
service getDescribedConns() {...}
service getService(selector, arity) {...}

service new() {...}
service newNamed(name,superDesc) {...}

service addService() {...}
service removeService(selector,arity) {...}

service addPortDescription(pd) {...}
service removePortDescription(pd) {...}

service addConnDescription(cd) {...}
service removeConnDescription(cd) {...}

}

LISTING 5.2 : The DESCRIPTOR descriptor.

Listing 5.2 shows COMPO definition of DESCRIPTOR. Its definition states (cf. Listing 5.2) that all
descriptors have, in addition to what is defined in COMPONENT, four internal required ports:

• name,

154 Chap 5. Integrating reflection

• ports[], a descriptor has a collection of port’s descriptions (instances of PORTDESCRIPTION, see
Listing 5.3) according to which ports of its instances will be realized.

• architecture[], a descriptor has a description of its instances internal architecture in the
form of a collection of connection’s descriptions (instances of CONNECTIONDESCRIPTION, see
Listing 5.4) according to which connections will be realized.

• services[] to store the collection of services of its instances.

DESCRIPTOR defines services for instance creation. The service new implements the instantiation
mechanism (cf. Section 3.3.1) of COMPO and the newNamed(name, superDesc) service makes it pos-
sible to create new descriptors. There are several services for introspection (various read-accessors
such as getDescribedPorts()) and for intercession (such as addService(service)). These ser-
vices, together with those inherited from COMPONENT set the basis for creating more complex reflec-
tive operations.

Descriptor PortDescription extends Component{
provides {
default : { setName(name); getName(); setRole(role); getRole();

setKind(kind); getKind(); setInterface(intf);
getInterface(); setVisibility(vis); getVisibility();
isCollection(); setIsCollection(bool);

}
}
internally requires {
name : Symbol;
role : Symbol;
visibility : Symbol;
interface : Interface;
kind : Symbol;
isCollectionPort : Bool;

}
}

LISTING 5.3 : The PORTDESCRIPTION descriptor.

Meta-descriptors provide a definition of the descriptors. An important benefit of first-class status
of descriptors is customization of the descriptors behavior [Ledoux et Cointe, 1996], i.e. the ability
to assign properties to descriptors (e.g. being abstract, being safely-substitutable, supporting mul-
tiple inheritance), independently from the base-level code. Because descriptors have the ability to
manipulate their own structures, they can implement a program introspection. Consequently, meta-
descriptors support a circular definition of the system reducing the boundary between users and im-
plementors. In the rest of this section we present basic examples of using introspection, intercession
and an example of a new kind of meta-descriptor.

Figures 5.5 and 5.6 show diagrams of component-based reifications of the component and de-
scriptor concepts.

5.5. First-class descriptors and components 155

Descriptor ConnectionDescription extends Component {
provides {
default : { getSourceComponent(); getSourcePort(); getDestinationComponent();

getDestinationPort(); getKind(); setSourceComponent(scd);
setSourcePort(spd); setDestinationComponent(sdc);
setDestinationPort(sdp); isDisconnection();
setIsDisconnection(bool);

}
}
internally requires {
sourceComponent : Symbol;
sourcePort : Symbol;
destinationComponent : Symbol;
destinationPort : Symbol;
isDisconnection : Bool;

}
}

LISTING 5.4 : The CONNECTIONDESCRIPTION descriptor.

Figure 5.5 : A diagram of a component-based reification of the component concept. Greyed parts
denote inherited parts.

156 Chap 5. Integrating reflection

Figure 5.6 : A diagram of a component-based reification of the descriptor concept. Greyed parts
denote inherited parts.

5.5. First-class descriptors and components 157

An introspection example The following code snippet shows a basic use of introspection. The ex-
pression returns the descriptions (i.e. instances of descriptor PORTDESCRIPTION, see Listing 5.3) of
ports default, self and super, which are defined by the descriptor COMPONENT, see Listing 5.1.

Component.getPortNamed(’default’).getDescribedPorts();

An intercession example The following code snippet shows the descriptor (named SERVICEMOVER)
of a refactoring component, which combines get, remove and add services to move a service from
one descriptor to another.

Descriptor ServiceMover {
requires {

srcDesc : Descriptor;
destDesc : Descriptor

}
service move(selector) {

|srv|
srv := srcDesc.getService(selector);
destDesc.addService(srv);
srcDesc.removeService(selector);

}
}

An example of defining a meta-descriptor DESCRIPTOR is a meta-descriptor. A new meta-descriptor
can be defined by extending it. As an example, consider the following issue. Having an inheritance
system, it is possible for a sub-descriptor SD to define new required ports, thus adding requirements
to the contract defined by its super-descriptor D. In such a case, the substitution of an instance of D
by an instance of SD needs specific checking (child-parent incompatibility problem 4.6 of inheritance
systems in the component-based context). It may be wanted to define some descriptors that do not
allow their sub-descriptors to add new requirements. Such a semantics is achieved by the DESCRIP-
TORFORSAFESUBSTITUTION definition shown in the following code snippet. The meta-descriptor ex-
tends the descriptor DESCRIPTOR and specializes its service addPortDescription, which implements
the capability to add a port description. The service is redefined in a way that it signals an exception
each time it is tried to add a description of an external required port.

158 Chap 5. Integrating reflection

Descriptor DescriptorForSafeSubstitution extends Descriptor
{
service addPortDescription(portDesc) {

| req ext |
req := portDesc.isRequired();
ext := portDesc.isExternal();
if (reg & ext)
{ error(’no new reqs. allowed’); }
else { super.addPortDescription(portDesc); }

}
...

}

An instance (a new descriptor) of the DESCRIPTORFORSAFESUBSTITUTION meta-descriptor named
TESTDESCRIPTOR extending descriptor COMPONENT could then be created by the following expressions:

• Run-time creation

DescriptorForSafeSubstitution.newNamed(‘TestDescriptor’, Component);

• Static creation

DescriptorForSafeSubstitution TestDescriptor extends Component
{ ... }

To conclude this part on components and descriptors, let us show the PORTDESCRIPTION and CON-
NECTIONDESCRIPTION descriptors, see Listings 5.3 and 5.4 respectively. They simply declare a single
provided port through which they offer getter and setter services for accessing the descriptor level
descriptions of ports and connections. Such descriptions are useful to achieve static or dynamic
architecture checking or transformation. In the case of a run-time transformation, a COMPO’s im-
plementation should ensure that these descriptor level descriptions and the internal representation
of descriptor instances are causally connected. When the description changes, all instances should
automatically be updated.

5.6 First-class ports

Generally the “port” concept is a higher-level abstraction of references known from OOP. Ports con-
cern connections between components and communication, i.e. service invocations sent through
them. They explicitly represent connection points and implicitly represent references. Their first-
class status opens, in an explicit and simple way, the “door” to program-based manipulation of:
(i) connection points, (ii) connections and (iii) service invocations. Thus, they make it possible to
achieve scenarios similar to the ones in the object-oriented context, where first-class references are
introduced [Arnaud et al., 2010] or the ones where custom lookup objects are needed [Vraný et al.,
2012].

5.6. First-class ports 159

To reify ports are components is important for model verification and transformations and also
to allow for defining new kinds of ports introducing new communications protocols. For example, a
developer can create a new kind of port, which implements request/response protocol, i.e. for each
service invocation sent via such a port, there should be a confirmation that the invocation was well
received. It however induces two potential infinite regressions.

The first infinite regression is related to the definition: “a port is a component having ports”. To
solve the recursive nature of that definition we restrict the language capabilities by altering the def-
inition in the following way: “a port is a component having primitive ports”. The restrictions are
captured by Definition 20 and Choice 38 introducing primitive ports:

Choice 38 A port is a component and its ports are primitive ports.

Definition 20 (Primitive port) A primitive port behaves like a port but is not a component. Ports de-
clared in the PORT descriptor (or its sub-descriptors) are automatically made primitive to avoid infinite
regression.

The second infinite regression is related to the fact that if ports are components, a component and
one of its ports, should be connected via ports. To solve this, the attachment of a port to its owning
component has to be primitive and in conjunction a language special construct is needed to provide
access to a port seen as a component.

Similar issues would apply with first-class connections in the case where components are directly
connected via ports. Having a solution where components are connected via theirs ports, we can
consider connections between ports as primitive entities (references), and we do not need to reify
connections. This entails no limitation regarding the capability to experiment with various kinds of
connections [Mehta et al., 2000] because our model makes it possible to define new kinds of ports
and because of the capability it offers to put an adapter component in between any components.

The listing 5.5 shows the COMPO’s definitions of the PORT descriptor that implements the Port
concept and its sub-descriptor COLLECTIONPORT that implements collection ports. The descriptor
PORT states that each port has:

• an owner, any port is owned by a component. A port is connected to its owner through external
required port owner

• a set of connected ports (to which the port is connected) realized with external required collec-
tion port named connectedPorts[]

• a set of delegated ports (to which the port is delegated) realized with external required collection
port named delegatedPorts[]

• a name symbol-component connected to the internal required port name

• an interface connected to the internal required port interface

160 Chap 5. Integrating reflection

PORT defines services for port introspection (e.g. getName(), ...) and port intercession (e.g.
connectTo(port), invoke(service), ...). The difference between descriptors PORT and COLLECTION-
PORT is the implementation of services connecTo, disconnect and invoke. Where COLLECTIONPORT

descriptor manages the multiplicity of connections while PORT descriptor implements the services so
that only one connection is possible.

Descriptor Port extends Component
{
requires {
owner : IComponent
connectedPorts[] : IPort
delegatedPorts[] : IPort

}
internally requires {
name : IString;
interface : IInterface

}
service getName(){...}
service getIterface(){...}
service invoke(service){...; <primitive_invoke>; ...}
service isConnected(){...}
service isDelegated(){...}
service connectTo(port){...; <primitive_connectTo>; ...}
service disconnect(){...}

}

Descriptor CollectionPort extends Port
{
service invoke(service,index){...}
service connectTo(port){...}
service disconnect(index){...}

}

LISTING 5.5 : The descriptors PORT and COLLECTIONPORT

Services invocations are made via ports, for example the expression
printingPort.print(’hello’), where printingPort is a port of a component c, will invoke
the service print of the component connected to c via printingPort. To use printingPort as a
component, to send it a service invocation for example, requires a correct way to reference it, i.e.
conforming to COMPO’s meta-model and semantics. Such a correct way is to have a required port
connected to the default provided port of printingPort seen as a component (see Figure 5.7.) To
achieve this, we have introduced the & operator, for any port p, &p is such a required port.

Definition 21 (The & operator) The & operator applied on a port, i.e. &<portName>, returns an on-
demand created primitive internal required port, which is automatically connected to the default
port of the component representing (reifying) port <portName>.

Because primitive ports are not reified, the application of the & operator on a primitive port re-

5.6. First-class ports 161

turns itself, then a double application of the operator returns the same result as a single application,
i.e. &printingPort == &&printingPort.

In the previous example, it is possible to write:

&printingPort.isConnected();

&printingPort is a primitive internal required port which is created on-demand (for perfor-
mance reasons) and automatically connected to the default port (see Choice 10), itself a primitive
port, of the printingPort port seen as a component. Invocations sent through such a port are in-
vocations sent to the component representing the printingPort port. An example of use of the &
operator is given in the next paragraph.

Figure 5.7 : The & operator for accessing the component-oriented reification of the printingPort
port of an instance of descriptor TEXTEDITOR

Example: A new kind of port - an aspect port Listing 5.6 shows a toy integration of basic aspects
to serve as an illustrating example. Descriptor ASPECTPORT defines in COMPO a new kind of required
ports that have a special required port named aspectComp, to be connected to any component having
before and after services, let’s call such a component an aspect component. Descriptor ASPECTPORT

redefines the standard service invocation semantics of ports so that the before and after services of
the aspect component are invoked before and after the standard invocation.

The descriptor TEXTEDITOR shows (in Listing 5.7 a use of an aspect-port (note the ofKind operator
to specify that an aspect required port is used).

Finally, we create an application (described by descriptor APPLICATION) which assemble an in-
stance of TEXTEDITOR with a printer component, see Listing 5.7. The last connect statement in the
architecture section of APPLICATION descriptor says that the aspectComp port of the aspect-port, here
used as a first-class component accessed via internal required port &textEd, should be connected to
the default provided port of a MYASPECTCOMPONENT, see Figure 5.8.

Example: A new kind of port - a read-only port Listing 5.8 shows the READONLYPROVIDEDPORT de-
scriptor realizing a new kind of provided ports through which only services with no side effect on the
architecture, i.e. services not affecting the internals of the component, could be invoked. It redefines

162 Chap 5. Integrating reflection

Figure 5.8 : The visualization of the use of an aspect-port

Descriptor AspectPort extends RequiredPort {
requires { aspectComp : {before(); after(); }}
service invoke(service) {
aspectComp.before();
super.invoke(service);
aspectComp.after();}

}

LISTING 5.6 : The example of creating an aspect-port

Descriptor MyAspectComponent {
provides { default : {before(); after()}}
service before(){...}
service after(){...}

}
Descriptor TextEditor {
requires { printer : {print()} ofKind AspectPort }
...

}
Descriptor Application {
internally requires {
textEd : TextEditor;
printer : Printer;

}
architecture {
connect textEd to default@(TextEditor.new());
connect printer to default@(Printer.new());
connect aspectComp@(&textEd) to default@(MyAspectComponent.new());

}
}

LISTING 5.7 : The example of using an aspect-port

5.7. First-class services 163

the standard service invocation to check whenever it is correct or not to invoke the requested service
and it also redefines the standard connecting service in a way that a provided port of kind read-only
can be delegated to only another read-only port.

Descriptor ReadOnlyProvidedPort extends ProvidedPort
{
service invoke(service) {
|bool1 bool2|
bool1 := owner.implements(service);
bool2 := owner.isConstantService(service);
if(bool1.and([bool2]))
{ super.invoke(service); }
else { ... }

}
service connectTo(port) {
if(port.getDescriptor().isKindOf(ReadOnlyPort))
{ super.connectTo(port); }

}
}

LISTING 5.8 : The example of creating and using an aspect-port

The explicit status of ports is a way to further control references between entities. For example,
the above case of aspect required ports represents a way to realize a join point defined for all the users
of a component having such a port. Or, the read-only example illustrates the fact that using different
kinds of provided ports can facilitate different view-points on a component, in this case the read-only
view-point.

5.7 First-class services

Services implement the behavior of components. Refactoring operations (add, remove, move), run-
time behavior modification, JIT compilation and other features are possible when services do have
first-class status. There are two aspects of services reflection: structural aspect and behavioral as-
pect. Structural reflection focus on reification of formal parts of services like name, parameters, etc.
Behavioral reflection focus on reification of concepts from which behavior description is composed,
i.e. assigments, invocations, etc. We only deal with structural reflection of services, we do not imple-
ment behavior reflection, because it may lead to inefficient programs [Malenfant et al., 1992].

The reification of services is based on the analysis of services’ structure. The Listing 5.9 shows an
example of a service which converts miles to kilometers. It has the following structure: temporary
variables (const and result), parameters (miles), context (calc, self, super) and body (code). A
component diagram showing this structure is shown in Figure 5.9. Taking into account the analysis
of the structure of services the milesToKms service from Listing 5.9 can be rewritten as shown in
Listing 5.10.

Listing 5.11 shows the COMPO implementation of the Service descriptor. Each service has a sig-
nature (port serviceSign to which an instance of ServiceSignature descriptor will be connected),
Temporary variables names and values (collection ports tempsN[] and tempsV[] ports), a program

164 Chap 5. Integrating reflection

service milesToKms(miles) {
| const result |
const := 1.609;
result := calc.mul(miles, const);
return result;

}

LISTING 5.9 : Analysis of services structure, the milesToKms example.

service milesToKms(miles) {
tempsV[1].connectTo(1.609);
tempsV[2].connectTo(context.getPortNamed(’calc’).mul(paramsV[1], tempsV[1]));
return tempsV[2];

}

LISTING 5.10 : Analysis of services structure, the milesToKms example from Listing 5.9 in structural
perspective

Figure 5.9 : Reification of services, the miles-to-kms example.

5.7. First-class services 165

text (port code), the inherited args[] collection port to connect invocation arguments, an execu-
tion context (port context, to be connected at run-time to a component representing an execution
context).

The service execute() checks if all requirements are satisfied (notice the use of the & operator),
i.e. if a context component and parameter values are connected. Then it performs a system primitive
to execute the code.

Descriptor Service extends Component
{
provides { default : {execute(); setSignature(sign); getSinature(); }}
requires {
context : Component;

}
internally requires {
serviceSign : ServiceSign;
tempsN[] : Symbol;
tempsV[] : *;
code : String;

}
architecture { ... }
service execute() {
|bool1 bool2|
bool1 := &context.isConnected();
bool2 := ¶msV.isConnected();
if(bool1 & bool2)
{
return <primitive_execute>;

}
}

}

LISTING 5.11 : The SERVICE descriptor.

The SERVICESIGNATURE descriptor definition is in Listing 5.12, its instances are pretty simple, they
provide services to store and access selectors, and parameter names of services.

Descriptor ServiceSignature extends Component {
provides {
default : { setSelector(name); getSelector(); getParamsCount();

getParamName(index); setParamName(index); }
}
internally requires {
name : Symbol;
paramNames[] : Symbol;

}...
}

LISTING 5.12 : The PORTDESCRIPTION descriptor.

Standard services are created with statement having the following template: service

166 Chap 5. Integrating reflection

<selector>(<param1>,<param2>,...,<paramN>) { <body> }. Having first-class ser-
vices opens a way to implement closures-like anonymous services. Although this
is an experimental feature of COMPO, it seems to be a step in a right direction.
Users can create anonymous services by the statement with the following template:
[:<param1>,:<param2>,...,:<paramN>|(|<temp1>,...,<tempN>|) <code>], for example:
[:x, :y | return x + y;].

Since services are first-class citizens it is possible to pass them as arguments of services invoca-
tions. To preserve the safety of the context component of a service (representing the environment of
the service) we prevent invocations of internal services of the context component by automatic re-
connection of the required port context of a service being passed (as argument) to the default port
of its context component.

A (receiver) service which receives another service as an argument has to be able to connect values
to the args port of the argument. For example, suppose that the foreach service has been invoked
as follows: x.foreach([:e| self.add(e)]);, then the following code snippet shows the need for
connecting the args port:

service foreach(closure) {
|i|
for(i:=0;i<self.size();i:=i+1)
{

connect args@closure to default@(self.at(i));
closure.execute();

}
}

The standard semantics of connect-to statement (see Chhoice 18) forbids to use, in the code of a
service, a value of a service parameter (argument) to build a regular or delegation connection. As we
explain in Section 3.3.2, such a restrictive semantics preserves the communication integrity, because
it does not allow to make connections to a component (possible an internal component) which is
passed as an argument. But, in case of first-class services, we believe that the potential brought by
the ability to pass a component representing a service as an argument is a reasonable excuse for the
following choice:

Choice 39 As an experimental exception to the rule captured by Choice 18, we allow to use a service
being passed as an argument for building connections.

