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Abstract
Component-based Software Engineering studies the design,
development and maintenance of software constructed upon
sets of connected components. Existing component-based
models are frequently transformed into non-component-
based programs, most of the time object-oriented, for run-
time execution and then many component-related concepts,
e.g. explicit architecture, vanish at the implementation stage.
The main reason why is that with objects the component-
related concepts are treated implicitly and therefore the orig-
inal intentions and qualities of the component-based design
are hidden. This paper presents a reflective component-based
programming and modeling language, which proposes the
following original contributions: 1) Components are seen
as objects in which requirements, architecture descriptions,
connection points, etc. are explicit. This core idea aids in
bridging the gap between component-based modeling and
programming; 2) It revisits standard solutions for reification
in the context of components when using the component-
oriented reification to build up an executable meta-model de-
signed on the idea of “everything is a component”, allowing
intercession on component descriptors and their instances;
3) It integrates reflection capabilities, making it possible to
develop standard component-based application, but also to
perform advanced architecture checking, code refactoring or
model transformations using the same language.

Categories and Subject Descriptors D.1 [Programming
techniques]; D.2.11 [Software Architectures]: Languages;
D.3 [Programming languages]

[Copyright notice will appear here once ’preprint’ option is removed.]

General Terms Languages, Reflection, Metamodeling

Keywords Component, Programming, Modeling, Archi-
tecture, Reflection, Reflexive, Meta-model, Constraints,
Transformations

1. Introduction
Research works on component-based software engineering
(CBSE) have brought many advances on how to achieve
complex software development by reusing and assembling
components. The current trend is to explicitly express ar-
chitectures of software solutions, to reason about them, to
verify them and to transform them. However it appears
that component-orientation has been more studied at de-
sign stage, with modeling languages and ADLs [10, 16, 22]
rather than implementation stage. As stated in [10] ‘most
component models use standard programming languages ...
for the implementation stage”; and most of today’s solu-
tions [13] use object-oriented languages. Such a choice has
many practical advantages related to the availability and ma-
turity of object-oriented programming languages, environ-
ments, tools and practices. But this also has the important
global drawback that component-related concepts (such as
component descriptor, ports, component, internal compo-
nent, internal architecture, etc) vanish at the implementa-
tion stage. Seeing the modeling and programming stages as
two isolated activities leads to complicated relationships be-
tween the artifacts that are produced. There is in addition a
great risk of inconsistencies between artifacts, and often the
result is that the models are discarded and the program be-
comes the only artifact for subsequent development. Also,
modeling is hampered by poor tool support compared with
programming tools. Such a lack of a conceptual continuum
between various development stages is the source of various
issues.

• It makes debugging or reverse-engineering (e.g. from
implementations to models) complex.
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• It can entail some loss of information or some inconsis-
tencies when implementing a model, such as the violation
of the communication integrity [13].

• Different languages have to be learned and mastered
to write an application e.g. an ADL for the architec-
ture, a programming language for the implementation
(model transformations only generate skeleton imple-
mentations), a language for expressing architecture con-
straints (such as OCL) and possibly a language for model
transformations [27].

• Some pieces of code may have to be written twice, for
example, in the absence of an automatic transformation
of model-level constraints [31], the same constraint
expression to check1, for example, that a given port of
a component is correctly connected has to be written
differently if it has to be checked at the model level
(using elements of the component description language
meta-model - e.g. component.port.isConnected())
or at the implementation level using elements of the
implementation language meta-model, (if they are
reified).

• Dynamic (runtime) constraints checking is only possible
if the implementation language has an executable meta-
model that allows for introspection. For example if the
implementation language is Java, constraints-checking
expressions can be written using the Reflect package.

• Runtime model transformations, to dynamically adapt
models or programs to a changing context, are only pos-
sible if the implementation language has an executable
meta-model that allows for intercession. Furthermore, af-
ter such a transformation, a reverse-engineering is needed
to update the model.

This above list of issues first suggests to study the com-
bination of today’s advances in CBSE with a development
framework including languages that all support CBSE, then
offering a conceptual continuum between designs and im-
plementations, similar to the continuum that exists between
object-oriented design and implementation. The study of
component-based development languages [1, 13, 28, 30] is a
step in such a direction.

This list secondly suggests that this principle could also
encompass the activity of writing all kind of meta-programs.
This globally means to allow software engineers to achieve,
using the same language defined by a unique component-
based meta-level M, not only applications (architectures and
code) but also all those meta-programs, e.g. constraint-
checking or model transformation or program transforma-
tion programs, that use or manipulate M constitutive elements

1 It can be expected that a model transformation ensures that one constraint
verified at the model level be by definition also verified at the implementa-
tion level but this can only be generally true if the meta-model also describes
the instructions of the programming language

and their instances, either statically or at runtime. One step
further, it appears that a component-level reflective develop-
ment language is a possible original solution to such a re-
quirement. By “component-level” we mean a reflective lan-
guage based on a meta-model describing component related
concepts.