Example: invoking the milesToKms service In this example we show how does things go when a
map component requires and later invokes the milesToKms service of a convertor component. List-
ing 5.13 shows descriptors MAP and CONVERTOR of the map and convertor components respectively.
To make things more interesting, suppose that both the map and convertor components are each
wrapped in a different composite, i.e. each is an internal component of a composite, and these com-
posites are connected. Figures 5.10, 5.11 and 5.12 illustrate this situation and a scenario when the

5.7. First-class services 167

service foo of the map componet invokes the milesToKms service of the convertor component. We
divide the invocation scenario into 3 phases captured by the figures:

Phase 1 Figure 5.10 shows how the foo of map emits the milesToKms invocation through port conv
and the way how it is passed via delegation and regular connections to the default port of the
convertor. The invocation path conforms to the service invocation mechanism of COMPO (cf.
Section 3.3.2)

Phase 2 Figure 5.11 shows how the miles parameter of the milesToKms service is automatically con-
nected to the trckLen argument of the invocation. The argument passing conforms to argument
passing technique of COMPO (cf. Section 3.3.2)

Phase 3 Figure 5.12 show how the milesToKms service computes and returns the result. The return
value is passed back and its clone (thanks to the assignment operator :=) is connected to the
trckLen internal required port of map. This conforms to the Choices 18 and 19 that we have
made in Section 3.3.2.

Descriptor Map extends Component {
requires { conv : Convertor }
internally requires { trckLen : Number }
service foo() {
...
trckLen := 2;
trckLen := conv.milesToKms(trckLen);
...

}
}
Descriptor Convertor extends Component {
provides { default : { milesToKms(miles); } }
service milesToKms(miles) {
| const result |
const := 1.609;
result := calc.mul(miles, const);
return result;

}
}

LISTING 5.13 : The MAP and CONVERTOR descriptors

168 Chap 5. Integrating reflection

Figu
re

5.10
:A

n
illu

stration
ofth

e
milesToKms

exam
p

le
5.7

-
Ph

ase
1

5.7. First-class services 169

Fi
gu

re
5.

11
:A

n
ill

u
st

ra
ti

on
of

th
e
mi
le
sT
oK
ms

ex
am

p
le

5.
7

-
Ph

as
e

2

170 Chap 5. Integrating reflection

Figu
re

5.12
:A

n
illu

stration
ofth

e
milesToKms

exam
p

le
5.7

-
Ph

ase
3

5.8. Related work 171

5.8 Related work

This section discuss the reflection capabilities of the three families (cf. Section 2.2.1) of component-
based approaches.

The generative family The static nature of ADLs also do not match with reflection very well [Med-
vidovic et Taylor, 2000]. Reflection or at least introspection capabilities depend on code which is
generated from architectures that these ADLs describe. For example, reflection is partially supported
in C2 [Medvidovic et al., 1996] through context reflective interfaces. Each C2 connector is capable of
supporting arbitrary addition, removal, and re-connection of any number of C2 components. UML 2
provides support for CBSE. UML itself is not a reflective language, but its meta-model (defined with
MOF [OMG, 2011a]) is. Reflection capabilities (manipulation of properties, invoke method, instance
creation, etc.) provided by MOF are specifications only, i.e. there is no support for run-time reflection
capabilities (as we introduced in COMPO).

The framework family Existing middleware technologies and standards provide very limited sup-
port for platform openness, usually restricted to high-level services, while the underlying platform is
considered a black box. Recently, technologies such as interceptors, are a trend towards more open-
ness. Nevertheless, the kind of openness provided is still limited to a few aspects of the platform.

CORBA Component Model (CCM) [OMG, 2012], Enterprise Java Beans (EJBs) [Oracle, 2012] or
Component Object Model (COM) [Microsoft, 2012] do not provide support for explicit architecture
definition, the black-box approach they support does not fit with reflection very well. Introspection
interfaces, which can be used to discover the capabilities of components, are the only reflection ca-
pability they offer. For example CCM Navigation interface for discovering facets (provided ports) or
IUnknown interface in COM for discovering external (client and server) interfaces of a COM object.
The interface EJBContext defines methods to retrieve references to the bean’s EJB home and remote
interfaces classes, then normal Java reflection can be used to introspect the methods available to a
client.

Only very few solutions consider reflection as a general approach which can be used as an over-
all framework that encompasses platform customization and dynamic reconfiguration. These mod-
els try to overcome the limitations of black-box approach by providing components with meta-
information about their internal structure.

Projects OpenCORBA [Ledoux, 1999] and DynamicTAO [Kon et al., 2000] adopt reflection as a
principled way to build flexible middleware platforms.

OpenCORBA is based on the meta-class approach and on the idea of modifying the behavior of a
middleware service by replacing the meta-class of the class defining that service. This is mainly used
to dynamically adapt the behavior of remote invocations, by applying the above idea to the classes of
stubs and skeletons.

DynamicTAO is a CORBA compliant reflective ORB, which makes explicit the architectural struc-
ture of a system in a causally connected way. Component configurators keep the consistency of de-
pendencies as new components are added or removed from the system. Reflection capabilities are

172 Chap 5. Integrating reflection

limited to coarse-grained components, without possibility to control more detailed structures of the
platform.

OpenCOM [Clarke et al., 2001] (a lightweight and efficient component model based on COM) en-
ables users to associate (dissociate) interceptor components with (from) some particular interface or
to obtain all current connections between the host components’ receptacles and external interfaces.

Many reflection capabilities are supported in Fractal [Bruneton et al., 2006] component model,
but the capabilities vary depending on kinds of Controllers (e.g. Attribute controller, Binding con-
troller, Content controller, ...) a Fractal component membrane contains. The Fractal specification
provides several examples of useful forms of controllers, which can be combined and extended to
yield components with different introspection and intercession features. An advanced example of
using controllers is FraSCAti [Seinturier et al., 2012] model for development of highly configurable
SCA solutions. In COMPO, reflection capabilities are the same for all components (an orthogonal
model). In addition, we go further in the reification of component-level concepts: services, ports and
descriptors are components.

Furthermore, middleware component models are often designed to be platform independent.
Then, for each platform, the tool support of these models generate code skeletons to be filled
later. Consequently run-time transformations on components and their internal structure are
performed through objects and not components. For example SOFA [Hnětynka et Plášil, 2006 ;
Bures et al., 2006] reifies connectors. It is thus possible to specify high-level connectors within archi-
tecture descriptions. But finally, each primitive part of a connector specification has to be mapped
by developers to some (object-oriented) code. Then reflection can be used if it is provided by this
target (object-oriented) implementation language. In this case however, reflection does not address
component-level concepts as in COMPO.

Models@runtime [Blair et al., 2009] stream pushes the idea of reflection one step further by con-
sidering the reflection layer as a real model that can be uncoupled from the running architecture (e.g.
for reasoning, validation, and simulation purposes) and later automatically re-synchronized with its
running instance.

MetaORB [Costa et al., 2006] proposes the design time use of models to generate MetaORB config-
urations, and, at run-time, the use of these same models as the causally connected self-representation
of the middleware components that is maintained by the reflective meta-objects for the purposes of
dynamic adaptation. MetaORB provides the meta-information management with a principled re-
flective meta-level. This has the benefit of unifying the use of meta-information in the system (e.g.
preventing that different meta-object implementations use different meta-level representations), as
well as providing a basis to closely integrate the configuration and adaptation features of the plat-
form. In contrast to COMPO’s orthogonal model where a change to a descriptor is propagated to all its
instances, MetaORB reflection is based on per-object meta-objects, enabling to isolate the effects of
reflection.

All Kevoree concepts (Component, Channel, Node, Group) obey the object type design pattern to
separate deployment artifacts from running artifacts. In opposite to COMPO, where reflection capa-
bilities are similar to all entities, Kevoree’s adaptation capabilities depend on different types of nodes.

The adaptation engine relies on a model comparison between two Kevoree models to compute

5.9. Summary 173

a script for a safe system reconfiguration; execution of this script brings the system from its current
configuration to the new selected configuration. Such adaptation scripts are written by designers,
or they can be generated by automated processes (e.g. within a control loop managing the Kevoree
system). In fact, the adaptation scripts are comparable to model transformations written in COMPO.

The above described component models provide many sophisticated means for creating adapt-
able dynamic component-oriented solutions, but, in opposite to component-based programming
languages like COMPO, they use object-oriented programming to implement component-based soft-
ware. Therefore there is no continuum to achieve the various stages of component-based software
development using the same conceptual model.

The Component-oriented languages family The big advantage of component-oriented languages
(COLs) is that they do not separate architectures from implementation and so they have potential to
manipulate reified concepts. In opposite to COMPO, component-level concepts are often reified as
objects, instead of components. This leads to a mixed use of component and object concepts. For
example reflection package of ArchJava [Aldrich et al., 2002] specifies class (not component class)
Port which represents a port instance. Very often the representations are not causally connected
to concepts they represent. In case of ArchJava, which relies on Java reflection, the reason is that
reflection in Java is mostly read-only, i.e. introspection support only.

Reflection is not explicitly advocated in ComponentJ [Seco et al., 2008]. It however appears that
a running system certainly has a partial representation of itself to allow for dynamic reconfiguration
of internal architectures of components as described in [Seco et al., 2008] but it seems to be a local-
ized and ad.hoc capability, the reification process being neither explicited nor generalized as in our
proposal.

5.9 Summary

In this chapter, we have described an original meta-model for a reflective component-based pro-
gramming language allowing for standard application development, and for static or run-time model
and program transformations. We have proposed concrete, adapted (first-class descriptors) or new
(first-class ports), dmd meta-level solutions for a component-based reification of concepts leading to
a “everything is a component” operational development paradigm.

Such a reflective language offers a continuum to achieve the various stages of component-based
software development in the context of one language. For example a programmer can design a
component-oriented architecture, then verify the architecture’s properties and then seamlessly fill
it in with code, all using COMPO. As a reflective language gives access (via meta-components) to ele-
ments of the component-based meta-model, COMPO also makes it possible to design and implement
new component-based constructs (as exemplified with achieving a new kind of ports).

A key issue is uniformity. We have described a full component-based meta-model and a reflective
description in COMPO of its main component descriptors made executable via a concrete implemen-
tation. This opens the essential possibility that architectures, implementations and transformations
can all be written at the component level and using a unique language. The final solution is thus
extensible and permits to achieve various applications and modeling scenarios.

174 Chap 5. Integrating reflection

The following sub-section is a recapitulation of the definitions and the choices that we have made
for COMPO in this chapter.

5.9.1 Definitions made

Primitive port A primitive port is a rock-bottom entity that cannot be created by users and cannot
be used as a first-class entity. It implements the behavior of standard ports. Every port declared
within the PORT descriptor is automatically primitive. (cf. 20

The & operator The & operator applied on a port, i.e. &<portName>, returns on demand cre-
ated primitive internal required port, which is automatically connected to the default port
of the component representing (reifying) port <portName>. Is true that &<portName> ==
&&<portName> (double application returns the same result). (cf. 21)

5.9.2 Choices made

Choice 34 Descriptors, ports and services are true components, instances of descriptors DESCRIPTOR, PORT

and SERVICE respectively.

Choice 35 Descriptor COMPONENT is a basic descriptor and the root of inheritance tree, all descriptors in-
herit it

Choice 36 Descriptor DESCRIPTOR is a sub-descriptor of descriptor COMPONENT. It describes descriptors (it
is a meta-descriptor) and is the instance of itself.

Choice 38 A port is a component having primitive ports.

Choice 37 A port declaration can be made more specific by putting the following statement ofKind

<descriptor> after interface specification. The statement specifies that a port will be created
as an instance of the specified descriptor <descriptor>.

Choice 39 As an experimental exception to the rule captured by Choice 18, we allow to use a service being
passed as an argument for building connections.

C
H

A
P

T
E

R 6
COMPO in Practice

If A is success in life, then A = x + y + z. Work is
x; y is play; and z is keeping your mouth shut.

Albert EINSTEIN.

Preamble

Smaller examples of using composition, inheritance, introspection, intercession and meta-modeling
have already been given in the previous chapters. In this chapter we present a complete architecture de-
sign of the HTTP server which was used previously in these examples. Then we present an example of hi-
erarchy modeling, where COMPO’s inheritance system plays the main role. We also benchmark COMPO’s
reflection capabilities and its meta-model in an example of architecture transformation and architec-
ture constraint verification. We show how architecture constraints can be executable and reusable.

176 Chap 6. COMPO in Practice

6.1 Designing an HTTP server

IN this example we present a descriptor named HTTPSERVER (cf. Listing 6.1) which models a simple
HTTP server that receives HTTP requests from network, processes these requests and finally cre-

ates and sends the responds. The intent of this example is to show the architecture description power
of COMPO.

The descriptor provides the services run and status through the default provided port. It states
that a server is composed of two internal components, an instance of FRONTEND accessible via the
internal required port fE, and an instance of BACKEND accessible via the internal required port bE.
These internal components are connected together so that the front-end can invoke services of the
back-end. The HTTPSERVER descriptor explicitly defines the implementation of the status service.
The provided service run is implemented by a delegation connection to the provided port default of
the front-end. Figure 6.1 shows a diagram that represents such a server component.

Figure 6.1 : The diagram shows a logical representation of an instance of the HTTPSERVER descriptor
presented in Listing 3.1, after it has been created and initialized.

Listing 6.2 shows the FRONTEND descriptor. The descriptor specifies one provided port named
runnable providing the services run and isListening service. It also specifies one required port
named backEnd through which it requires the handleReq(r) service. Internally, it defines two inter-
nal required ports. The first port is named rR (request receiver) and described by the interface of the
default provided port (see Section 10) of the REQUESTRECEIVER descriptor. The second port is named
s and described by the interface of the default provided port of the TASKSCHEDULER descriptor. In the
architecture section, we declare two delegation connections and three regular connections (see Sec-
tion 3.2.4 for more details about delegation and regular connections.) The first delegation connection
says that the external provided port runnable delegates service invocations to the default port of the
internal component connected to the rR internal required port. The second delegation connection
says that the external required port handler of the internal component connected to the rR internal
required port delegates service invocations to the backEnd required port. The first two regular con-
nections connect new instances of TASKSCHEDULER and REQUESTRECEIVER descriptors to the internal

6.1. Designing an HTTP server 177

Descriptor HTTPServer {
provides {
default : { run(); status() }

}
internally requires {
fE : FrontEnd;
bE : BackEnd;

}
architecture {
connect fE to default@(FrontEnd.new());
connect bE to default@(BackEnd.new());
delegate default@self to default@fE;
connect backEnd@fE to default@bE;

}
service status() {
if(fE.isListening())
{
return name.printString() + ’ is running’

}
else
{
return name.printString() + ’ is stopped’

}
}

}

LISTING 6.1 : The HTTPServer descriptor.

required ports s and rR respectively. The last regular connection defines that the two internal com-
ponents (request-receiver and task-scheduler) are interconnected. Finally the descriptor implements
services isListening and run. Diagram in Figure 6.2 shows an instance of the FRONTEND descriptor.

Figure 6.2 : A diagram of an instance of the FRONTEND descriptor

The back-end component processes and creates responds for the requests. For each request, the
BACKEND descriptor creates an instances of REQUESTHANDLER descriptor. Listing 3.2 shows the BACK-

178 Chap 6. COMPO in Practice

Descriptor FrontEnd {
provides {

runnable : { run(); isListening(); }
}
requires {

backEnd : { handleRequest(r) }
}
internally requires {

rR : RequestReceiver;
s : TaskScheduler;

}
architecture {

delegate default@self to default@rR;
delegate handler@rR to backEnd@self;
connect s@self to default@(TaskScheduler.new());
connect rR@self to default@(RequestReceiver.new());
connect rR@self to schedule@self;

}
service isListening() {

return rR.isRunning();
}
service run() {

...
}

}

LISTING 6.2 : The FrontEnd descriptor

END descriptor. The descriptor specifies one provided port named reqHa (request handler), providing
the handleReq(r) service.

Internally, it defines three internal required ports. The first port is named analyzer and described
by the interface of the default provided port (see Section 10) of the REQUESTANALYZER. The second port
is named logger and described by the interface of the default provided port of the LOGGER. The third
port is a collection port named handler and described by the interface of the default provided port
of the REQUESTHANDLER.

In the architecture section, we declare one delegation connection and three regular connections
(see Section 3.2.4 for more details about delegation and regular connections.) The delegation con-
nection says that the external provided port reqHa delegates service invocations to the inReqHa port
of the internal component connected to the analyzer internal required port. The first two regu-
lar connections connect new instances of LOGGER and REQUESTANALYZER descriptors to the internal
required ports logger and analyzer respectively. The last regular connection defines that the two in-
ternal components are interconnected between the logger and logging ports. Finally we can see
the implementation of the service addHandler service which dynamically adds and connects new
instances of the REQUESTHANDLER descriptor. The newly created components are connected to the
handlers internal required collection port and then each newly created component is connected to
the outReqHa external required collection port of the analyzer component, which is an instance of

6.1. Designing an HTTP server 179

Descriptor BackEnd {
provides {
reqHa : { handleReq(httpRequest); }

}
requires {
reqHa : { handleReq(r) }

}
internally requires {
analyzer : RequestAnalyzer;
logger : Logger;
handlers[] : RequestHandler

}
architecture {
delegate reqHa to inReqHa@analyzer;
connect logger to default@(Logger.new());
connect analyzer to default@(RequestAnalyzer.new());
connect logger@analyzer to logging@logger;

}
service addHandler() {
|i|
i := connect handlers to default@(RequestHandler.new());
connect outReqHa@analyzer to reqHa@handlers[i];

}
}

LISTING 6.3 : The BackEnd descriptor

the REQUESTANALYZER shown in Listing 6.4. Diagram in Figure 6.3 shows an instance of the BACKEND

descriptor.

Descriptor RequestAnalyzer {
provides {
inReqHa : { handleReq(req, index); }
}
requires {
logger : { log(str) };
outReqHa[] : { handleReq(httpRequest); };
}
...

}

LISTING 6.4 : The RequestAnalyzer descriptor

180 Chap 6. COMPO in Practice

Figure 6.3 : A diagram of an instance of the BACKEND descriptor

6.2 Designing a collection hierarchy

The collection hierarchy example was inspired by group of classes that appears in the “Blue Book”
of SMALLTALK [Goldberg et Robson, 1989]. The group contains 17 sub-classes of Collection and has
already been redesigned several times before the SMALLTALK-80 system was released. This group of
classes is often considered to be a paradigmatic example of object-oriented design.

In the following, we redesign a part of the collections hierarchy in the component-based context
to present modeling capabilities provided by COMPO. We use COMPO inheritance mechanism and
abstract descriptors to build a three-level hierarchy having the following structure:

Collection /* level 0 */
|-- AbstractSet /* level 1 */
| |-- IdentitySet /* level 2 */
| |-- Set /* level 2 */
|
|-- Bag /* level 1 */
|-- SequenceableCollection /* level 1 */

|-- Stack /* level 2 */

We design the hierarchy starting from the level zero, i.e. we start with the root component de-
scribed by abstract descriptor COLLECTION, after that we will design the levels one and two. The main
purpose of this descriptor is to define the basic external contract common to all collections. The
descriptor defines that every collection will have 3 ports, each for a different protocol, the ports are
named: accessing, testing and enumerating. Even if the descriptor is abstract, some services like
addAll(coll) or isEmpty() can be implemented. The select service evaluates closure with each of

6.2. Designing a collection hierarchy 181

the receiver’s elements as the argument and collects into a new collection like the receiver, only those
elements for which closure evaluates to true. We show the COLLECTION descriptor in Listing 6.5.

Descriptor Collection extends Component
{

provides {
accessing : { size(); add(item); addAll(coll); remove(item); removeAll(); };
testing : { isEmpty(); };
enumerating : { select(closure); foreachDo(closure)};

}
service isEmpty() {

return self.size() == 0;
}
service addAll(coll) {

coll.foreachDo([:each | self.add(each);]);
}
service removeAll() {

self.foreachDo([:each | self.remove(each);]);
}
service select(closure) {

|collCopy|
collCopy := self;
coll.removeAll();
self.foreachDo([:each|

connect args@closure to default@each;
if(closure.execute())
{ collCopy.add(each); }

]);
return collCopy;

}
}

LISTING 6.5 : The COLLECTION abstract descriptor

The next step is to create level one descriptors:

ABSTRACTSET (cf. Listing B.1 in Appendix B.1): represents an abstract descriptor of all sets. It de-
clares or implements services which are common for all sets. The descriptor implements the
foreachDo service and the not public service indexOf(item). It also declares new not public
services getItemAt(index) and areEqual(itemA, itemB) which its sub-descriptors should
implement. The not public services are not externally provided because users of sets should
not be able to access items by indexes.

BAG (cf. Listing B.2 in Appendix B.1): representing an unordered collection of possibly duplicate
elements.The BAG descriptor is very similar to the SET descriptor, but it allows to store the same
item multiple times. For that purposes it tracks (using internal required collection port tally)
the count of each item in the bag.

SEQUENCEABLECOLLECTION (cf. Listing B.3 in Appendix B.1): representing collections that have a well-
defined order associated with their elements. Thus each element is externally-named by inte-

182 Chap 6. COMPO in Practice

gers referred to as indices. The descriptor specializes interfaces of ports accessing, removing
and testing to provide new services related with mapping elements to indices.

Finally we implement the second level children, i.e. a sub-descriptor of SET and a sub-descriptor
of SEQUENCEABLECOLLECTION:

STACK (cf. Listing B.4 in Appendix B.1): representing stacks. The STACK descriptor extends SEQUENCE-
ABLECOLLECTION descriptor, with a new provided port stackable through which it provides ser-
vices push and pop. It specializes services of SEQUENCEABLECOLLECTION in a way that they throw
an error if the items of a stack are manipulated directly with an index.

SET (cf. Listing B.5 in Appendix B.1): representing a set of components without duplicates. The
descriptor has an additional internal required collection port items in order to store items and
manage duplicates. In opposite to the IDENTITYSET descriptor (described below), a set stores
clones (copies with a new identity) of items and therefore it is possible to connect the items to
the internal required port and thus encapsulate the items within the set. The cloning ensures
communication integrity, for example, an internal component of a composite can be stored
into a set without breaking the communication integrity because it is not possible to invoke
services of the internal component of the composite from the set (since the set contains clones).

IDENTITYSET (cf. Listing B.6 in Appendix B.1): representing the same as a Set, except that the stored
items are not clones of real components. To be able to store components to which a third party
component might be connected, we have to introduce a new external required port items, in
opposite to internal required port items of SET. Because items port is external, it would be
possible to break the integrity of sets by, for example, connecting items directly to the port, i.e.
not via service add. To solve this issue, we developed a new kind of collection port (descrip-
tor SETCOLLPORT, cf. Listing B.7), which specializes the connectTo and disconnect services
to keep the integrity of sets. These services are modified in a way they verify the identity of a
newly connected item (connectTo) and update the size of a set when items are connected and
disconnected. The items port is instance of SETCOLLPORT and thus it makes it possible to store
items externally and in the same time to preserve the integrity of identity sets.

6.3 Transformation to a bus-oriented architecture

Model transformations are a key issue for MDE [Carrière et al., 1999]. A wide range of model trans-
formation languages and tools exist. While transformation experts need to understand the trans-
formation language and the source and target domains, domain engineers understand the source
and target domains/languages but have no skills in the model transformation language. By putting
reflection into COMPO we have opened the possibility to write various kinds of model or program
transformations and verifications

The transformation scenario performed on COMPO’s implementation of the simple HTTP server,
described in Section 3.2.1 migrates its component-based architecture from a classic front-end/back-
end architecture into a bus-oriented architecture. The transformation (sketched in Figure 6.4) is mo-
tivated by a use-case when a customer (already running the server) needs to turn the server with

6.3. Transformation to a bus-oriented architecture 183

Figure 6.4 : Simplified diagram illustrating the transformation from a classic front-end back-end ar-
chitecture into a bus-oriented one.

multiple fronts-ends and back-ends into a bus-oriented architecture which reduces the number of
point-to-point connections between communicating components. This, in turn, makes impact anal-
ysis for major software changes simpler and more straightforward. The tax to pay for the increased
flexibility coming with bus-oriented architecture is an increased overhead and a slower communica-
tion speed.

The transformation is modeled with a descriptor named TOBUSTRANSFORMER, see Listing 6.6. An
instance of the TOBUSTRANSFORMER descriptor can be connected to the HTTPSERVER descriptor (seen
as a component) (COMPO’s code in Listing 3.1) and the following transformation steps could be per-
formed:

Step 1 introduce a new internal required port named bus to which an instance of a Bus descriptor
(not specified here) will be connected;

Step 2 remove the original connection from front-end to back-end.

Step 3 extend the original architecture with new connections from front-end and back-end to bus;

The following code snippet shows the use of the transformation component. Let us suppose that
server represents a port connected to an instance of the HTTPSERVER descriptor

transformer := ToBusTransformer.new();
connect target@transformer to default@HTTPServer;
transformer.transform();

184 Chap 6. COMPO in Practice

Descriptor ToBusTransformer {
requires { target : IDescriptor }

service step1-AddBus() {
|pd cd|

pd := PortDescription.new();
pd.setName(’bus’);
pd.setRole(’required’);
pd.setVisibility(’internal’);
pd.setInterface(’IBus);

target.addPortDescription(pd);

cd := ConnectionDescription.new();
cd.setSourcePort(’bus’); /* bus@self */
cd.setSourceComponent(’self’);
cd.setDestinationPort(’default’); /* default@(bus.new()) */
cd.setDestinationComponent(’Bus.new()’);

target.addConnectionDescription(cd);
}

service step2-RemOldConns() {
|cd|
cd := DisconnectionDescription.new();

cd.setSourcePort(’backEnd’); /* backEnd@fE */
cd.setSourceComponent(’fE’);
cd.setDestinationPort(’default’); /* default@bE */
cd.setDestinationComponent(’bE’);

context.removeConnectionDescription(cd);
}

service step3-ConnectAllToBus() {
|cd|
cd := ConnectionDescription.new();
cd.setSourcePort(’backEnd’); /* backEnd@fE */
cd.setSourceComponent(’fE’);
cd.setDestinationPort(’inputs’); /* inputs@bus */
cd.setDestinationComponent(’bus’);

target.addConnectionDescription(cd);

cd := ConnectionDescription.new();
cd.setSourcePort(’default’); /* default@bE */
cd.setSourceComponent(’bE’);
cd.setDestinationPort(’outputs’); /* outputs@bus */
cd.setDestinationComponent(’bus’);

target.addConnectionDescription(cd);
}
}

LISTING 6.6 : The ToBusTransformer descriptor.

6.4. Verifying architecture constraints 185

6.4 Verifying architecture constraints

A part of architecture decision documentation [Tang et al., 2005 ; Kruchten et al., 2009] is composed of
architecture constraints. Examples of constraints include the verification of a particular architectural
style or pattern, like the layered style. This kind of documentation often includes some parts which
can be used individually for documenting parts of design decisions [Tibermacine et al., 2010b]. Un-
fortunately, there is no mean to specify these parts and to make them parametrized entities that can
be factorized and used in different reuse contexts.

Figure 6.5 : The facade checker constraint component is connected to an instance of PASSWORDGEN-
ERATOR descriptor in order to verify the constraint.

In our previous work, we have also studied the idea of defining blocks of constraints as customiz-
able and reusable entities [Tibermacine et al., 2010a]. And we have proposed a way to build basic
constraints as checkable entities embedded in a special kind of software components, which can be
reused, assembled, composed into higher-level ones and customized using standard component-
based techniques. The purpose is to put reusable constraint-component on shelves and as well as to
produce new constraints by composition of existing ones [Tibermacine et al., 2011].

Descriptor Constraint extends Component
{

provides { default : {verify();} }
requires { context : * }

}

LISTING 6.7 : The CONSTRAINT descriptor

COMPO, thanks to the reflection, directly supports this idea by providing a uniform paradigm to
develop business and non-functional (constraint-) components. COMPO users may build constraint
components by creating sub-descriptors of the CONSTRAINT descriptor (see Listing 6.7), which is the
basic abstract descriptor for all constraint descriptors.

Every constraint must be assigned to an unambiguous context that defines the target for refer-
ences within the constraint. In COMPO, business components represent a context for constraint com-
ponents. The CONSTRAINT descriptor defines a required port context to which the users may connect

186 Chap 6. COMPO in Practice

their business components, as it is shown in Figure 6.5. The interface of the context port might be
specialized to specify the context more precisely.

By default, every constraint descriptor should provide a boolean service called verify to verify its
current context.

The following examples show: (i) a simple constraint component (VERIFYBUSARCH descriptor)
and; (ii) a composite constraint component (PIPEANDFILTER descriptor) built from reusable compo-
nents.

6.4.1 Verifying the bus-oriented architecture

In this example, we design a constraint descriptor VERIFYBUSARCH to verify if the result of the “to
bus transformation” example (cf. Section 6.3) conforms to a bus-oriented architecture. We will con-
nect an instance of the VERIFYBUSARCH descriptor, i.e. a contraint component, to an instance of the
HTTPSERVER (cf. Listing 3.1), i.e. a business component, in order to perform post-transformation
verification. The constraint component executes a service verify which does the following steps:

Step 1 verifies the presence of an internal component representing a bus, i.e. an instance of descrip-
tor BUS;

Step 2 verifies that the bus component has one input and one output port;

Step 3 verifies that all the other components are connected to the bus only and the original delega-
tion connection is preserved.

We show the COMPO’s code of the VERIFYBUSARCH descriptor in Listing 6.8. The descriptor defines
the verify service that gradually triggers services implementing the above described steps, i.e. ser-
vices: stepOne-IsBusPresent, stepTwo-HasBusIOPorts and stepThree-AreAllConnsToBus. The
verify service collects boolean results of the “step”-services and return true if all the results are true.

The following code snippet shows the use of the transformation and verification components: let
us suppose that server represents a port connected to an instance of the HTTPSERVER descriptor

transformer := ToBusTransformer.new();
constraint := VerifyBusArch.new();

connect context@transformer to default@HTTPServer;
connect context@constraint to default@HTTPServer;

transformer.transform();
constraint.verify();

6.4. Verifying architecture constraints 187

Descriptor VerifyBusArch extends Constraint
{
service verify() {...}
service stepOne-IsBusPresent() {
|ports|
ports := context.getDescribedPorts();
if(ports.select([:p|

p.getInterface()==IBus])
.size()==1)

{ return ports.select(
[:p|p.getInterface()==IBus])}

else { return false };
}
service stepTwo-HasBusIOPorts(busPD){
|ports|
ports := Bus.getDescribedPorts();

if(ports.any([:p|p.getName()==’input’]))
{ return true } else { return false };

if(ports.any([:p|p.getName()==’output’]))
{ return true } else { return false };
}
service stepThree-AreAllConnsToBus(busPD){
|conns|
conns := context.getConnsDescs();
conns.remove([:cd|cd.getSrcPort()

.getInterface()==IBus]);

if((conns.remove([:cd|
cd.isDelegation()]))

{} else { return false };

if(conns.forEach([:cd|
(cd.srcPortDesc()==busPD)
.or([cd.destPortDesc()==busPD])
]) {return true } else { return false };
}
}

LISTING 6.8 : The VerifyBusArch descriptor.

188 Chap 6. COMPO in Practice

6.4.2 Verifying the Pipe & Filter architecture

In this example we show a composite constraint component described by descriptor PIPEANDFILTER

(shown in Listing 6.9) which verifies whenever or not the internal architecture of a connected business
component (representing a context for the constraint) conforms to the Pipes&Filters architecture.

“The Pipes and Filters architectural pattern provides a structure for systems that process
a stream of data. Each processing step is encapsulated in a filter component. Data are
passed through pipes between adjacent filters. Recombining filters allows you to build
families of related filters.” [Buschmann et al., 2008]

The Pipe &Filter architecture consists of a chain of processes or other data processing entities (like
components), arranged so that the output of each element of the chain is the input of the next. They
are most efficiently implemented in a multitasking operating system, by launching all processes at
the same time, and automatically servicing the data read requests by each process with the data writ-
ten by the upstream process. In this way, the CPU will be naturally allocated alternatively among the
processes by the scheduler so as to minimize its idle time. Process pipelines were invented by Douglas
Mcllroy [McIlroy, 1968 ; McIlroy, 1972], one of the designers of the first Unix shells, and greatly con-
tributed to the popularity of that operating system. It can be considered the first non-trivial instance
of software components.

The PIPEANDFILTER descriptor is composed of 5 reusable constraint components, in the following
we refer to these as sub-constraints. For example, the first sub-constraint can be reused as a part of
“facade” constraint which checks whenever a descriptor describes the facade architecture1.

SUBCONSTRAINTONE : There is only one internal component having one or more external provided
ports connected uniquely to the owning composite only (delegated ports). The component
have to declare one or more external required ports, each being connected to an internal com-
ponent of the same hierarchical level, or being not connected at all. See Listing 6.10.

SUBCONSTRAINTTWO : There is only one internal component having one or more external required
ports connected uniquely to the owning composite only (delegated ports). The component
have to declare one or more external provided ports, each being connected to an internal com-
ponent of the same hierarchical level, or being not connected at all. See Listing B.8 in Ap-
pendix B.2.

SUBCONSTRAINTTHREE : Other internal components (n-2) have external provided and required ports
connected to other internal components of the same hierarchical level. See Listing B.9 in Ap-
pendix B.2.

SUBCONSTRAINTFOUR : Connection between each pair of internal components should go in the same
direction, i.e. there are not two connections of opposite direction between each pair. See List-
ing B.10 in Appendix B.2.

1The facade architecture is a component-based realization of the facade pattern, cf. http://en.wikipedia.org/
wiki/Facade_pattern.

http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Facade_pattern

6.4. Verifying architecture constraints 189

Descriptor PipeAndFilter extends Constraint
{

internally requires {
scOne : SubConstraintOne;
scTwo : SubConstraintTwo;
scThree : SubConstraintThree;
scFour : SubConstraintFour;
scFive : SubConstraintFive;

}
architecture {
connect scOne to default@(SubConstraintOne.new());
connect scTwo to default@(SubConstraintTwo.new());
connect scThree to default@(SubConstraintThree.new());
connect scFour to default@(SubConstraintFour.new());
connect scFive to default@(SubConstraintFive.new());

delegate context@scOne to context@self;
delegate context@scTwo to context@self;
delegate context@scThree to context@self;
delegate context@scFour to context@self;
delegate context@scFive to context@self;

}
service verify() {

|c1 c2 c3 c4 c5 |
c1 := scOne.verify();
c2 := scTwo.verify();
c3 := scThree.verify();
c4 := scFour.verify();
c5 := scFive.verify();

return (c1 & c2 & c3 & c4 & c5);
}

}

LISTING 6.9 : PipeAndFilter constraint in COMPO

SUBCONSTRAINTFIVE : For each pair (A, B) of directly connected internal components, there is not a
third component, which is connected to the required ports of A and in the same time to pro-
vided ports of B. See Listing B.11 in Appendix B.2.

190 Chap 6. COMPO in Practice

Descriptor SubConstraintOne extends Constraint
{

service verify() {
|retval|
retval := true;
intComps := context.getPorts().select([:p |

&p.isRequired().and([&p.isInternal()]);
]);
intComps.each([:ic |

ic.getPorts().each([:x |
if(&x.isProvided().and([&p.isExternal()])) {

| count |
&x.getConnectedPorts().each([:cp |

if(&cp.isProvided().and([&p.isExternal()])) {
if(&cp.getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
if(&x.isRequired().and([&p.isExternal()])) {

&x.getConnectedPorts().each([:cp |
if(&cp.isProvided().and([&p.isExternal()])) {

if(&cp.getOwner().getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
]);

]);
return retVal;

}
}

LISTING 6.10 : PipeAndFilter, the sub constraint one in COMPO. There is only one internal compo-
nent having one or more external provided ports connected uniquely to the owning composite only
(delegated ports). The component have to declare one or more external required ports, each being
connected to an internal component of the same hierarchical level, or being not connected at all.

6.5. Summary 191

6.5 Summary

The intent of this chapter was to show COMPO’s aim to provide a continuum to achieve the various
stages of component-based software development in the same conceptual world. We have presented
an example of an HTTP server showing architecture modeling skills and an example of hierarchy
modeling which benchmarks COMPO’s inheritance system. Then we have shown an example of archi-
tecture transformation and architecture constraint verification made within COMPO. This was pos-
sible thanks to the reflection capabilities which, for example, makes it possible to create executable
and reusable architecture constraints.

The examples presented show that the continuum opens the essential possibility that architec-
tures (plus their implementation), transformations and verifications can all be written at the compo-
nent level and using a unique language.

C
H

A
P

T
E

R 7
The prototype

Make it work.
Make it work right.
Make it work right and fast.

Edsger DIJKSTRA, Donald KNUTH, C.A.R. HOARE

Preamble

This chapter presents the prototype of COMPO. The prototype is implemented in SMALLTALK and more
precisely Pharo, which is an implementation of SMALLTALK. We present the prototype, technology
choices, its architecture and the final implementation. We also present a draft SMALLTALK develop-
ment environment for COMPO.

194 Chap 7. The prototype

7.1 Why Smalltalk?

Although COMPO can be implemented in different languages, we have chosen SMALLTALK, because its
meta-model is extensible enough to support another meta-class system as shown in [Briot et Cointe,
1989 ; Ducasse et Gîrba, 2006]. Concretely, the prototype of COMPO was made in Pharo [Black et al.,
2009]1 which is a free, modern and portable implementation of SMALLTALK-80 [Goldberg et Robson,
1989].

SMALLTALK is a reflective and dynamically typed object-oriented language. Dynamically typed
languages offer flexibility and qualities yet recognized [Nierstrasz et al., 2005]. The main features of
the SMALLTALK object model is single inheritance and the notion of implicit meta-class that is to say, a
meta-class is automatically created for each user-defined class without the programmer intervention.
Because of reflection, SMALLTALK is a uniform programming language (“everything is an object”) and
opened because it is easy to write its extensions. Pharo is an implementation of SMALLTALK written
in SMALLTALK2 therefore it is easy to write Virtual Machine extensions. Moreover, Pharo is a develop-
ment environment containing many tools like the class browser, the debugger or the profiler which
make the development of prototypes faster and easier.

We also found that the majority of current components-oriented languages prototypes are exten-
sions of Java. In opposite to Java, SMALLTALK is dynamically typed and therefore seems worthwhile
to offer an alternative in a different environment to better distinguish the specificities of component-
oriented languages, from those of the Java language.

7.2 Technology choices

The implementation of a programming language requires the development of a chain starting form
source code analysis (parser) and abstract syntax tree (AST) building to machine code generation or
AST-interpretation. Of course, there are many tools to facilitate the construction of this chain as for
example the compiler compiler3 that can generate source code of a parser, interpreter or compiler
from description (syntactic and semantic) of a programming language.

This technique involves changing the grammar to generate a new parser and especially change
the interpreter of the AST whenever the syntax changes. Although there are other techniques
proposed in the domain of Domain-Specific Languages (DSL) [Mernik et al., 2005] which directly
uses syntactic constructs and mechanisms of a host language, and therefore it is more flexible
and suits better to constant changes. This technique was used in SCL [Fabresse et al., 2008 ;
Fabresse, 2007]. A disadvantage is that it prevents use of special syntax construct like our & opera-
tor. Moreover, we consider SMALLTALK syntax to be inappropriate for structural descriptions because
it is basically nothing more than a list of message sends.