A reflective solution provide means to drastically reduce
the issues by having the same description of architecture at
design and run-time. This paper present such a solution in
a form of a reflective component-based programming lan-
guage named COMPO, that apply existing solutions in the
component-based context, and allows for writing architec-
tures, code, program verification and transformation in the
same language. COMPO achieves a reification of elements of
a new component-oriented meta-model, structurally inspired
by [8], designed on the idea of “everything is a component”,
to build up an executable meta-model, allowing introspec-
tion and intercession on programs elements concepts and
their instances. It can be used at all stages of components de-
velopment to manipulate standard and “meta”-components
as first-class entities. It simply opens the possibility that ar-
chitectures, implementations and transformation can all be
written at the component level and possibly (but not manda-
torily) using a unique language (like COMPO).

The paper is organized as follows. Section 2 presents
COMPO’s standard syntax, constructs and use, necessary to
the understanding of the later examples; Section 3 describes
COMPO’s reflective meta-model and some primary examples
of its interest; Section 4 describes COMPO implementation;
Section 5 presents two examples of use : the reflective inte-
gration of constraints components as defined in [32] and an
example of model transformation. Comparison with related
works is presented in Section 6 and we conclude in Section
7 by discussing future work.

2. Compo’s basics

Figure 1. Diagram of an HTTPServer component instance

Before discussing and describing the reflective version
of our language, it is needed that we give an overview
of its basic constructs and syntax. COMPO component’s
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model is described by the MOF meta-model in Figure 22.
This component model is based on a descriptor/instance di-
chotomy where components are instances of descriptors. At
a glance, the Listing 1 shows a definition of a descriptor
named HTTPServer modeling very simple HTTP servers.
It defines a default provided port through which it pro-
vides the services run and status. It states that a server
is composed of two internal components, an instance of
FrontEnd accessible via the internal required port fE, and
an instance of BackEnd accessible via the internal required
port bE. These internal components are connected together
so that the front-end can invoke services of the back-end.
The HTTPServer descriptor explicitly defines the imple-
mentation of the status service. The provided service run
is implemented by a delegation connection to the provided
port default of the front-end. Figure 1 shows a diagram
that represents a component, instance of the HTTPServer
descriptor.

Descriptor HTTPServer {
provides {

default : { run (); status () }
}
internally requires {

fE : FrontEnd;
bE : BackEnd;

}
architecture {

connect fE to default@(FrontEnd.new ());
connect bE to default@(BackEnd.new ());
delegate default@self to default@fE;
connect backEnd@fE to default@bE;

}
service status () {

if(fE.isListening ())
{ [return name.printString ()

+’is running ’]}
else {[ return name.printString ()

+’is stopped ’]};
}

}

Listing 1. The HTTPServer descriptor.

Let’s look at each point more precisely. A descriptor de-
fines the structure and behavior of its instances. The behav-
ior is given a set of services definitions, for example a part
of an HTTPServer’s behavior is defined with the status
service. The structure is given by descriptions of ports and
connections. Descriptions of external (resp. internal) ports
define an external contract (resp. an internal contract). For
example the external contract of HTTPServer instances is
defined by the declaration of the provided port default and

2 Only important MOF attributes and operations of COMPO concepts, useful
for explaining our contribution in this paper, are shown in this figure, and
presented in the text.

its internal contract is defined by the declaration of the fE
and bE internal required ports .

A component may be composed of (internal) components
(e.g. a HTTPServer is composed of an instance of FrontEnd
connected to an instance of BackEnd) and it is then called a
composite. A composite is connected to its internal compo-
nents via its internal required ports. The services of a com-
posite can then invoke the services of its internal compo-
nents through such ports. The system composed of inter-
nal components and their connections is called the inter-
nal architecture of a composite. An example is given in the
architecture section in Listing 1.

Ports realize port descriptions (similarly to slots realiz-
ing classes’ attributes in UML [22]). A port has a role (pro-
vided or required), a visibility (external or internal), a name
and an interface. An interface is a set of service signatures
which could be given in three forms: (i) as an explicit list
(we call such a list an anonymous interface), for exam-
ple the default port declaration in Listing 1; or (ii) via a
named interface, e.g. printer : IPrinting where the inter-
face IPrinting was created with the statement: interface
IPrinting {print(text); ....}; or (iii) via a descriptor
name (e.g. cd); in this case, the list is the list of signatures
of services associated to cd’s default provided port (the fE
port declaration in Listing 1 is an example). External ports
are visible from the outside environment and are used for
communicating with neighboring components in the envi-
ronment. Internal ports of a component are used for commu-
nication with internal components (the owner). Internal ports
and the internal architecture of the owner are not accessible
from the outside environment.