To eliminate the “change-generate” loop necessary for static grammar specification, we decided
to use PetitParser framework [Renggli et al., 2010] for building a parser and to develop a custom inter-
preter. PetitParser combines ideas from scannerless parsing, parser combinators, parsing expression

1www.pharo-project.org
2More exactly in a subset of SMALLTALK called Slang.
3like SMACC, http://www.refactory.com/Software/SmaCC/

www.pharo-project.org

7.3. Bootstrap Implementation 195

grammars and packrat parsers to model grammars and parsers as objects that can be reconfigured
dynamically [Renggli et al., 2010]. This gives us the freedom of syntax evolution without the need to
regenerate AST every time the syntax changes.

For the interpreter, we chose to use the very effective AST visitor pattern [Gamma et al., 1995a ;
Buschmann et al., 2008] which also offers great flexibility for the evolution of the syntax.

7.3 Bootstrap Implementation

The bootstrap implementation of COMPO is based on the representation of components and descrip-
tors. There are several requirements the implementation should handle:

Req.1 It should correspond to the basic meta-model (see Figure 7.1) of COMPO where descriptor DE-
SCRIPTOR inherits from descriptor COMPONENT and it is an instance of itself (i.e. it is both de-
scriptor and meta-descriptor). Descriptor COMPONENT is a root of descriptor-based inheritance
and it is an instance of descriptor DESCRIPTOR.

Req.2 It has to respect the parallel hierarchy rule of SMALLTALK which is: meta-classes are implicit
and automatically created in SMALLTALK. It is therefore not possible to construct a meta-class
which inherits from class

Req.3 It should take advantage of SMALLTALK classes management and make it possible to use stan-
dard tools of the SMALLTALK environment to handle descriptor as they were regular classes.

Req.4 It should affect the SMALLTALK’s meta-model as less as possible.

Figure 7.1 : Zoom in to the relation between Component and Descriptor descriptors

The current implementation of COMPO’s core defines class Descriptor to represent descrip-
tors and Component to represent components. Both are implemented as sub-classes of SMALLTALK-
classes: Object and Class, respectively. Figure 7.2 shows their integration into SMALLTALK’s meta-
model. This integration makes COMPO components and descriptors manageable inside Pharo
SMALLTALK environment. For example, one can use basic inspecting tool, the Inspector. Descriptor
being defined as a sub-class of SMALLTALK-class Class enables us to benefit from class management
and maintenance capabilities provided by the environment. For example, all descriptors are “brows-
able” with the standard SystemBrowser tool. Such implementation raised few issues we discuss below.

196 Chap 7. The prototype

Behavior

ClassDescription

Class Metaclass

Object class

Behavior class

ClassDescription class

Class classMetaclass class

ProtoObject ProtoObject class

Component Component class

Descriptor Descriptor class

Object

LEGEND

instance of

inherits

<<copy>>

<<copy>>

<<copy>>

Figure 7.2 : Integrating COMPO’s meta-model into SMALLTALK’s meta-model.

SMALLTALK uses parallel hierarchy where each class is a unique instance of its anonymous
meta-class. Meta-classes are accessible by sending message class. The parallel hierarchy rule of
SMALLTALK says that when a class inherits from another class (from a super-class), then the meta-
class of the class inherits from the meta-class of the super-class. For example, SMALLTALK automat-
ically creates the meta-class Component class which, according to parallel hierarchy rules, extends
meta-class Object class.

One of the problems we challenged during the implementation is the fact that SMALLTALK sup-
ports single-inheritance only. The meta-model shown in Figure 7.1 says that Descriptor inherits
from Component, but as it is said above, we implement Descriptor as a sub-class of SMALLTALK-
classes (Class). Consequently Descriptor should have two parents and multiple-inheritance4 is
needed. Concretely, there are three critical points, where multiple-inheritance is needed, marked
with red ellipses in Figure 7.2:

• Descriptor should inherit from SMALLTALK-class Class and from class Component, to keep
all benefits of SMALLTALK’s classes management and in the same time to implement the
meta-model design of COMPO.

Solution: we simulate the multiple inheritance by automated copying attributes and methods
from Component to Descriptor;

4 Although there is a solution based on single-inheritance, the solution introduces an issue when distinguishing com-
ponents/descriptors from objects/classes in the implementation level and it makes Pharo VM unstable when extending
class Component.

7.4. The implemented model 197

• The automatically created SMALLTALK-meta-class Component class should inherit from
SMALLTALK-meta-class Object class and from class Descriptor, to implement the fact that
Component is an instance of Descriptor.

Solution: we set the super-class of Component class to Object class and simulate the
multiple inheritance by copying attributes and methods from Object class to Component
class and from ProtoObject class to Component class.

• Another problem we encountered is the implementation of Descriptor as an instance of
itself. SMALLTALK-class Descriptor is a unique instance of SMALLTALK-meta-class Descriptor
class, which is automatically created as a sub-class of SMALLTALK-meta-class Class class
(parallel hierarchy rule of SMALLTALK) and therefore it does not have the same structure as
Descriptor class.

Solution: we set the super-class of Descriptor class to Component and we simulate the
multiple inheritance by copying attributes and methods from Component to Descriptor
class.

Indeed, to simulate multiple inheritance by coping attributes and methods requires manual re-
sponse. When one of the parents (Component, Object class and ProtoObject class) evolves,
classes Descriptor, Component class and Descriptor class have to be manually updated. For-
tunately, these parent classes are not changed frequently, in fact they remain unchanged for most of
the time.

The chosen integration of classes Descriptor (to represent descriptors) and Component (to rep-
resent components) causes that the following assertions are true:

• class Descriptor inherits class Component

• class Descriptor is a kind-of 5 Descriptor, because class Descriptor and its meta-class
Descriptor class have the same structure and the same methods. Because Descriptor in-
herits Component and it is a kind-of itself, it is also a kind-of Component.

• class Component is a kind-of Descriptor (indirectly via Component class) thus it is also a
kind-of Component.

• every sub-class of Component is a kind-of Descriptor (including classes Descriptor and
Descriptor class) and thus also a kind-of Component.

• every sub-class of Descriptor is a kind-of Descriptor class and thus it is also a kind-of
Descriptor and a kind-of Component.

7.4 The implemented model

The implemented model conforms to the meta-model presented in reflection chapter (Chapter 5.5
and Figure 5.3). Figure 7.3 shows a UML class diagram of realizations of all core component concepts

5“X is kind-of Y” is an expression returning true if X is an instance of Y or of one of its sub-classes.

198 Chap 7. The prototype

and their relations. The diagram also shows relations the realizations have with standard SMALLTALK

classes.

The two central classes Descriptor and Component define structure and behavior of descriptors
and components respectively. Class Descriptor declares three attributes of kind dictionary to refer-
ence services, port-descriptions and bind-descriptions.

«Descriptor»
SuperPort

«Descriptor»
SelfPort

«Descriptor»
DefaultPort

«Descriptor»
SRequiredPort

«Descriptor»
SProvidedPort

«Descriptor»
CProvidedPort

«Descriptor»
CRequiredPort

«Descriptor»
CollectionPort

«Descriptor»
SinglePort

«Descriptor»
DisconnectionDescription

«Descriptor»
ConnectionDescription

The relation specialize
the one between Component and Port
In case of a Port seen as a component,
it can has only primitive ports

Inheritance link
simulated by
copying attributes
and methods

Inheritance link
simulated by
copying attributes
and methods

«instanceOf»

«instanceOf»

«Descriptor»
Component class

«SmalltalkClass»
Object class

«SmalltalkClass»
CompiledMethod

«SmalltalkClass»
Class

«SmalltalkClass»
Object

owner

ports

has

«SmalltalkClass»
PrimitivePort

owner

0..n

internal components

«realizes»

0..n
connectedPorts

owner ports
has

«realizes»
desc

«Descriptor»
Port

0..n

items

«Descriptor»
Interface

«Descriptor»
ServiceSignatureList

«Descriptor»
ServiceSignature

sign

descriptor

0..n
services

owns

«Descriptor»
Service destinationPortDesc

sourcePortDesc«Descriptor»
BindDescription

descriptor

0..n
architecture

descriptor

2..n
portDescs

owns

«Descriptor»
PortDescription

«Descriptor»
Component

«Descriptor»
Descriptor

Figure 7.3 : A UML model of COMPO implemented in SMALLTALK

Classes Port and PortDescription participate in UML realization relationship which is a rela-
tionship between two model elements, in which one model element (the client) realizes the behavior
that the other model element (the supplier) specifies. Ports realize port-descriptions defined by de-
scriptors.

Class Component (realizing descriptor COMPONENT, cf. 5.1) introduces a dictionary of ports6.
6similarly to SMALLTALK-Behavior, which introduces the method dictionary [Black et al., 2009]

7.5. Services invocation implementation 199

A component is constituted of ports (Port) and possibly of collection ports (CollectionPort).
A port is described by a port-description (PortDescription) (defined in a descriptor) which
defines its name, role, visibility and its interface (Interface), i.e. a set of service signatures
(ServiceSignatureList). We distinguish single required ports (SRequiredPort) and single pro-
vided ports (SProvidedPort) and three specific ports that are self (SelfPort), super (SuperPort)
and default (DefaultPort). We also distinguish collection required ports (CRequiredPort) and col-
lection provided ports (CProvidedPort).

Class BindDescription describes connection between ports. It defines two attributes
to reference instances of PortDescription. We distinguish two kinds of bind-description:
ConnectionDescription and DisconnectionDescription. Class Port realizes bind-descriptions
with attribute connectedPorts to store references to other ports and thus making connections.

Services are represented by class Service. Each service is associated with a service signature
(ServiceSignature) which defines its selector and parameters names, for example sum(a,b). For
each service there is exactly one SMALLTALK method. The parameters of such method are automati-
cally mapped to the args port of the component representing the service. An automatic (and trans-
parent for the user) mapping of a service signature from COMPO to a SMALLTALK’s method selector
is based on naming convention, for example the following service signature sum(a,b) is mapped
to a SMALLTALK method with selector cs__sum__par01:par02: (the cs__ prefix stands for Compo-
Service). When a compo service invokes the primitive <primitive_execute> (see Liisting 5.11 in
Section 5.7) it actually executes the associated SMALLTALK method.

7.5 Services invocation implementation

The mechanism of the service invocation was described by the algorithms 2 and 3 (see page 97) in
Chapter 3.

To illustrate the treatment of a service invocation, let us place ourselves in the context of the exam-
ple shown in Figure 3.6 where the instance calculator of descriptor CALC is connected to an instance
of descriptor SOMERANDOMGENERATOR. In this context, consider the following service invocation is-
sued via the port randGen component calculator.

randGen.getRandVal(1);

COMPO’s interpreter transforms this service invocation to the following SMALLTALK code (note
that the cs__<name> prefix denotes the SMALLTALK method associated to a COMPO service named
<name>):

port := (self cs__getPortNamed: #randGen).
port cs__invoke__par01: (ServiceInvocation

selector: #getRandVal
arguments: { 1. }
sentThrough: port).

200 Chap 7. The prototype

The object (instance of class Port) realizing the component representing the port randGen im-
plements the method cs__invoke__par01 associated with the service invoke defined by descriptor
PORT (see Listing 5.5).

Choice 38 says that a port is a component having primitive ports. Therefore an instance of the
class Port realizing the PORT descriptor own instances of class PrimitivePort to represent its own
ports. For example the default port of an instance of descriptor CALC (see Listing 3.4) is realized
as an instance of class Port. Descriptor PORT defines that ports have, for example, primitive port
connectedPorts. Thus an instance of class Port references an instance of class PrimitivePort un-
der the key “connectedPorts” of its ports dictionary. Primitive ports implement the behavior of stan-
dard ports, as stated by Definition 20.

In the invoke service of the descriptor PORT the primitive <primitive_invoke> is called. Actually
it is a method of the class Port representing ports. The method is redefined in sub-classes of Port
class so that each kind of port specifically addresses the invocations it receives. In case of collection
ports, the same processing is preformed for each port in the collection. Listing 7.1 and 7.2 show the
method code for provided and required ports:

"Code of the primitive_invoke: method defined in class Port"
RequiredPort>>primitive_invoke: aServiceInvocation

| res receiverObject |
"Compute the receiver object."
(self cs__isConnected) ifTrue:[

"the primitive port connectedPorts will be the receiver"
receiverObject := self ports at: #connectedPorts.

] ifFalse: [
(self cs__isDelegated) ifTrue: [

"the primitive port delegatedPorts will be the receiver"
receiverObject := self ports at: #delegatedPorts.

] ifFalse: [
"stop the execution and throw an error"
self error: self name, ’ : not connected or delegated’

].
]
"Transmit the invocation to the receiver object."
res := receiverObject primitive_invoke: aServiceInvocation.
"Before returning the result of the invocation, we check the returned value."
"It has to be of kind Port, otherwise we set the result to reference to self"
(res isKindOf: Port) ifFalse: [res := self].
"the result is returned"
^res

LISTING 7.1 : The <primitive_invoke> method of the class RequiredPort.

7.6. Connection mechanism implementation 201

"Code of the primitive_invoke: method defined in class Port"
ProvidedPort>>primitive_invoke: aServiceInvocation

| res receiverObject |
"verify if the owner component implements the requested service"
(self cs__getOwner respondsTo: (aServiceInvocation smalltalkSel))

ifTrue: [
"look up the service"
|service|
service := self lookupService: (aServiceInvocation selector)

arity: (aServiceInvocation args size).
"set up the arguments"
self connectArgs: (aServiceInvocation args) forService: service.
"execute the service"
res := service cs__execute.
self disconnectArgs: (aServiceInvocation args) forService: service.

] ifFalse: [
(self cs__isDelegated) ifTrue:[

"the primitive port delegatedPorts should handle the invocation"
res := (self ports at: #delegatedPorts) primitive_invoke: aServiceInvocation.

] ifFalse: [
"stop the execution and throw an error"
self error: self name, ’ : not implemented or delegated’.

]
]

"Before returning the result of the invocation, we check the returned value."
"It has to be of kind Port, otherwise we set the result to reference to self"
(res isKindOf: Port) ifFalse: [res := self].
"the result is returned"
^res

LISTING 7.2 : The <primitive_invoke> method of the class ProvidedPort.

7.6 Connection mechanism implementation

As we saw above, the connections are realized by references between ports. Depending on the nature
of the port, the service connectTo (resp. the associated SMALLTALK method cs__connecTo__par01:)
of descriptor PORT can establish regular and delegation connections. The connect-to statement is
actually a syntax sugar for connectTo service, as we show in Listing 7.3.

In the code of the connectTo service the descriptor PORT calls <primitive_connectTo> which
is a method implemented by class Port realizing descriptor PORT. The <primitive_connectTo>
method calls the <primitive_connectTo> of its primitive port connectTo (remember ports are com-
ponents, instance of descriptor PORT, having primitive ports). Primitive ports are instances of class
PrimitivePort which implements the <primitive_connectTo> method as it is shown in Listing 7.4.

202 Chap 7. The prototype

Having a solution where components are connected via theirs ports, we consider connections
between ports as primitive entities (references), and do not need to reify connections. This entails
no limitation regarding the capability to experiment with various kind of connections [Mehta et al.,
2000] because our model makes it possible to define new kinds of ports (see Section 5.6) and because
of the capability it offers to put an adapter component between any components.

calculator := Calc.new();
rng := SomeRandomGenerator.new();

/*connecting the ports randGen and default with statement connect-to*/
connect randGen@calculator to default@rng;

/*connecting the ports randGen and default with the connectTo service*/
randGen := calculator.getPortNamed(’randGen’);
&randGen.connectTo(rng.getPortNamed(’default’));

LISTING 7.3 : Connecting ports in COMPO

"Code of the primitive_invoke: method defined in class Port"
PrimitivePort>>primitive_connectTo: port

"store the port reference to set of connectedPorts"
self connectedPorts add: port.

LISTING 7.4 : The primitive_connectTo method of the class PrimitivePort.

7.7 Inheritance implementation

The inheritance mechanism uses SMALLTALK’s class inheritance to implement extension and spe-
cialization operations for both the structure and behavior of descriptors. A sub-descriptor is imple-
mented as a sub-class of the class representing its super-descriptor.

Extension and specialization of the structure of a component is realized as the modification of the
corresponding descriptions (port-descriptions and bind-descriptions) maintained by a descriptor of
the component.

For example Listing 7.5 shows an example where descriptor B extends descriptor A with a new
required port named rb. In the prototype implementation, these descriptors are realized as classes A
and B. Class A is a sub-class of class Component and class B is a sub-class of class A.

Descriptor A extends Component {}
Descriptor B extends A { requires : { rb : * } }

LISTING 7.5 : This COMPO example is implemented with SMALLTALK code in Listing 7.6

Extension and specialization of the behavior leads to addition and specialization of services and
their associated SMALLTALK methods. For example, when a sub-descriptor specializes service foo
of its super descriptor, then a component representing service foo is connected to the services of
the sub-descriptor and the class realizing the sub-descriptor defines method cs__foo. The service
invocation mechanism of COMPO ensures the correct execution.

7.8. Instantiation mechanism implementation 203

"Sub-classes of class Component realizes its sub-descriptors"
Component subclass: #A category: ’playground’.
A subclass: #B category: ’playground’.
"Introducing the new required port in B"
B cs__addPortDescription_par01: (PortDescription name: #rb

role: #required
visibility: #external
interface: #*).

LISTING 7.6 : SMALLTALK implementaion of the code from Listing 7.5

7.8 Instantiation mechanism implementation

The instantiation mechanism of COMPO was described in Chapter 3 in Section 3.3.1. In COMPO, de-
scriptors define the structure of components. In the allocation phase of the instantiation mechanism,
we analyze descriptor’s external and internal contract, i.e. the ports it defines, and for each port the
mechanism allocates a memory space. The structure and the amount of the memory needed for each
port is defined by class Port resp. its sub-classes. The initialization phase happens in two steps. Dur-
ing the first step we set the references associating each port with its corresponding port description
(i.e. references to instances of class PortDescription). The second step works with the architecture
section of descriptors which describe connections between ports of the created component and ports
of internal components. We process each connection description, i.e. evaluate both port-address ex-
pressions and then we set the binding reference between ports.

The instantiation mechanism is implemented by service new of descriptor DESCRIPTOR. In the
code of this service, COMPO calls primitive <newC> which is a SMALLTALK method implemented by
class Descriptor. The method creates and initializes new instances (new components) and returns
a reference to the default port of a new component. In fact, this technique can be widespread to inte-
grate all SMALLTALK objects, which will then behave as primitive components providing all methods
they define (seen as COMPO services) through a unique provided port. Thus SMALLTALK-objects are
seen as primitive COMPO-components and they are usable in COMPO, but as components. This will
make it possible to reuse SMALLTALK class library.

Integration of SMALLTALK objects The integration of SMALLTALK objects requires modifying the in-
stantiation mechanism of SMALLTALK. When instantiating a class, it must return a reference to the
default port of the newly created instance and not to the instance directly.