Ports are connection and communication points. Compo-
nents are connected through their ports (to say that compo-
nents are connected is an admitted shortcut to say that one
port of the former is connected to one port of the later). Com-
munications happen through ports. A service invocation is
made via a required port and transmitted to the provided
port, the required port is connected to. Required ports are
communication points through which a component invokes
services it requires. fE.isListening() is an example of a
service invocation expression in the code of the status()
service defined in the HTTPServer descriptor, made through
the fE required port.

Connection are either regular or delegation connections.
A connection establishes a dual referencing between two
ports, making it possible to determine whether a port is con-
nected or not and, if true, to which other port it is connected.
It is a 1:1 relationship. We have introduced collection ports
as a support for 1:N relationships. A required port can be de-
clared as a collection port (syntax is <portName>[]) mean-
ing that the port can be connected to one or more provided
ports accessible through an index. Provided ports can also
be collection ports which can be connected to one or more
required ports.
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Figure 2. COMPO’s meta-model, before the integration of reflection

The syntax for connections is: (connect | delegate)

<port> to <port>, where <port> is any expression return-
ing a port. An example of an expression establishing a reg-
ular connection is: connect backEnd@fE to default@bE;,
(see. Listing 1). The expression backEnd@fE should be read:
“the port backEnd of the component that will be connected
to fE port after an instance of HTTPServer descriptor will
be created”, i.e. the @ operator makes it possible to reference
ports of a component which is not yet created.

A delegation connection is between two ports having the
same role and is used to delegate a service invocation from
an external to an internal port (provided to provided), or
from an internal to an external port (required to required). An
example of a “provided to provided” delegation connection
is delegate default@self to default@fE; in Listing 1.

Finally COMPO has an inheritance system [30], see the
“inherits” relation of Descriptor in Figure 2. A descriptor
can be defined as a sub-descriptor of an existing one using
the extends statement. Sub-descriptors inherit descriptions
given by their super-descriptor and can extend or specialize
them. Descriptors and inheritance are two important charac-
teristics for our integration of reflection in the language.

3. A meta-model for reflection and the
reflective implementation of its elements

This section presents an adaptation and extension of the
meta-model presented in Section 2 to allow for structural
reflection3, i.e. “to provide a complete reification of both a
program currently executed as well as a complete reification
of its abstract data types” [11]. Reification can be seen as
a process that makes meta-model elements accessible (read
access in the case of introspection or read/write in the case of
intercession) at the model level (or programming level). The

3 Our global solution makes it possible to define new kind of ports (see.
the example later on in this section) in which service invocation can be
modified. This is a very limited kind of behavioral reflection. More globally,
considering the requirements advocated in this paper, structural reflection
only is advocated.

MOF meta-model presented in Figure 3 describes4 how its
elements, representing the main component-level concepts,
are organized to be further reified as first-class entities acces-
sible in COMPO’s programs. Reification supposes to solve
various potential infinite regressions; in our component con-
text, the key issues are related to descriptors, ports and con-
nectors (or connections).

Our modeling scheme to represent descriptors as com-
ponents is directly inspired from [8] and conforms to the
MOF solution for reflection where “Reflection introduces
Object as a supertype of Element in order to be able to
have a Type that represents both elements and data val-
ues. Object represents ’any’ value and is the equivalent of
java.lang.Object in Java.” [21]. Component in figure 3 is our
root classifier, that conforms to MOF::Reflection::Object.
Descriptor is our basic meta-classifier, that conforms to
UML::Classes::Kernel::Classifier. To keep our contextual
component-level terminology, the modeling scheme is all el-
ements in Figure 3 are descriptors. Descriptor is the descrip-
tor of descriptors, all descriptors are instances of it. All de-
scriptors inherit from Component (except Component itself
which is the root of the inheritance tree). All descriptors are
components. Descriptor is instance of itself, it is its own de-
scriptor. This solves at the model level the infinite regression
on descriptions, the corresponding solution at implementa-
tion level is to create by hand a bootstrap first version of
Descriptor, the implementation of Descriptor.

Ports being true components is important for model
checking and transformations and also to allow for defin-
ing new kind of ports introducing new communications pro-
tocols. It however induces two potential infinite regressions.
The former is related to the definition: “a port is a component
having ports”. To solve the recursive nature of that definition
we restrict the language capabilities by altering the definition
in the following way: “a port is a component having primi-
tive ports”. A primitive port is a rock-bottom entity that can-
not be created by users and cannot be used as a first-class

4 this is an excerpt of the complete meta-model that only presents its central
“interesting” parts)
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Figure 3. An Excerpt of the meta-model of Compo showing the integration of reflection

entity. All ports of any normal port are automatically created
as primitive ports. The latter is related to the fact that if ports
are components, a component and one of its ports, should be
connected via ports. To solve this, the attachment of a port
to its owning component has to be primitive and in conjunc-
tion a language special construct is needed to provide access
to a port seen as a component. COMPO’s such construct is
presented in section 3.2.

Similar issues would apply with first-class connectors in
the case where component are directly connected via con-
nectors. Having a solution where components are connected
via theirs ports, we can consider connections between ports
as primitive entities (references), and do not need to reify
connections. This entails no limitation regarding the capa-
bility to experiment with various kind of connections [18]
because our model makes it possible to define new kind of
ports (see section 3.2) and because of the capability it offers
to put an adapter component in between any components.

The following sub-sections describe the COMPO’s reflec-
tive implementation of the main meta-model elements, de-
scribe the associated language constructs and give some pri-
mary examples of their use. Each element of our meta-model
is implemented as a COMPO descriptor. The inheritance re-
lations in the meta-model are almost directly implemented
in COMPO using its descriptor-level inheritance system and
its ability to create sub-descriptors of descriptors [30].

3.1 First-class descriptors and components
The Component descriptor, root of the descriptors inheri-
tance tree, defines the basic structure and behavior shared
by all components. Its reflective definition in COMPO (cf.
Listing 2) shows that all have an external provided port
named default described by the universal interface *5 and

5 In case of provided ports, the universal interface * means that a port
provides all services defined by a descriptor of a target component. In case
of required ports, it means that any service could be invoked through such
a port

Descriptor Component {
provides { default : * }
internally requires {

super : * ofKind SuperPort;
self : * ofKind SelfPort;

}
service getPorts () {...}
service getPortNamed(name) {...}
service getDescriptor () {...}
service getOwner () {...}

}

Listing 2. The Component descriptor.

two internal provided ports named self and super6 allow-
ing a component to invoke its own services (defined in its
own descriptor or the services its descriptor has overriden).
Component also defines four basic services7 :

• getPorts() and getPortNamed(name) return all (ex-
ternal and internal) ports (resp. a particular port) owned
by the receiver.

• getDescriptor() returns the receiver’s descriptor.
• getOwner() returns the owning component of the re-

ceiver or null if the receiver is not an internal compo-
nent8.

Listing 3 shows COMPO definition code of the
Descriptor descriptor. The Descriptor descriptor ex-
tends Component. Its definition states (cf. Listing 3) that
all descriptors have, in addition to what is defined in
Component, four internal required ports:

6 The statement ofKind in the definition states that the self and super
ports are created as instances of specific descriptors SelfPort and
SuperPort respectively.
7 Using a service invocation protocol, in a service’s body, self is a refer-
ence to the current receiver.
8 In a fully integrated vision a component (instance of a descriptor) is always
internal except if it a component that represents a “main” application.
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• name,
• ports, a descriptor has a collection of port’s descriptions

(instances of PortDescription) according to which
ports of its instances will be created,

• architecture states that a descriptor has a descrip-
tion of its instances internal architecture in the form of
a collection of connection’s descriptions (instances of
ConnectionDescription) according to which its in-
stances will be initialized,

• services to store the collection of services of its in-
stances.

Descriptor defines services for instance creation, new
to create any anonymous component and newNamed(name,
super-desc) to create new descriptors, for introspection
(various read-accessors such as getDescribedPorts())
and for intercession (such as addService(service)
). These services, together with those inherited from
Component, set the basis for creating more complex reflec-
tive operations.

Descriptor Descriptor extends Component
{

internally requires {
name : IString;
ports[] : {

getName ();
getRole ();
...

};
architecture [] : {

getSrc ();
getDest ();
...

};
services [] : { execute ();...};

}
service new() {...}
service newNamed(name , super -desc) {...}
service getDescribedPorts () {...}
service getDescribedConnections () {...}
service addService(service) {...}
...

}

Listing 3. The Descriptor descriptor.

An introspection example The following code snippet
shows a basic use of introspection. The expression returns
the descriptions of ports default, self and super, which
are defined by the descriptor Component, see Listing 2.