In general, it would have to redefine the basicNew in class Behavior that creates an instance but
it is impossible because it is a primitive of the Pharo’s virtual machine. Note that the redefinition of
the new implemented in the class Behavior does not achieve our goal because many classes override
this method and use the basicNew directly . To implement our instantiation mechanism, we define
the following two methods:

• newC (shortcut of newComponent) in the class Object class that allows to instantiate a com-
ponent from a class and returns a reference to the default port of this component,

204 Chap 7. The prototype

• defaultPort which provides the default port of any SMALLTALK object. The interface port is
initialized with all the signatures (a selector contains the arity of the method in SMALLTALK)
messages that this object can respond.

In the following example, we show the use of these methods to integrate basic SMALLTALK objects
in the form of COMPO components:

/* Instantiation of the class OrderedCollection */
col := OrderedCollection.new();

/* the temporal required port col is connected to
a provided port named ’default’ */

col.size(); /* invocation of service size /*

/* literals are automatically treated as components */
aPrimitiveComponent := 1.

/* the temporal required port aPrimitiveComponent is connected to
a provided port named ’default’ */"

aPrimitiveComponent.odd(); /* invocation of service odd */

In the case of literals such as integers or strings, the COMPO programmer should store the refer-
ence to their default port using the defaultPort. In fact, the literal does not benefit directly from
the newC defined in class Object class because they are never really instantiated but specifically ad-
dressed by the Pharo virtual machine. To standardize the vision offered to the COMPO programmer,
we also defined the newC in class Object as follows:
Object>>newC

^self defaultPort

This feature enables COMPO’s interpreter to create primitive components and standard compo-
nents in the same manner by invoking the newC primitive.

7.9 Toward a graphical development environment

Figure 7.4 shows a screenshot of a visual development tool for browsing and writing new COMPO

descriptors. This prototype tool currently allows an architect to browse descriptors in a library. Once
a descriptor is selected, the users may edit its code. All the changes are immediately propagated to a
graphical visualization of an instance of the descriptor. Then, it is possible to enter the COMPO code
in the box at the bottom left to invoke the services of the instance. The results can be displayed in the
window at the bottom right which is the standard output. This browser/editor environment is a step
towards a graphical development environment as it is a simple useful tool to understand and put into
practice for developing new components prototypes.

7.10. Summary 205

Figure 7.4 : Screenshot of the Compo browser, a step towards visual development

7.10 Summary

In this chapter, we presented a prototype of COMPO written in Pharo SMALLTALK. We also presented
the arguments that led us to choose the SMALLTALK language and our implementation choices. When
specifying the prototype, we have:

• addressed the problem of bootstrap implementation which requires that the class representing
descriptor DESCRIPTOR inherits from SMALLTALK-class Class

• described the implemented UML model

• integrated SMALLTALK objects and COMPO components by providing the primitive newC.

• explained the implementation of the service invocation

• illustrated assembly of components using connections

• shown, finally, a visual tool (COMPO browse) for writing new descriptors in COMPO

The point of improvement of the prototype is certainly its effectiveness. Indeed, we clearly pre-
ferred evolution over efficiency. It is difficult to quantify the effectiveness of the current prototype but
the implementation we have chosen for the service invocation (explicit delegation between objects
representing the ports) suggests that the performance of the implementation could be improved.

C
H

A
P

T
E

R 8
Conclusion

THIS thesis contributes to the domain of component-based software engineering (CBSE) by
proposing a reflective component-oriented language named COMPO which enables users to

describe and continuously implement component-based architectures. On behalf of the work, we
have studied many component-based approaches ranging from architecture description languages
over component frameworks to component-oriented programming languages. The study convinced
us that the potential problems, like the non-conformance between an architecture design and its
implementation, raising from the fact that most of component-based approaches separate design
and implementation stage could be overcame when a component-oriented programming language
is used. Embedding architecture into an implementation language lets architects specify the architec-
ture of a system in much more detail, and its presence in the source code provides developers with a
constant awareness of architectural issues. However, while the conformance between design and im-
plementation is well addressed by the existing component-oriented languages, a support for software
evolution and for model driven development has not yet been well addressed by these approaches.

In our work, we have partially answered to that issue by designing a reflective component-
oriented language with an inheritance mechanism for structural and behavioral reuse. We believe
that reflection and inheritance are the key factors directly supporting evolution and maintenance of
software developed in COMPO. Reflection simply opens the possibility that architectures, implemen-
tations and transformations can all be written at the component level and using a unique language.

The study made in Chapter 2 helped us to identify the core concepts and mechanisms of CBSE and
to built COMPO language on top of them. The core mechanisms: instantiation, composition, service
invocation and substitution together with the identified concepts: components and their descriptors,
ports, connections and services, provide architecture description constructs, so that developers can
specify an architecture during design and then fill in the architecture with COMPO implementation.

207

208 Chap 8. Conclusion

Having the architecture part well described, it is possible to write the implementation of services in
various (future) COLs or even in an OOP language. Thus, we also support the idea that it is interesting
to implement models in various contexts.

Communication protocol as presented in COMPO is based on the idea that the only way two com-
ponents can communicate is by sending a service invocation through a connection between their
ports. Existing component-oriented languages support hierarchical design, i.e. to describe architec-
ture in terms of components (composites) which are composed of other components (internal com-
ponent) which are composed of other components, etc. However, the communication between dif-
ferent levels of the hierarchical design has not been addressed and thus there was no protocol saying
how these internal components communicate with their owning composite and vice verse. A one
of contributions of this work is that thanks to the concept of internal required ports we were able to
preserve this statement even for communication between a composite and its internal components.
Such a communication protocol does not introduce an additional mechanism or concept to the lan-
guage and it enforces communication integrity because all the communication is well described by
connections.

The inheritance mechanism proposes an innovative reuse scheme in the context of CBSE by
bringing an objects like inheritance capability to components descriptions. Inheritance in COMPO

promotes modeling power with covariant specializations via the extends statement. A new descriptor
(a sub-descriptor) can be defined on the base of an existing descriptor by extending or specializing its
definition. Indeed, covariant specialization has advantages but also drawbacks, for example it is hard
to ensure substitutability between instances of sub- and super-descriptors. We choose a coherent
policy comparing its advantages and drawbacks. We believe that developers are much more inter-
ested in specializing and extending at the same time provisions and requirements of a component,
and less on substitutability, which they can manage manually (by satisfying additional requirements,
if needed). Because we were unable to ensure type-safe substitution, we have proposed a substitu-
tion mechanism based on run-time checks which if used properly, preserves the safety of substitu-
tions. Thus, sub-descriptors may: (1) introduce new ports or extend interfaces of inherited ports, (2)
introduce new services and override inherited services and (3) extend and specialize the inherited
architecture description. The ability to inherit existing architectures make it possible to capitalize on
good designs where well-established architecture styles or patterns are applied.

As far as we know COMPO is the first fully reflective component-oriented language with core com-
ponent concepts reified in terms of components. In Chapter 5 , we have proposed the component-
based model compliant to its meta-model and the component-based meta-model compliant to itself.
There is only one kind of entity, component: a descriptor is a component and a meta-descriptor is a
descriptor whose instances are descriptors. This allows a simplification and economy of concepts,
which are thus more powerful and general. Reflection makes the language uniformly accessible by
users who can introspect the underlying structure and behavior of the platform and also adaptation
them if needed. Reflection also allows to experience the impact of adding new mechanisms at both
the architectural and implementation levels. For example: to define different control facilities for
components such as non-functional aspects or to define trade-offs such as degree of configurability
vs performance and space consumption.

Conclusion 209

Future work COMPO in its today’s state is a research laboratory and does not yet embed all ca-
pabilities offered by existing ADLs or COLs, but we believe that there is no conceptual lock to the
integration of new concepts. For example, dynamic software architectures represent one encourag-
ing approach to mitigate an important class of safety- and mission-critical software systems, such
as: telephone dynamic update in high availability public information systems. Dynamic software ar-
chitectures [Baresi et al., 2004 ; Barais et al., 2008] are software architecture descriptions that include
not only the description of fixed (i.e. static) parts, but also the description of changing (i.e. dynamic)
parts. ArchJava or Darwin have shown that the dynamic aspect of architectures can be captured at
the language level enlarging the spectrum of problems such languages can be used for. Therefore, in
future, we would like to extend COMPO with the ability to describe dynamic architectures.

In Section 5.6 we tried to show that it is possible to define new communication protocols or
lookup policies by creating new kinds of ports. This makes it possible to achieve scenarios similar
to the ones in the object-oriented context, where first-class references are introduced [Arnaud et al.,
2010] or the ones where custom lookup objects are needed [Vraný et al., 2012]. Thus, it would be nice
to study all the possibilities which come with first-class ports. Moreover the meta-model architecture
of COMPO makes it possible to define new kinds of descriptors. It should be possible to define a new
kind of “deployment-location-aware” descriptors whose instances will be descriptors aware of the
location where they can be instantiated. This in turn would make it possible to explicitly describe an
architecture which is distributed over multiple execution nodes. In addition, to deploy components
a packaging tool, similar to OSGi bundles or similar things, would be needed.

Another prospective work is to design a (visual) graphical development environment. In such
development environment it should be possible to define new descriptors graphically in way that
is similar to the one of the applications for designing UML diagrams. This would also require to
integrate the notion of “properties”, so another components could listen for “value change” events of
the properties. In fact, properties for components have been integrated in SCL, thus we just have to
adapt the SCL’s solution for COMPO.

To optimize programs efficiency is another remaining tasks. Many solutions do exist [Chiba,
1997]. For COMPO, we already do have an initial idea for a pure virtual-machine where only enti-
ties managed by the machine will be components. This should enhance the language performance
in comparison to the current implementation hosted within a third party virtual machine.

A
P

P
E

N
D

I
X A

Grammar

EBNF form, quick help:
(start-group-symbol end-group-symbol)
[start-option-symbol end-option-symbol]
{ start-repeat-symbol end-repeat-symbol }
| definition-separator-symbol

* repetition-symbol
- except-symbol
, concatenate-symbol
= defining-symbol
; terminator-symbol

A.1 Lexan rules

Character = ? Any Unicode character ?;
WhitespaceCharacter = ? Any space, newline or horizontal tab character ?;
DecimalDigit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
Letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"

| "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
| "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"
| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z";

CommentCharacter = Character - ’"’; (* Any character other than a double quote *)
Comment = ’"’, {CommentCharacter}, ’"’;
OptionalWhitespace = {WhitespaceCharacter | Comment};
Whitespace = (WhitespaceCharacter | Comment), OptionalWhitespace;
LetterOrDigit = DecimalDigit

| Letter;

211

212 Appendix A. Grammar

Identifier = (Letter | "_"), {(LetterOrDigit | "_")};
Reference = Identifier;
ConstantReference = "nil"

| "false"
| "true";

PseudoVariableReference = "self" | "super" | "myPorts" | "default" | "myConnections";
ReservedIdentifier = PseudoVariableReference

| ConstantReference;
BindableIdentifier = Identifier - ReservedIdentifier;
StdMessageSelector = Identifier;
BinarySelectorChar = "~" | "!" | "@" | "[PERCENT]" | "&" | "*" | "-" | "+" | "=" | "|" | "<" | ">" | "," | "?" | "/" | "\";
BinaryMessageSelector = BinarySelectorChar, [BinarySelectorChar];
IntegerLiteral = ["-"], UnsignedIntegerLiteral;
UnsignedIntegerLiteral = DecimalIntegerLiteral

| Radix, "r", BaseNIntegerLiteral;
DecimalIntegerLiteral = DecimalDigit, {DecimalDigit};
Radix = DecimalIntegerLiteral;
BaseNIntegerLiteral = LetterOrDigit, {LetterOrDigit};
ScaledDecimalLiteral = ["-"], DecimalIntegerLiteral, [".", DecimalIntegerLiteral], "s", [DecimalIntegerLiteral];

FloatingPointLiteral = ["-"], DecimalIntegerLiteral, (".", DecimalIntegerLiteral, [Exponent] | Exponent);
Exponent = ("e" | "d" | "q"), [["-"], DecimalIntegerLiteral];
CharacterLiteral = "[DOLAR]", Character;
StringLiteral = "’", {StringLiteralCharacter | "’’"}, "’"; (* To embed a "’" character in a String literal, use two consecutive single quotes *)
StringLiteralCharacter = Character - "’"; (* Any character other than a single quote *)
SymbolInArrayLiteral = StdMessageSelector - ConstantReference

| BinaryMessageSelector;
SymbolLiteral = "#", (SymbolInArrayLiteral | ConstantReference | StringLiteral);
ArrayLiteral = ObjectArrayLiteral

| ByteArrayLiteral;
ObjectArrayLiteral = "#", NestedObjectArrayLiteral;
NestedObjectArrayLiteral = "(", OptionalWhitespace, [LiteralArrayElement, {Whitespace, LiteralArrayElement}], OptionalWhitespace, ")";
LiteralArrayElement = Literal - BlockLiteral

| NestedObjectArrayLiteral
| SymbolInArrayLiteral
| ConstantReference;

ByteArrayLiteral = "#[", OptionalWhitespace, [UnsignedIntegerLiteral, {Whitespace, UnsignedIntegerLiteral}], OptionalWhitespace,"]";

DereferenceLiteral = "&" , Reference ;
(* Operator "&" enables to see ports as components, semantics is: (&aPort).isConnected() == myPorts[myPorts.indexOf("aPort")].isConnected() *)
CollectionPortLiteral = Reference , "[" , Expression , "]" ;
PortAddressLiteral = Reference , "@" , Reference ;

A.2 Parser rules
FormalBlockArgumentDeclaration = ":", BindableIdentifier;
FormalBlockArgumentDeclarationList = FormalBlockArgumentDeclaration, {Whitespace, FormalBlockArgumentDeclaration};
BlockLiteral = "[", [OptionalWhitespace, FormalBlockArgumentDeclarationList, OptionalWhitespace, "|"], ExecutableCode, OptionalWhitespace, "]";
Literal = ConstantReference

A.2. Parser rules 213

| IntegerLiteral
| ScaledDecimalLiteral
| FloatingPointLiteral
| CharacterLiteral
| StringLiteral
| SymbolLiteral
| DerefenceLiteral
| CollectionPortLiteral
| ArrayLiteral
| BlockLiteral;

NestedExpression = "(", Statement, OptionalWhitespace, ")";
Operand = Literal

| Reference
| NestedExpression;

FormalStdMsgArgumentDeclaration = [BindableIdentifier , ":"] , StdMessageArgument;
FormalStdMsgArgumentDeclarationList = FormalStdMsgArgumentDeclaration , { OptionalWhitespace, ",", OptionalWhitespace, FormalStdMsgArgumentDeclaration }
StdMessageArgument = BinaryMessageOperand, BinaryMessageChain;
StdMessage = StdMessageSelector, "(" , OptionalWhitespace, [FormalStdMsgArgumentDeclarationList, OptionalWhitespace] , ")";
StdMessageChain = {OptionalWhitespace, UnaryMessage};
BinaryMessageOperand = Operand, UnaryMessageChain;
BinaryMessage = BinaryMessageSelector, OptionalWhitespace, BinaryMessageOperand;
BinaryMessageChain = {OptionalWhitespace, BinaryMessage};
MessageChain = ".", StdMessage, StdMessageChain, BinaryMessageChain

| OptionalWhitespace, BinaryMessage, BinaryMessageChain;
CascadedMessage = ",", OptionalWhitespace, MessageChain;
Expression = Operand, [MessageChain, {OptionalWhitespace, CascadedMessage}];
AssignmentOperation = OptionalWhitespace, BindableIdentifier, OptionalWhitespace, ":=";
Statement = {AssignmentOperation}, OptionalWhitespace, Expression;
MethodReturnOperator = OptionalWhitespace, "return";
FinalStatement = [MethodReturnOperator], Statement;
LocalVariableDeclarationList = OptionalWhitespace, "|", OptionalWhitespace, [BindableIdentifier, {Whitespace, BindableIdentifier}], OptionalWhitespace, "|";
ExecutableCode = [LocalVariableDeclarationList], [{Statement, OptionalWhitespace, ";"}, FinalStatement, [";"]];

CompoIdent = Identifier;
CompoServiceSign = CompoIdent , "(" , [{ CompoIdent , "," }] , [CompoIdent] , ")" ;
ServiceSignsList = "{", [{CompoServiceSign , ";"}], [CompoServiceSign] , "}"
Connection = "connect", PortAddressLiteral, "to" , PortAddressLiteral;
Disconnection = "disconnet", PortAddressLiteral, "from" , PortAddressLiteral;
PortDecl = ["atomic"], CompoIdent , ":" , (CompoIdent | ServiceSignsList);
ExProvisions = ["externally"] , "provides", CompoIdent , "{", [{PortDecl, ";"}], [PortDecl] , "}";
ExRequirements = ["externally"] , "requires", CompoIdent , "{", [{PortDecl, ";"}], [PortDecl] , "}";
InProvisions = "internally" , "provides", CompoIdent , "{", [{PortDecl, ";"}], [PortDecl] , "}";
InRequirements = "internally" , "requires", CompoIdent , "{", [{PortDecl, ["inject-with" , CompoIdent], ";"}], [PortDecl, ["inject-with" , CompoIdent]] , "}";
Services = "service", CompoServiceSign, "{" , ExecutebaleCode , "}";
Contraints = "constraint", CompoServiceSign, "{" , ExecutebaleCode , "}";
Architecture = "architecture", "{", [{(Connection | Disconnection) , ";"}], [(Connection | Disconnection)] , "}";
CompoExpr = ExProvisions

| ExRequirements
| Services
| Constraints

214 Appendix A. Grammar

| InProvisions
| InRequirements
| Architecture;

ComponentDecl = "component descriptor", CompoIdent , ["extends" , CompoIdent] , "{", {CompoExpr} , "}";
Interface = "interface", CompoIdent , ["extends" , CompoIdent] , ServiceSignsList;
CompoStart = [{ComponentDecl | Interface}];

A
P

P
E

N
D

I
X B

Usage sources

B.1 Collection hierarchy sources

215

216 Appendix B. Usage sources

Descriptor AbstractSet extends Collection {
/* new abstract not public service*/
service getItemAt(index);
/* new abstract not public service*/
service areEqual(itemA, itemB);

service foreachDo(closure) {
|i|
for(i:=0;i<self.size();i:=i+1) {

connect args@closure to default@(self.getItemAt(i));
closure.execute();
disconnect args@closure from default@(self.getItemAt(i));

}
}

/* not public */
service indexOf(item) {

|i|
for(i:=0;i<self.size();i:=i+1) {

if(self.areEqual(self.getItemAt(i), item))
{ return i; }

}
return -1;

}
}

LISTING B.1 : The SET descriptor

B.1. Collection hierarchy sources 217

Descriptor Bag extends Collection {
internally requires {

items[] : * ;
tally[] : *

}
service size() { return sizeof(items); }
service add(item) {

|itemClone i|
i := self.indexOf(item);
if(i<0) {

itemClone := item;
&items.connectTo(default@itemClone);
self.zeroTally(i);
self.addToTally(i);

}else{
self.addToTally(i);

}
}
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) {

if(self.getTally() > 1)
{ self.subFromTally(i); }
else
{

&items.disconnect(i);
self.zeroTally();

}
}

}
service foreachDo(closure) {

|i|
for(i:=0;i<self.size();i:=i+1) {

connect args@closure to default@(items[i]);
closure.execute();
disconnect args@closure from default@(items[i]);

}
}
/* not public */
service indexOf(item) {

|i|
for(i:=0;i<self.size();i:=i+1) {

if(self.getIdentityHash() == item.getIdentityHash())
{ return i; }

}
return -1;

}
service getTally(index) { return tally[index]; }
service zeroTally(index) { tally[index] := 0; }
service addToTally(index) { tally[index] := tally[index] + 1 }
service subFromTally(index) { tally[index] := tally[index] - 1 }

}

LISTING B.2 : The BAG descriptor

218 Appendix B. Usage sources

Descriptor SequenceableCollection extends Collection
{

provides {
accessing : { getIndex(index); setIndex(index,item); };
removing : { removeIndex(index); };
testing : { indexOf(item); };

}
internally requires
{

items[] : *;
}
service size() { return sizeof(items); }
service add(item) { &items.connectTo(default@item); }
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) { self.removeIndex(i); }

}
service removeIndex(index) { &items.disconnect(i); }
service getIndex(index) { if(self.indexOK(index) { return items[index]; } }
service setIndex(index,item) {

if(self.indexOK(index))
{

items.disconnect(index);
connect items[index] to default@item;

}
}
service foreachDo(closure) {

|i|
for(i:=0;i<self.size();i:=i+1) {

connect args@closure to default@(items[i]);
closure.execute();
disconnect args@closure from default@(items[i]);

}
}
service indexOf(item) {

|i|
for(i:=0;i<self.size();i:=i+1) {

if(self.getIdentityHash() == item.getIdentityHash())
{ return i; }

}
return -1;

}
/* not public */
service indexOK(index) { return ((index >=0)&(index<self.size())); }

}

LISTING B.3 : The SEQUENCEABLECOLLECTION descriptor

B.1. Collection hierarchy sources 219

Descriptor Stack extends SequenceableCollection
{

provides {
stackable : { push(item); pop(); }

}
service remove(item) { error(’this is a stack, use push-pop’); }
service indexOf(item) { error(’this is a stack, use push-pop’); }
service removeIndex(index) { error(’this is a stack, use push-pop’); }
service getIndex(index) { error(’this is a stack, use push-pop’); }
service setIndex(index) { error(’this is a stack, use push-pop’); }

service push(item){ self.add(item); }
service pop(){

|item top|
top := self.size()-1;
connect item to defautl@(items[top]);
&items.disconnect(top);
return item;

}
}

LISTING B.4 : The STACK descriptor

220 Appendix B. Usage sources

Descriptor Set extends AbstractSet {
internally requires {

items[] : * ;
}
service size() { return sizeof(items); }
service add(item) {

|itemClone i|
i := self.indexOf(item);
if(i<0) {

itemClone := item;
&items.connectTo(default@itemClone);

}
}
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) { &items.disconnect(i); }

}
/* not public */
service getItemAt(index) {

|i|
if(i>=0 & i<self.size()) {

return items[i];
}
else { error(’index out of bounds’) }

}
/* not public */
service areEqual(itemA, itemB) {

return itemA == itemB;
}

}

LISTING B.5 : The SET descriptor

B.1. Collection hierarchy sources 221

Descriptor IdentitySet extends AbstractSet {
requires {

items[] : * ofKind SetCollPort;
}
service size() { return sizeof(items); }
service add(item) { &items.connectTo(default@item); }
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) { &items.privatedisconnect(i); }

}
/* not public */
service getItemAt(index) {

|i|
if(i>=0 & i<self.size()) {

return items[i];
}
else { error(’index out of bounds’) }

}
/* not public */
service areEqual(itemA, itemB) {

return itemA.getIdentityHash() == itemB.getIdentityHash();
}

}

LISTING B.6 : The SET descriptor

Descriptor SetCollPort extends CollectionPort {
service connectTo(port){

|i|
i := owner.indexOf(item);
if(i<0) { super.connectTo(port) }

}
service disconnect(index) {}
service privatedisconnect(index) {super.disconnect(index);}

}

LISTING B.7 : The SETCOLLPORT descriptor

222 Appendix B. Usage sources

B.2 Constraints sources

B.2.1 Pipes&Filters

Descriptor SubConstraintTwo extends Constraint
{

service verify() {
|retval|
retval := true;
intComps := context.getPorts().select([:p |

&p.isRequired().and([&p.isInternal()]);
]);
intComps.each([:ic |

ic.getPorts().each([:x |
if(&x.isRequired().and([&p.isExternal()])) {

| count |
&x.getConnectedPorts().each([:cp |

if(&cp.isRequired().and([&p.isExternal()])) {
if(&cp.getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
if(&x.isProvided().and([&p.isExternal()])) {

&x.getConnectedPorts().each([:cp |
if(&cp.isRequired().and([&p.isExternal()])) {

if(&cp.getOwner().getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
]);

]);
return retVal;

}
}

LISTING B.8 : PipeAndFilter, the sub constraint two in COMPO. There is only one internal compo-
nent having one or more external required ports connected uniquely to the owning composite only
(delegated ports). The component have to have one or more external provided ports, each being
connected to an internal component of the same hierarchical level, or being not connected at all.

B.2. Constraints sources 223

Descriptor SubConstraintThree extends Constraint
{

service verify() {
|count|
count := 0;
intComps := context.getPorts().select([:p |

&p.isRequired().and([p.isInternal()]);
]);
intComps.each([:ic |

ic.getPorts().select([:p | &p.isExternal()]).each([:ep |
|trueForAll|
trueForAll := true;
&ep.getConnectedPorts().each([:cp |

if(&cp.getOwner().getOwner() == context.yourself())
{ trueForAll := trueForAll.and([true]); }
else
{ trueForAll := trueForAll.and([false]); }

]);
if(trueForAll) { count := count + 1 }

]);
]);
if(count == (intComps.size() - 2))
{ return true; }
else
{ return false; }

}
}

LISTING B.9 : PipeAndFilter, the sub constraint three in COMPO. Other internal components (n-2)
have external provided and required ports connected to other internal components of the same hier-
archical level.

224 Appendix B. Usage sources

Descriptor SubConstraintFour extends Constraint
{

service verify() {
conns := context.getDescriptor().getDescribedConnections();
conns.each([:conn |

|dest source |
source := conn.getSourcePortComponent();
dest := conn.getDestinationPortComponent();
conns.each([:conn2 |

if((conn2.getSourcePortComponent() == dest).and([
conn2.getDestinationPortComponent() == source]))

{ return false; }
]);

]);
return true;

}
}

LISTING B.10 : PipeAndFilter, the sub constraint four in COMPO. Connection between each pair of
internal components should go in the same direction, i.e. there are not two connections of opposite
direction between each pair.

B.2. Constraints sources 225

Descriptor SubConstraintFive extends Constraint
{

service verify() {
conns := context.getDescriptor().getDescribedConnections();
conns.each([:conn |

|destPD sourcePD connsA connsB|
sourcePD := conn.getSourcePortDescription();
destPD := conn.getDestinationPortDescription();
/* for each connection, there are no other two where the former has
the same source, the later the same destination and the two have
a common port end. */
connsA := conns.select([:conn2 |

| sourcePD2|
if((conn == conn2).not())
{

sourcePD2 := conn2.getSourcePortDescription();
(sourcePD == sourcePD2);

}else{ false }
]);
connsB := conns.select([:conn2 |

| sourcePD2|
if((conn == conn2).not())
{

destPD2 := conn2.getDestinationPortDescription();
(destPD == destPD2);

}else{ false }
]);
connsA.each([:cA |

|destA |
destA := cA.getDestinationPortDescription();
connsB.each[:cB |

|srcB|
srcB := cB.getSourcePortDescription();
if(destA.getComponent() == srcB.getComponent())
{ return false }

]);
]);

]);
return true;

}
}

LISTING B.11 : PipeAndFilter, the sub constraint five in COMPO. For each pair (A, B) of directly con-
nected internal components, there is not a third component, which is connected to the required ports
of A and in the same time to provided ports of B.

List of Figures

1.1 Growing complexity of solutions, here mesured in terms of Lines of Code (LoC), forces the
evolution of computer programming languages . 2

1.2 To be Explicit: fields example . 10
1.3 To be Explicit: dictionary example . 10

2.1 Strong and implicit coupling between two classes . 18
2.2 Low and explicit coupling between two classes . 18
2.3 Explicit and low coupling between components . 19
2.4 Principle of middleware . 20
2.5 Meta-model of SOFA2 . 24
2.6 Graphic of a COM object named CA has two interfaces IX and IY representation 29
2.7 The Architecture of OpenCOM . 31
2.8 Reifying a base-level object according to multiple meta-space. 36
2.9 Structure of a Javabean component . 37
2.10 Visual Representation of SCA Concepts . 41
2.11 FraSCAti controllers, each implementing a particular facet of the execution policy of an

SCA component . 43
2.12 A sample C2 architecture and a detail of the internal architecture of a C2 component.

Jagged lines represent the parts of the architecture not shown. 46
2.13 Structure of a UML component . 52
2.14 ComponentJ model ingredients and interactions. 57

3.1 A parallel between descriptors and ADLs. 73
3.2 Descriptor concept definition in MOF language . 75
3.3 The diagram shows a logical representation of an instance of the HTTPSERVER descriptor

presented in Listing 3.1, after it has been created and initialized. 77
3.4 Overview of the UML-like graphic conventions used for COMPO 83
3.5 An example of a dynamic architecture with a collection port in an instance of BackEnd . . 85
3.6 A connection example, the connection we created by the connect statement in the second

line of Listing 3.5 . 89
3.7 Invocation of the required service getRandomNumber made through the port randomizer

of component pm . 93
3.8 Illustration of service invocations treatment in COMPO . 95

227

228 List of Figures

3.9 The basic cases concerning service invocations through required ports 98
3.10 The basic cases concerning service invocations through provided ports 98
3.11 An example of a problematic case of service invocations . 100
3.12 Empathizing the difference between an assembly of components and a composite. The

COMPILER can be easily putted on the shelf and reused later. 101
3.13 An example of a substitution. The replace routine is used to substitute an instance of the

CALC (defined in Listing 3.4) with an instance of the EXTCALC (defined in Listing 3.8.) The
compatibility of the descriptors is illustrated by the tuples checking in the bottom of the
figure. 105

4.1 Illustration of the fragile base class problem . 113
4.2 Analogies between inheritance and composition . 114
4.3 An example of the initial receiver lose in case of composition and it possible solution as

proposed in ComponentJ . 116
4.4 An example of architecture reuse. 117
4.5 The instances of the CALC (defined in Listing 3.4) and the EXTCALC (defined without inher-

itance in Listing 3.8 and with inheritance in Listing 4.3.) . 121
4.6 An example of the method lookup mechanism in SMALLTALK. The mechanism follows the

inheritance hierarchy. 124
4.7 Descriptor CONTOLABLEFRONTEND (cf. Listing 4.5) exports the controlling behavior of the

inherited internal component reqRecv via the newly added port control and a delegation
connection. Greyed parts denote inherited subjects. 127

4.8 An example of an extension and specialization of required ports. Grayed parts of the figure
illustrate inherited parts. 130

4.9 Dynamic substitution with a sub-descriptor having additional required port may lead to
unsatisfied requirement in the architecture. Grayed parts of the figure illustrate inherited
parts. 132

4.10 Specialization and extension of an internal architecture. Grayed parts of this figure illus-
trate inherited parts. 135

5.1 Reflection of software systems [Costa Soria, 2011] . 147
5.2 ObjVlisp Class is an instance of itself to solve the infinite recursion of the 5 ObjVlisp pos-

tulates. 149
5.3 The meta-model of Compo showing the integration of reflection. All elements, except the

primitive ports, in the scheme were reified as COMPO descriptors. The grayed color de-
notes original concepts shown in Figure 3.2. 150

5.4 Excerpt of the meta-model (see Figure 5.3) showing the two basic elements: component
and descriptor with their relations. 151

5.5 A diagram of a component-based reification of the component concept. Greyed parts de-
note inherited parts. 155

5.6 A diagram of a component-based reification of the descriptor concept. Greyed parts de-
note inherited parts. 156

5.7 The & operator for accessing the component-oriented reification of the printingPort
port of an instance of descriptor TEXTEDITOR . 161

List of Figures 229

5.8 The visualization of the use of an aspect-port . 162
5.9 Reification of services, the miles-to-kms example. 164
5.10 An illustration of the milesToKms example 5.7 - Phase 1 . 168
5.11 An illustration of the milesToKms example 5.7 - Phase 2 . 169
5.12 An illustration of the milesToKms example 5.7 - Phase 3 . 170

6.1 The diagram shows a logical representation of an instance of the HTTPSERVER descriptor
presented in Listing 3.1, after it has been created and initialized. 176

6.2 A diagram of an instance of the FRONTEND descriptor . 177
6.3 A diagram of an instance of the BACKEND descriptor . 180
6.4 Simplified diagram illustrating the transformation from a classic front-end back-end ar-

chitecture into a bus-oriented one. 183
6.5 The facade checker constraint component is connected to an instance of PASSWORDGEN-

ERATOR descriptor in order to verify the constraint. 185

7.1 Zoom in to the relation between Component and Descriptor descriptors 195
7.2 Integrating COMPO’s meta-model into SMALLTALK’s meta-model. 196
7.3 A UML model of COMPO implemented in SMALLTALK . 198
7.4 Screenshot of the Compo browser, a step towards visual development 205

List of Tables

1.1 Growing complexity of software illustrated in terms of lines of code (LoC) in case of OS . . 3

2.1 General purpose and domain specific component models [Crnkovic et al., 2011] 22
2.2 Frameworks family . 62
2.3 Generative family . 63
2.4 COLs family . 64

4.1 Comparative table of inheritance in related COLs . 139

230

List of Listings

2.1 CCM Navigation interface . 33
2.2 CCM Receptacles interface . 33
2.3 A component modeling a UNIX pipe in ACME . 45
2.4 A pipeline component description in Darwin . 48
2.5 A component modeling a filter in Wright . 50
2.6 ArchJava’s code of components WEBSERVER, ROUTER and WORKER. 54
2.7 ACOEL mixins . 56
3.1 The HTTPServer descriptor. 76
3.2 The BackEnd descriptor . 84
3.3 The RequestAnalyzer descriptor . 84
3.4 The Calc descriptor. The self is an internal provided port referencing the current con-

text (it resemble this in Java.) . 88
3.5 Using an instance (a component) of the Calc descriptor. The invocations of the add,

mul, pow and rand services are made through the default port of the component (see
Definition 10 and Section 3.3.1) . 88

3.6 Breaking encapsulation with parameterized constructor in Java. After the last line was
executed, the mp reference should be invalid, otherwise someone has a reference to the
object which should be private for the new instance of X 91

3.7 Dangerous behavior when referencing or storing return values and invocation arguments. 96
3.8 The EXTCALC descriptor. 104
4.1 Executing an inherited code in a new context (the receiver environment), a Java example.115
4.2 Composition and message forwarding to avoid inheritance leads to the “initial receiver

lost” problem. 115
4.3 The EXTCALC2 descriptor is defined as a sub-descriptor of descriptor CALC (defined in

Listing 3.4). 122
4.4 Specialization and addition of services. 123
4.5 The CONTROLABLEFRONTEND descriptor. Extends a FRONTEND descriptor with a new pro-

vided port named control. Instances of the both descriptors are shown in Figure 4.7 . 126
4.6 The RESTARTABLEFRONTEND descriptor. Specializes the control port of CONTROLABLE-

FRONTEND descriptor (cf. Listing 4.5). 129

231

232 List of Listings

4.7 An example of unsatisfied required port problem and its solution using the replace
routine and newCompatible service. The DYNAMICHTTPSERVER descriptor can dynam-
ically substitute the queue internal component in its instances. The RANDOMREQUEST-
SQUEUE descriptor extends the REQUESTQUEUE descriptor with an additional required
port to which an instance of the RANDOMGENERATOR descriptor should be connected. . . 133

4.8 Specialization and extension of an internal architecture. 136
5.1 The COMPONENT descriptor. 152
5.2 The DESCRIPTOR descriptor. 153
5.3 The PORTDESCRIPTION descriptor. 154
5.4 The CONNECTIONDESCRIPTION descriptor. 155
5.5 The descriptors PORT and COLLECTIONPORT . 160
5.6 The example of creating an aspect-port . 162
5.7 The example of using an aspect-port . 162
5.8 The example of creating and using an aspect-port . 163
5.9 Analysis of services structure, the milesToKms example. 164
5.10 Analysis of services structure, the milesToKms example from Listing 5.9 in structural

perspective . 164
5.11 The SERVICE descriptor. 165
5.12 The PORTDESCRIPTION descriptor. 165
5.13 The MAP and CONVERTOR descriptors . 167
6.1 The HTTPServer descriptor. 177
6.2 The FrontEnd descriptor . 178
6.3 The BackEnd descriptor . 179
6.4 The RequestAnalyzer descriptor . 179
6.5 The COLLECTION abstract descriptor . 181
6.6 The ToBusTransformer descriptor. 184
6.7 The CONSTRAINT descriptor . 185
6.8 The VerifyBusArch descriptor. 187
6.9 PipeAndFilter constraint in COMPO . 189
6.10 PipeAndFilter, the sub constraint one in COMPO. There is only one internal component

having one or more external provided ports connected uniquely to the owning com-
posite only (delegated ports). The component have to declare one or more external re-
quired ports, each being connected to an internal component of the same hierarchical
level, or being not connected at all. 190

7.1 The <primitive_invoke> method of the class RequiredPort. 200
7.2 The <primitive_invoke> method of the class ProvidedPort. 201
7.3 Connecting ports in COMPO . 202
7.4 The primitive_connectTo method of the class PrimitivePort. 202
7.5 This COMPO example is implemented with SMALLTALK code in Listing 7.6 202
7.6 SMALLTALK implementaion of the code from Listing 7.5 203
B.1 The SET descriptor . 216
B.2 The BAG descriptor . 217
B.3 The SEQUENCEABLECOLLECTION descriptor . 218
B.4 The STACK descriptor . 219

List of Listings 233

B.5 The SET descriptor . 220
B.6 The SET descriptor . 221
B.7 The SETCOLLPORT descriptor . 221
B.8 PipeAndFilter, the sub constraint two in COMPO. There is only one internal component

having one or more external required ports connected uniquely to the owning compos-
ite only (delegated ports). The component have to have one or more external provided
ports, each being connected to an internal component of the same hierarchical level, or
being not connected at all. 222

B.9 PipeAndFilter, the sub constraint three in COMPO. Other internal components (n-2)
have external provided and required ports connected to other internal components of
the same hierarchical level. 223

B.10 PipeAndFilter, the sub constraint four in COMPO. Connection between each pair of in-
ternal components should go in the same direction, i.e. there are not two connections
of opposite direction between each pair. 224

B.11 PipeAndFilter, the sub constraint five in COMPO. For each pair (A, B) of directly con-
nected internal components, there is not a third component, which is connected to the
required ports of A and in the same time to provided ports of B. 225

Bibliography

[Abadi et Cardelli, 1996] Martin Abadi et Luca Cardelli. A Theory of Objects. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1996.

[Aldrich et al., 2002] Jonathan Aldrich, Craig Chambers, et David Notkin. ArchJava: Connecting Soft-
ware Architecture to Implementation. In ICSE, pages 187–197. ACM, 2002.

[Aldrich, 2003] Jonathan Aldrich. Using Types to Enforce Architectural Structure. PhD thesis, Univer-
sity of Washington, August 2003.

[Allen et Garlan, 1994] Robert Allen et David Garlan. Formalizing architectural connection. In Pro-
ceedings of the 16th international conference on Software engineering, ICSE ’94, pages 71–80, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[Allen, 1997] Robert John Allen. A formal approach to software architecture. PhD thesis, Pittsburgh,
PA, USA, 1997. AAI9813815.

[Anantharam, 2001] Parasuram Anantharam. Programming ruby. SIGSOFT Software Engineering
Notes, 26(4):89–89, 2001.

[Arnaud et al., 2010] Jean-Baptiste Arnaud, Marcus Denker, Stéphane Ducasse, Damien Pollet,
Alexandre Bergel, et Mathieu Suen. Read-only execution for dynamic languages. In Proceedings
of the 48th international conference on Objects, models, components, patterns, TOOLS’10, pages
117–136, Berlin, Heidelberg, 2010. Springer-Verlag.

[Arnout, 2004] Karine Arnout. From patterns to components. ETH Zürich, 2004.

[Barais et al., 2008] Olivier Barais, Anne Françoise Meur, Laurence Duchien, et Julia Lawall. Software
architecture evolution. In Software Evolution, pages 233–262. Springer Berlin Heidelberg, 2008.

[Baresi et al., 2004] L. Baresi, R. Heckel, S. Thone, et D. Varro. Style-based refinement of dynamic
software architectures. In Software Architecture, 2004. WICSA 2004. Proceedings. Fourth Working
IEEE/IFIP Conference on, pages 155–164, 2004.

[Beugnard et al., 1999] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, et Damien Watkins.
Making Components Contract Aware. Computer, 32(7):38–45, 1999.

235

236 Bibliography

[Beugnard et Sadou, 2007] Antoine Beugnard et Salah Sadou. Method overloading and overriding
cause distribution transparency and encapsulation flaws. Journal of Object Technology, 6(2):31–45,
2007.

[Black et al., 2009] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cas-
sou, et Marcus Denker. Pharo by Example. Square Bracket Associates, 2009.

[Blair et al., 1998] G. S. Blair, G. Coulson, P. Robin, et M. Papathomas. An architecture for next gener-
ation middleware. In Proceedings of the IFIP International Conference on Distributed Systems Plat-
forms and Open Distributed Processing, Middleware ’98, pages 191–206, London, UK, UK, 1998.
Springer-Verlag.

[Blair et al., 2009] G. Blair, N. Bencomo, et R.B. France. Models@ run.time. Computer, 42(10):22–27,
2009.

[Blanc et al., 2007] Xavier Blanc, Jérôme Delatour, et Tewfik Ziadi. Benefits of the mde approach for
the development of embedded and robotic systems. In Proceedings of the 2nd National Workshop
on Control Architectures of Robots, CAR’07, pages 124–134, Mai 2007.

[Bobrow et al., 1986] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,
et Frank Zdybel. Commonloops: merging Lisp and object-oriented programming. In OOPLSA
’86: Conference proceedings on Object-oriented programming systems, languages and applications,
pages 17–29, New York, NY, USA, 1986. ACM Press.

[Bouraqadi et Fabresse, 2009] Noury Bouraqadi et Luc Fabresse. Clic: a component model symbiotic
with smalltalk. In procs. of IWST, New York, NY, USA, 2009. ACM.

[Boyland et Castagna, 1996] John Boyland et Giuseppe Castagna. Type-safe compilation of covariant
specialization: A practical case. In ECOOP ’96 — Object-Oriented Programming, éditeur Pierre
Cointe, volume 1098 de Lecture Notes in Computer Science, pages 3–25. Springer Berlin Heidelberg,
1996.

[Bracha et Cook, 1990] Gilad Bracha et William Cook. Mixin-Based Inheritance. In Proceedings of the
Conference on Object-Oriented Programming: Systems, Languages, and Applications / Proceedings
of the European Conference on Object-Oriented Programming, éditeur Norman Meyrowitz, pages
303–311, Ottawa, Canada, 1990. ACM Press.

[Briand et al., 1999] Lionel C. Briand, John W. Daly, et Jürgen K. Wüst. A Unified Framework for Cou-
pling Measurement in Object-Oriented Systems. IEEE Trans. Software Eng., 25(1):91–121, 1999.

[Briot et Cointe, 1989] J.-P. Briot et P. Cointe. Programming with explicit metaclasses in smalltalk-80.
SIGPLAN Not., 24(10):419–431, Septembre 1989.

[Bruneton et al., 2004] E Bruneton, T Coupaye, et J.B. Stefani. The fractal component model. Rapport
technique, OW2 Consortium, February 2004.

[Bruneton et al., 2006] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, et Jean-
Bernard Stefani. The fractal component model and its support in java: Experiences with auto-
adaptive and reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257–1284, Septembre 2006.

Bibliography 237

[Büchi et Weck, 1998] Martin Büchi et Wolfgang Weck. Compound types for Java. In OOPSLA’98:
Proceedings of the 13th ACM SIGPLAN conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 362–373, New York, NY, USA, 1998. ACM Press.

[Bures et al., 2006] Tomas Bures, Petr Hnetynka, et Frantisek Plasil. Sofa 2.0: Balancing advanced
features in a hierarchical component model. In Proceedings of the Fourth International Conference
on Software Engineering Research, Management and Applications, pages 40–48, Washington, DC,
USA, 2006. IEEE Computer Society.

[Buschmann et al., 2008] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, et M. Stal. PATTERN-
ORIENTED SOFTWARE ARCHITECTURE: A SYSTEM OF PATTERNS. Numéro sv. 1. Wiley India Pvt.
Limited, 2008.

[Capra et Cazzola, 2009] L. Capra et W. Cazzola. An Introduction to Reflective Petri Nets, pages 191 –
217. IGI Global, 2009.

[Cardelli, 1997] Luca Cardelli. The Handbook of Computer Science and Engineering, chapitre 103,
Type Systems, pages 2208–2236. CRC Press, Boca Raton, FL, 1997.

[Carrière et al., 1999] S. Jeromy Carrière, Steven G. Woods, et Rick Kazman. Software architectural
transformation. In Proc. Working Conf. Reverse Engineering (WCRE), pages 13–23. IEEE Computer
Society Press, 1999.

[Cazzola, 1998] Walter Cazzola. Evaluation of object-oriented reflective models. In Object-Oriented
Technology: ECOOP’98 Workshop Reader, éditeurs Serge Demeyer et Jan Bosch, volume 1543 de
Lecture Notes in Computer Science, pages 386–387. Springer Berlin Heidelberg, 1998.

[Cheesman et Daniels, 2000] John Cheesman et John Daniels. UML components: a simple process for
specifying component-based software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2000.

[Chiba, 1997] Shigeru Chiba. Implementation techniques for efficient reflective languages. Rapport
technique, Departement of Information Science, The University of Tokyo, 1997.

[Cioch et al., 2000] Frank A. Cioch, John M. Brabbs, et Larry Sieh. The impact of software architecture
reuse on development processes and standards. Journal of Systems and Software, 50(3):221 – 236,
2000.

[Clarke et al., 2001] Michael Clarke, Gordon S. Blair, Geoff Coulson, et Nikos Parlavantzas. An ef-
ficient component model for the construction of adaptive middleware. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, Middleware ’01,
pages 160–178, London, UK, UK, 2001. Springer-Verlag.

[Cointe, 1987] Pierre Cointe. Metaclasses are first class: The objvlisp model. SIGPLAN Not.,
22(12):156–162, Décembre 1987.

[Costa et al., 2006] Fábio Moreira Costa, Lucas Luiz Provensi, et Frederico Forzani Vaz. Using run-
time models to unify and structure the handling of meta-information in reflective middleware. In

238 Bibliography

Proceedings of the 2006 international conference on Models in software engineering, MoDELS’06,
pages 232–241, Berlin, Heidelberg, 2006. Springer-Verlag.

[Costa Soria, 2011] Cristóbal Costa Soria. Dynamic Evolution and Reconfiguration of Software Archi-
tectures through Aspects. PhD thesis, Universidad Politécnica de Valencia, Spain, Juin 2011.

[Crnkovic et al., 2011] I. Crnkovic, S. Sentilles, A. Vulgarakis, et M.R.V. Chaudron. A classification
framework for software component models. Software Engineering, IEEE Transactions on, 37(5):593
–615, sept.-oct. 2011.

[Cuesta et al., 2002] Carlos E. Cuesta, Pablo Fuente, Manuel Barrio-Solórzano, et M.Encarnación
Beato. Introducing reflection in architecture description languages. In Software Architecture, édi-
teurs Jan Bosch, Morven Gentleman, Christine Hofmeister, et Juha Kuusela, volume 97 de IFIP —
The International Federation for Information Processing, pages 143–156. Springer US, 2002.

[Curry et al., 1982] Gael Curry, Larry Baer, Daniel Lipkie, et Bruce Lee. Traits: An approach to
multiple-inheritance subclassing. ACM SIGOA Newsletter, 3(1-2):1–9, Juin 1982.

[Dashofy et al., 2001] E. M. Dashofy, A. van der Hoek, et R. N. Taylor. A highly-extensible, XML-based
architecture description language. In Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on, pages 103–112, 2001.

[Daubert et al., 2012] E. Daubert, F. Fouquet, O. Barais, G. Nain, G. Sunye, J.-M. Jezequel, J-L Pazat, et
B. Morin. A models@runtime framework for designing and managing service-based applications.
In Software Services and Systems Research - Results and Challenges (S-Cube), 2012 Workshop on
European, pages 10–11, 2012.

[de Alfaro et Henzinger, 2001] Luca de Alfaro et Thomas A. Henzinger. Interface automata. In
ESEC/FSE-9: Proceedings of the 8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software engineering, pages 109–120,
New York, NY, USA, 2001. ACM Press.

[Demers et Malenfant, 1995] François-Nicola Demers et Jacques Malenfant. Reflection in logic, func-
tional and object-oriented programming: a short comparative study. In In IJCAI ’95 Workshop on
Reflection and Metalevel Architectures and their Applications in AI, pages 29–38, 1995.

[Desnos et al., 2007] Nicolas Desnos, Marianne Huchard, Christelle Urtado, Sylvain Vauttier, et Guy
Tremblay. Automated and unanticipated flexible component substitution. In Proceedings of the
10th ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE2007), éditeurs
H. W. Schmidt et al., volume 4608 de LNCS, pages 33–48, Medford, MA, USA, July 2007. Springer.

[Dony et al., 1992] Christophe Dony, Jacques Malenfant, et Pierre Cointe. Prototype-Based Lan-
guages: From a New Taxonomy to Constructive Proposals and Their Validation. In OOPSLA, pages
201–217, 1992.

[Ducasse et al., 2006] Stéphane Ducasse, Tudor Gîrba, et Adrian Kuhn. Distribution Map. In Proceed-
ings International Conference on Software Maintenance (ICSM 2006), pages 203–212, Los Alamitos
CA, 2006. IEEE Computer Society.

Bibliography 239

[Ducasse et Gîrba, 2006] Stéphane Ducasse et Tudor Gîrba. Using smalltalk as a reflective executable
meta-language. In Proceedings of the 9th international conference on Model Driven Engineering
Languages and Systems, MoDELS’06, pages 604–618, Berlin, Heidelberg, 2006. Springer-Verlag.

[Ducournau, 2002] Roland Ducournau. “real world“ as an argument for covariant specialization in
programming and modeling. In Advances in Object-Oriented Information Systems, Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2002.

[Ducournau, 2011] Roland Ducournau. Implementing statically typed object-oriented programming
languages. Rapport technique, Montpellier II University, France, 2011.

[E. Chailloux et B. Pagano, 2004] P. Manoury E. Chailloux et O’Reilley B. Pagano. Développement
d’applications avec Objective CAML. Journal of Functional Programming, 14(5):592–594, 2004.

[Emmerich, 2002] Wolfgang Emmerich. Distributed component technologies and their software en-
gineering implications. In Proceedings of the 24th International Conference on Software Engineer-
ing, ICSE ’02, pages 537–546, New York, NY, USA, 2002. ACM.

[Fabresse et al., 2008] Luc Fabresse, Christophe Dony, et Marianne Huchard. Foundations of a simple
and unified component-oriented language. Comput. Lang. Syst. Struct., July 2008.

[Fabresse et al., 2012] Luc Fabresse, Noury Bouraqadi, Christophe Dony, et Marianne Huchard. A
language to bridge the gap between component-based design and implementation. COMLAN :
Journal on Computer Languages, Systems and Structures, 38(1):29–43, Avril 2012.

[Fabresse, 2007] Luc Fabresse. From decoupling to unanticipated assembly of components: design
and implementation of the component-oriented language Scl. PhD thesis, Montpellier II University,
Montpellier, France, December 2007.

[Flanagan, 1998] David Flanagan. JavaScript: The Definitive Guide. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 1998.

[Flatt, 2000] Matthew Raymond Flatt. Programming languages for reusable software components.
PhD thesis, 2000. Adviser-Matthias Felleisen.

[Fowler, 2001] M. Fowler. To be explicit [software design]. Software, IEEE, 18(6):10–15, 2001.

[Gamma et al., 1995a] Erich Gamma, Richard Helm, Ralph Johnson, et John Vlissides. Design Pat-
terns : Elements of Reusable Object-Oriented Software. Addison Wesley, March 1995.

[Gamma et al., 1995b] Erich Gamma, Richard Helm, Ralph E. Johnson, et John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Garlan et al., 1994] David Garlan, Robert Allen, et John Ockerbloom. Exploiting style in architec-
tural design environments. In Proceedings of the 2nd ACM SIGSOFT symposium on Foundations of
software engineering, SIGSOFT ’94, pages 175–188, New York, NY, USA, 1994. ACM.

[Garlan et al., 1997] David Garlan, Robert Monroe, et David Wile. Acme: an architecture description
interchange language. In Proceedings of the 1997 conference of the Centre for Advanced Studies on
Collaborative research, CASCON ’97, pages 7–. IBM Press, 1997.

240 Bibliography

[Garlan et Kompanek, 2000] David Garlan et Andrew J. Kompanek. Reconciling the needs of archi-
tectural description with object-modeling notations. In Proceedings of the 3rd international confer-
ence on The unified modeling language: advancing the standard, pages 498–512, Berlin, Heidelberg,
2000. Springer-Verlag.

[Goldberg et Robson, 1989] Adele Goldberg et David Robson. Smalltalk-80: The Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[GoPivotal, Inc., 2013] GoPivotal, Inc. Spring Framework Reference Documentation. GoPivotal, Inc.,
2013.

[Group, 1997] The Open Group. Remote Procedure Call. The Open Group, document number: c706
édition, 1997.

[Hamilton, 1997] Graham Hamilton. JavaBeans. API Specification, Sun Microsystems, Juillet 1997.
Version 1.01.

[Henning et Vinoski, 1999] Michi Henning et Steve Vinoski. Advanced CORBA programming with
C++. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Hnetynka et Pise, 2004] Petr Hnetynka et Michal Pise. Hand-written vs. mof-based metadata repos-
itories: The sofa experience. In ECBS, pages 329–336. IEEE Computer Society, 2004.

[Hnětynka et Plášil, 2006] Petr Hnětynka et František Plášil. Dynamic reconfiguration and access to
services in hierarchical component models. In Proceedings of the 9th international conference
on Component-Based Software Engineering, CBSE’06, pages 352–359, Berlin, Heidelberg, 2006.
Springer-Verlag.

[Hoare, 1978] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
Aôut 1978.

[Hunt et Thomas, 1999] Andrew Hunt et David Thomas. The pragmatic programmer: from journey-
man to master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Hürsch, 1994] Walter L. Hürsch. Should Superclass be Abstract? In Proceedings ECOOP’94 : 8th
European Conf. Object-Oriented Programming, éditeurs M. Tokoro et R.Pareschi, volume 821 de
LNCS, pages 12–31. Springer Verlag, July 1994.

[Ingalls, 1981] Daniel H. H. Ingalls. Design principles behind smalltalk. BYTE Magazine, August 1981.

[Kiczales et al., 2001] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, et
William G. Griswold. An Overview of AspectJ. In ECOOP, éditeur Jørgen Lindskov Knudsen, volume
2072 de Lecture Notes in Computer Science, pages 327–353. Springer, 2001.

[Kon et al., 2000] Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane, Claudio Mag-
alhã, et Roy H. Campbell. Monitoring, security, and dynamic configuration with the dynamictao
reflective orb. In IFIP/ACM International Conference on Distributed systems platforms, Middleware
’00, pages 121–143, Secaucus, NJ, USA, 2000. Springer-Verlag New York, Inc.

Bibliography 241

[Kriens, 2012] Peter Kriens. Simplexity, the quest for reuse. Key talk in Conférence sur les Architec-
tures Logicielles (CAL), Montpellier, France, 2012.

[Kruchten et al., 2009] P. Kruchten, R. Capilla, et J.C. Dueas. The decision view’s role in software ar-
chitecture practice. Software, IEEE, 26(2):36–42, 2009.

[Lahire et al., 2004] P. Lahire, G. Arévalo, H. Astudillo, A.P. Black, E. Ernst, M. Huchard, T. Oplustil,
M. Sakkinen, et P. Valtchev. Mechanisms for Specialization, Generalization and Inheritance, 2004.
MASPEGHI.

[Lahire et Quintian, 2006] Philippe Lahire et Laurent Quintian. New Perspective To Improve
Reusability in Object-Oriented Languages. Journal Of Object Technology (JOT), 5(1):117–138, 2006.

[Langelier et al., 2005] Guillaume Langelier, Houari A. Sahraoui, et Pierre Poulin. Visualisation et
analyse de logiciels de grande taille. In Langages et Modèles à Objets 2005, Mars 2005.

[Lau et Wang, 2005a] K. K. Lau et Z. Wang. A Survey of Software Component Models. Technical re-
ports, Department of Computer Science, University of Manchester, April 2005.

[Lau et Wang, 2005b] Kung-Kiu Lau et Zheng Wang. A taxonomy of software component models. In
EUROMICRO-SEAA, pages 88–95. IEEE Computer Society, 2005.

[Leclercq et al., 2007] Matthieu Leclercq, Ali Erdem Ozcan, Vivien Quema, et Jean-Bernard Stefani.
Supporting Heterogeneous Architecture Descriptions in an Extensible Toolset. In ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineering, pages 209–219, Washington,
DC, USA, 2007. IEEE Computer Society.

[Ledoux et Cointe, 1996] Thomas Ledoux et Pierre Cointe. Explicit metaclasses as a tool for improv-
ing the design of class libraries. In Proceedings of the Second JSSST International Symposium on Ob-
ject Technologies for Advanced Software, ISOTAS ’96, pages 38–55, London, UK, UK, 1996. Springer-
Verlag.

[Ledoux, 1999] Thomas Ledoux. Opencorba: A reflective open broker. In Proceedings of the Second
International Conference on Meta-Level Architectures and Reflection, Reflection ’99, pages 197–214,
London, UK, UK, 1999. Springer-Verlag.

[Lieberman, 1986a] Henry Lieberman. Using prototypical objects to implement shared behavior in
object-oriented systems. In OOPLSA ’86: Conference proceedings on object-oriented programming
systems, languages and applications, pages 214–223, New York, NY, USA, 1986. ACM Press.

[Lieberman, 1986b] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object Oriented Systems. In procs. of OOPSLA, Portland, Oregon, USA, Novembre 1986. Published
as ACM SIGPLAN Notices 21(11).

[Lippman, 1996] Stanley B. Lippman. Inside the C++ object model. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1996.

242 Bibliography

[Liskov et Zilles, 1974] Barbara Liskov et Stephen Zilles. Programming with abstract data types. In
Proceedings of the ACM SIGPLAN symposium on Very high level languages, New York, NY, USA,
1974. ACM.

[Luckham et al., 1995a] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, et Walter Mann. Specification and analysis of system architecture using rapide. IEEE Trans.
Softw. Eng., 21:336–355, April 1995.

[Luckham et al., 1995b] David C. Luckham, James Vera, et Sigurd Meldal. Three Concepts of System
Architecture. Rapport Technique CSL-TR-95-674, 1995.

[Luckham et Vera, 1995] David C. Luckham et James Vera. An event-based architecture definition
language. IEEE Trans. Softw. Eng., 21(9):717–734, Septembre 1995.

[Léger et al., 2006] Marc Léger, T. Coupaye, et Thomas Ledoux. Contrôle dynamique de l’intégrité
des communications dans les architectures à composants. In Langages et Modèles à Objets, éditeur
S. Vauttier R. Rousseau, C. Urtado, pages 21–36. Hermès-Lavoisier, 2006.

[Maes, 1987] Pattie Maes. Concepts and experiments in computational reflection. SIGPLAN Not.,
22(12):147–155, Décembre 1987.

[Magee et al., 1995] Jeff Magee, Naranker Dulay, Susan Eisenbach, et Jeff Kramer. Specifying dis-
tributed software architectures. In Proceedings of the 5th European Software Engineering Confer-
ence, pages 137–153, London, UK, 1995. Springer-Verlag.

[Malenfant et al., 1992] J. Malenfant, C. Dony, et P. Cointe. Behavioral reflection in a prototype-based
language. In Proceedings of International Workshop on Reflection and Meta-Level Architectures,
pages 143–153. ACM, 1992.

[Malenfant et al., 1996] Jacques Malenfant, M. Jacques, et François-Nicola Demers. A tutorial on be-
havioural reflection and its implementation. In Proceedings of the First International Conference
on Reflection, Reflection’96, Reflection ’96, pages 1–20, 1996.

[Martin, 2002] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.
Prentice-Hall, Inc, 2002.

[McIlroy, 1968] M. D. McIlroy. Mass produced software components. In Proceedings, NATO Confer-
ence on Software Engineering, éditeurs P. Naur et B. Randell, Garmisch, Germany, Octobre 1968.

[McIlroy, 1972] M. D. McIlroy. The outlook for software components. In Software Engineering, pages
243–252. Infotech Information, Ltd., Maidenhead, England, 1972.

[McVeigh et al., 2006] Andrew McVeigh, Jeff Kramer, et Jeff Magee. Using resemblance to support
component reuse and evolution. In Procs. of SAVCBS, New York, NY, USA, 2006. ACM.

[Medvidovic et al., 1996] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, et Richard N. Taylor.
Using object-oriented typing to support architectural design in the c2 style. SIGSOFT Softw. Eng.
Notes, 21(6):24–32, Octobre 1996.

Bibliography 243

[Medvidovic et al., 1997] Nenad Medvidovic, Peyman Oreizy, et Richard N. Taylor. Reuse of off-the-
shelf components in c2-style architectures. In Proceedings of the 1997 symposium on Software
reusability, SSR ’97, pages 190–198, New York, NY, USA, 1997. ACM.

[Medvidovic et Taylor, 2000] Nenad Medvidovic et Richard N. Taylor. A Classification and Compari-
son Framework for Software Architecture Description Languages. Software Engineering, 26(1):70–
93, 2000.

[Mehta et al., 2000] Nikunj R. Mehta, Nenad Medvidovic, et Sandeep Phadke. Towards a taxonomy of
software connectors. In Proceedings of the 22nd international conference on Software engineering,
ICSE ’00, pages 178–187, New York, NY, USA, 2000. ACM.

[Mens, 2008] Tom Mens. Introduction and roadmap: History and challenges of software evolution.
In Software Evolution, pages 1–11. Springer Berlin Heidelberg, 2008.

[Mernik et al., 2005] Marjan Mernik, Jan Heering, et Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computer Surveys, 37(4):316–344, 2005.

[Meyer, 2001] Bertrand Meyer. Overloading vs object technology. Journal of Object-Oriented Pro-
gramming (JOOP), 14(4):3–7, October-November 2001.

[Microsoft, 1995] Microsoft. The Component Object Model Specification, 1995.

[Microsoft, 2012] Microsoft. COM: Component Object Model Technologies. Microsoft, 2012.

[Mikhajlov et Sekerinski, 1998] Leonid Mikhajlov et Emil Sekerinski. A Study of the Fragile Base Class
Problem. Lecture Notes in Computer Science, 1445:355, 1998.

[Monroe, 2001] Robert T. Monroe. Capturing software architecture design expertise with armani.
Rapport technique, School of Computer Science, Carnegie Mellon University,Pittsbugh, Pennsyl-
vania, USA, 2001.

[Monson-Haefel, 1999] Richard Monson-Haefel. Enterprise JavaBeans. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1999.

[Morin et al., 2009] Brice Morin, Olivier Barais, Gregory Nain, et Jean-Marc Jezequel. Taming dynam-
ically adaptive systems using models and aspects. In Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE ’09, pages 122–132, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[Muller et al., 2005] Pierre-Alain Muller, Franck Fleurey, et Jean-Marc Jezequel. Weaving executability
into object-oriented meta-languages. In Proceedings of the 8th international conference on Model
Driven Engineering Languages and Systems, MoDELS’05, Berlin, Heidelberg, 2005. Springer-Verlag.

[Nierstrasz et al., 2005] Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse,
Markus Gälli, et Roel Wuyts. On the revival of dynamic languages. In Proceedings of Software
Composition 2005, éditeurs Thomas Gschwind et Uwe Aßmann, volume 3628, pages 1–13. LNCS
3628, 2005.

244 Bibliography

[OASIS, 2013] OASIS. Service Component Architecture (SCA). Organization for the Advancement of
Structured Information Standards, 2013.

[Odersky et Zenger, 2005] Martin Odersky et Matthias Zenger. Scalable Component Abstractions. In
OOPSLA, éditeurs Ralph Johnson et Richard P. Gabriel, pages 41–57. ACM, 2005.

[OMG, 2011a] OMG. Meta Object Facility (MOF) Core Specification Version 2.4.1, 2011.

[OMG, 2011b] OMG. UML 2.4.1 superstructure specification; document formal/2011-08-06. Rapport
technique, OMG, August 2011.

[OMG, 2011c] OMG. Unified Modeling Language (UML), V2.4.1. OMG, August 2011.

[OMG, 2012] OMG. CORBA Component Model (CCM). OMG, 2012.

[Oplustil, 2002] T. Oplustil. Inheritance of sofa components. Master’s thesis, Faculty of Informatics,
Masaryk University, Brno, Czech Republic, June 2002.

[Opluštil, 2003] Tomáš Opluštil. Inheritance in Architecture Description Languages. In WDS 2003 -
Proceedings of Contributed Papers, éditeur Jana Šafránková, pages 124–131, Prague, Czech Repub-
lic, 2003. Matfyzpress, MFF UK.

[Oracle, 2012] Oracle. Enterprise JavaBeans Specification Version 3. Oracle, 2012.

[OSGi Alliance, 2012] OSGi Alliance. OSGi Core Release 5 Specification. OSGi Alliance, 2012.

[Oussalah et al., 2006] M. Oussalah, N. Sadou, et D. Tamzalit. SAEV :A Model to Face Evolution Prob-
lem in Software Architecture. In Proceedings of the International ERCIM Workshop on Software
Evolution, pages 137–146, Lille, France, April 2006.

[Outhred et Potter, 1998] G Outhred et J Potter. A model for component composition with sharing.
In Proceedings of the Workshop on Component Oriented Programming (WCOP). ECOOP Workshop
Reader, 1998.

[Pavel et al., 2005] Sebastian Pavel, Jacques Noyé, et Jean-Claude Royer. Un modèle de composant
avec protocole symbolique. In Journée du groupe Objets, Composants et Modèles, Bern, Suisse,
2005.

[Peschanski et al., 2000] F. Peschanski, T. Meurisse, et J.-P. Briot. Les composants logiciels : Evolution
technologique ou nouveau paradigme ? In In Actes de la conférence OCM’2000, pages 53–65, 2000.

[Plásil et al., 1998] F. Plásil, D. Bálek, et R. Janecek. SOFA/DCUP: Architecture for component trading
and dynamic updating. In CDS ’98: Proceedings of the International Conference on Configurable
Distributed Systems, page 43, Washington, DC, USA, 1998. IEEE Computer Society.

[Plásil et al., 1999] Frantisek Plásil, Miloslav Besta, et Stanislav Visnovsky. Bounding component be-
havior via protocols. In TOOLS ’99: Proceedings of the Technology of Object-Oriented Languages
and Systems, page 387, Washington, DC, USA, 1999. IEEE Computer Society.

Bibliography 245

[Privat, 2006] Jean Privat. De l’expressivité à l’efficacité, une approche modulaire des langages à objets.
Le langage PRM et le compilateur prmc. PhD thesis, Université de Montpellier 2, LIRMM, Juillet
2006.

[Provensi et al., 2010] Lucas Luiz Provensi, Fábio Moreira Costa, et Vagner Sacramento. Management
of runtime models and meta-models in the meta-orb reflective middleware architecture, 2010.

[Renggli et al., 2010] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, et Oscar Nierstrasz. Practical
Dynamic Grammars for Dynamic Languages. In 4th Workshop on Dynamic Languages and Appli-
cations (DYLA 2010), Malaga, Espagne, 2010.

[Rivard, 1996] F Rivard. A new smalltalk kernel allow ing both explicit and implicit metaclass pro-
gramming. In Workshop on Extending the Smalltalk Language, OOPSLA ’96, October 1996.

[Rogerson, 1997] Dale Rogerson. Inside COM. Microsoft Press, Redmond, WA, USA, 1997.

[Sánchez Cuadrado, 2012] Jesús Sánchez Cuadrado. Towards a family of model transformation lan-
guages. In Proceedings of the 5th international conference on Theory and Practice of Model Trans-
formations, ICMT’12, pages 176–191, Berlin, Heidelberg, 2012. Springer-Verlag.

[Schmid et Pfeifer, 2008] Hans Albrecht Schmid et Marco Pfeifer. Engineering a component lan-
guage: Compjava. In Software and Data Technologies, Communications in Computer and Infor-
mation Science. Springer Berlin Heidelberg, 2008.

[Seco et al., 2008] J. C. Seco, Ricardo Silva, et Margarida Piriquito. Componentj: A component-based
programming language with dynamic reconfiguration. Computer Science and Information Systems,
05(02):65–86, 12 2008.

[Seco et Caires, 2000] João Costa Seco et Luís Caires. A basic model of typed components. Lecture
Notes in Computer Science, 1850:108–129, 2000.

[Seinturier et al., 2006] L. Seinturier, N. Pessemier, L. Duchien, et T. Coupaye. A model for devel-
oping component-based and aspect-oriented systems. In Proceedings of the 5th International
Symposium on Software Composition (SC’06), volume 4089 de Lecture Notes in Computer Science.
Springer, Mars 2006.

[Seinturier et al., 2012] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio
Schiavoni, et Jean-Bernard Stefani. A component-based middleware platform for reconfigurable
service-oriented architectures. Softw. Pract. Exper., 42(5):559–583, Mai 2012.

[Shaw et al., 1995] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, et
Gregory Zelesnik. Abstractions for software architecture and tools to support them. IEEE Trans.
Softw. Eng., 21(4):314–335, Avril 1995.

[Shaw et Garland, 1996] Mary Shaw et David Garland. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, NJ, 1996.

[Smith, 1982] Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1982.

246 Bibliography

[Snyder, 1987] Alan Snyder. Inheritance and the development of encapsulated software systems. In
Research Directions in Object-Oriented Programming, pages 165–188. 1987.

[Souchon, 2005] Frédéric Souchon. SaGE, Un Système de Gestion d’Exceptions pour la Programma-
tion Orientée Message : Le Cas des Systèmes Multi-Agents et des Plates-Formes à Base de Composants
Logiciels. PhD thesis, Université de Montpellier 2, LIRMM, 2005.

[Spacek et al., 2012] Petr Spacek, Christophe Dony, Chouki Tibermacine, et Luc Fabresse. An inher-
itance system for structural & behavioral reuse in component-based software programming. In
Proceedings of the 11th GPCE, pages 60–69. ACM, 2012.

[Sreedhar, 2002] Vugranam C. Sreedhar. Mixin’Up components. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages 198–207, New York, NY, USA, 2002. ACM
Press.

[Stein, 1987] Lynn Andrea Stein. Delegation is inheritance. In OOPSLA ’87: Conference proceedings
on Object-oriented programming systems, languages and applications, pages 138–146, New York,
NY, USA, 1987. ACM Press.

[Stepanov et Lee, 1994] Alexander Stepanov et Meng Lee. The Standard Template Library. Rapport
technique, ISO Programming Language C++ Project, 1994.

[Szyperski, 2002] C. Szyperski. Component Software: Beyond Object-Oriented Programming (2nd
Edition). Addison-Wesley, 2002.

[Taenzer et al., 1989] D. Taenzer, M. Ganti, et S. Podar. Problems in Object-Oriented Software Reuse.
In Proceedings of ECOOP’89 : European Conf. Object-Oriented Programming, éditeur S. Cook, vol-
ume 821, pages 25–38. Cambridge University Press, july 1989.

[Tang et al., 2005] A. Tang, M.A. Babar, I. Gorton, et J. Han. A survey of the use and documentation of
architecture design rationale. In Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP
Conference on, pages 89–98, 2005.

[Terrier et Gérard, 2006] François Terrier et Sébastien Gérard. MDE Benefits for Distributed, Real
Time and Embedded Systems. In From Model-Driven Design to Resource Management for Dis-
tributed Embedded Systems, volume 225 de IFIP International Federation for Information Process-
ing, chapitre 3, pages 15–24. Springer Boston, Boston, MA, 2006.

[Tibermacine et al., 2010a] Chouki Tibermacine, Christophe Dony, Salah Sadou, et Luc Fabresse.
Software architecture constraints as customizable, reusable and composable entities. In Proceed-
ings of the 4th European Conference on Software Architecture (ECSA’10), Copenhagen, Denmark,
August 2010. Springer-Verlag.

[Tibermacine et al., 2010b] Chouki Tibermacine, Régis Fleurquin, et Salah Sadou. A family of lan-
guages for architecture constraint specification. In the Journal of Systems and Software (JSS), Else-
vier, 2010.

Bibliography 247

[Tibermacine et al., 2011] Chouki Tibermacine, Salah Sadou, Christophe Dony, et Luc Fabresse.
Component-based specification of software architecture constraints. In Proceedings of the 14th
CBSE, pages 31–40, New York, NY, USA, 2011. ACM.

[Tremblay et Chae, 2005] Guy Tremblay et Junghyun Chae. Towards specifying contracts and proto-
cols for Web services. In MCeTech Montreal Conference on eTechnologies, éditeurs H. Mili et F. Khen-
dek, pages 73–85, January 2005.

[Ungar et Smith, 1987] David Ungar et Randall B. Smith. Self: The power of simplicity. In OOPSLA
’87: Conference proceedings on Object-oriented programming systems, languages and applications,
pages 227–242, New York, NY, USA, 1987. ACM Press.

[Vraný et al., 2012] Jan Vraný, Jan Kurs, et Claus Gittinger. Efficient method lookup customization for
smalltalk. In TOOLS (50), pages 124–139, 2012.

[Weck et Szyperski, 1996] W. Weck et C. Szyperski. Do we need inheritance. In CIOO Workshop at
ECOOP, Linz, December 1996.

[Wettel et Lanza, 2007] Richard Wettel et Michele Lanza. Visualizing Software Systems as Cities.
In VISSOFT’07 (4th IEEE International Workshop on Visualizing Software For Understanding and
Analysis), éditeur IEEE CS Press, pages 92–99, 2007.

[Wuyts et Ducasse, 2001] Roel Wuyts et Stéphane Ducasse. Composition Languages for Black-Box
Components. In First OOPSLA Workshop on Language Mechanisms for Programming Software
Components, 2001.

[Xu et Ren, 2010] Liping Xu et Yufei Ren. Bichon: A new component-oriented programming lan-
guage. Software Engineering, World Congress on, 2010.

[Zenger, 2002] Matthias Zenger. Type-safe prototype-based component evolution. In Proceedings of
the European Conference on Object-Oriented Programming, Malaga, Spain, June 2002.

	Title
	Contents
	Acknowledgement
	Abstract
	Résumé
	1 Introduction
	1.1 Context: Component-based Software Engineering
	1.2 Limitations of the Existing Approaches
	1.3 Scl, the predecessor of our work
	1.4 The problematic of the thesis
	1.5 Characteristics of the contribution
	1.6 Structure of the thesis

	2 Component Models and their Implementations
	2.1 Advantages and promises of the component-based approach
	2.1.1 Reuse
	2.1.2 Distribution
	2.1.3 Explicitness

	2.2 Presentation of the main Component-based approaches
	2.2.1 Families of the component-based approaches
	2.2.2 Frameworks family
	2.2.3 Generative family
	2.2.4 Component-oriented languages family

	2.3 Comparison
	2.4 Conclusion

	3 Compo's basics
	3.1 The language philosophy
	3.2 Concepts
	3.2.1 Components and Descriptors
	3.2.2 Ports
	3.2.3 Services
	3.2.4 Connections

	3.3 Mechanisms
	3.3.1 Component instantiation
	3.3.2 Service invocation
	3.3.3 Composition mechanism
	3.3.4 Substitution mechanism

	3.4 Recapitulation
	3.4.1 Definitions
	3.4.2 Choices

	3.5 Related work
	3.6 Summary

	4 Integrating inheritance
	4.1 Introduction: Do we need inheritance?
	4.2 Inheritance for structural and behavioral reuse
	4.2.1 Multiple inheritance, yes or no?

	4.3 Descriptors and basic inheritance
	4.3.1 The ExtCalc Example

	4.4 Addition & specialization of services
	4.4.1 The service lookup mechanism

	4.5 Addition & specialization of provided port descriptions
	4.6 Addition & specialization of external required ports descriptions
	4.6.1 The DynamicHTTPServer example

	4.7 Extension & specialization of architectures
	4.8 Related work
	4.9 Summary
	4.9.1 Definitions made
	4.9.2 Choices made

	5 Integrating reflection
	5.1 MDE, the motivation for reflection
	5.2 Reflection & Reification
	5.3 Requirements for the meta-model architecture
	5.4 The meta-model
	5.5 First-class descriptors and components
	5.6 First-class ports
	5.7 First-class services
	5.8 Related work
	5.9 Summary
	5.9.1 Definitions made
	5.9.2 Choices made

	6 Compo in Practice
	6.1 Designing an HTTP server
	6.2 Designing a collection hierarchy
	6.3 Transformation to a bus-oriented architecture
	6.4 Verifying architecture constraints
	6.4.1 Verifying the bus-oriented architecture
	6.4.2 Verifying the Pipe & Filter architecture

	6.5 Summary

	7 The prototype
	7.1 Why Smalltalk?
	7.2 Technology choices
	7.3 Bootstrap Implementation
	7.4 The implemented model
	7.5 Services invocation implementation
	7.6 Connection mechanism implementation
	7.7 Inheritance implementation
	7.8 Instantiation mechanism implementation
	7.9 Toward a graphical development environment
	7.10 Summary

	8 Conclusion
	A Grammar
	A.1 Lexan rules
	A.2 Parser rules

	B Usage sources
	B.1 Collection hierarchy sources
	B.2 Constraints sources
	B.2.1 Pipes&Filters

	List of Figures
	List of Tables
	List of Listings
	Bibliography