Component.getPortNamed(’default’).getDescribedPorts();

An intercession example The following code snippet
shows the descriptor (named ServiceMover) of a refactor-

ing component, which combines get, remove and add ser-
vices to move a service from one descriptor to another.

Descriptor ServiceMover {
requires {
srcDesc : IDescriptor;
destDesc : IDescriptor

}
service move(serviceName) {
|srv|
srv := srcDesc.getService(serviceName);
destDesc.addService(srv);
srcDesc.removeService(serviceName);

}
}

An example of defining a meta-descriptor Descriptor
is a meta-descriptor. New meta-descriptor can be defined
by extending it. As an example, consider the following is-
sue. Having an inheritance system, it is possible for a sub-
descriptor SD to define new required ports, thus adding re-
quirements to the contract defined by its super-descriptor D.
In such a case, substitution of an instance of D by an instance
of SD needs specific checking (child-parent incompatibility
problem [30] of inheritance systems in CBSE). It may be
wanted to define some descriptors that do not allow their
sub-descriptors to add new requirements. Such a seman-
tics is achieved by the DescriptorForSafeSubstitution
definition shown in the following code snippet. The meta-
descriptor extends the descriptor Descriptor and special-
izes its service addPortDescription, which implements
the capability to add a port description. The service is rede-
fined in a way that it signals an exception each time it is tried
to add a description of an external required port.

Descriptor DescriptorForSafeSubstitution
extends Descriptor

{
service addPortDescription(portDesc) {
| req ext |
req := portDesc.isRequired();
ext := portDesc.isExternal();
if (reg & ext)
{ [self.error(’no new reqs. allowed’)] }
else { [super.addPortDescription(portDesc)] };

}
...

}

An instance (a new descriptor) of the
DescriptorForSafeSubstitution meta-descriptor
named TestDescriptor extending descriptor Component
could then be created by the following expressions:

• Run-time creation

DescriptorForSafeSubstitution
.newNamed(‘TestDescriptor’, Component);

• Static creation
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DescriptorForSafeSubstitution TestDescriptor
extends Component

{ ... }

To conclude this part on components and de-
scriptors, let us note why PortDescription and
ConnectionDescription definitions are not shown.
They simply declare a single provided port through which
they offer getter and setter services for accessing the
descriptor level descriptions of ports and connections.
Such descriptions are useful to achieve static or dynamic
architecture checking or transformation. In the case of a
runtime transformation implementation should ensure that
these descriptor level descriptions and descriptor instances
internal representation are causally connected. When the
description changes, all instances should automatically be
updated.

Descriptor Port extends Component
{

requires {
owner : IComponent
connectedPorts [] : IPort

}
internally requires {

name : IString;
interface : IInterface

}
service getName (){...}
service getIterface (){...}
service invoke(service ){...}
service isConnected (){...}
service connectTo(port ){...}
service disconnect(index ){...}

}

Listing 4. The Port descriptor.

3.2 First-class ports
Generally the “port” concept is a higher-level abstraction of
the reference concept known from OOP. Using the OOP ter-
minology we can say that required ports represent the fact
that one port references another one and provided ports rep-
resent the fact that a component is referenced. In the com-
ponent context with explicit ports, having first-class ports
opens, in an explicit and simple way, the door to application
scenarios similar to the ones in the object-oriented context,
where first-class references are introduced [2].

In the previous, we have explained how our solution for
ports reification is based on two9 main concepts, Port and
PrimitivePort. Primitive ports are not reified; they are im-
plemented at COMPO’s virtual machine level. The listing 4

9 A third one CollectionPort, is not shown in the meta-model neither
discussed in this section, reifying collection ports does not raise any addi-
tional issue

shows the COMPO’s definition of the Port descriptor that
implements the Port concept. Each port has an owner, any
port is owned by a component, and a connectedPorts
to which it can be connected, a name and an inter-
face. Port defines services for ports introspection (e.g.
getName(), ...), ports intercession (e.g. connectTo(port),
invoke(service), ...).

Figure 4. The & operator for accessing the component-
oriented reification of the printingPort port of component
TextEditor

As explained above, the attachment of a port to its own-
ing component has to be primitive to avoid an infinite num-
ber of connections and to allow for efficient service in-
vocation. Services invocation are made via ports, for ex-
ample the expression printingPort.print(’hello’),
where printingPort is a port of a component c, will in-
voke the service print of the component connected to c via
printingPort. To use printingPort as a component, to
send it a service invocation for example, requires a correct
(i.e. conforms to COMPO’s meta-model and semantics) way
to reference it. Such a correct way is to have a required port
connected to the default provided port of printingPort
seen as a component (see Figure 4.) To achieve this, we have
introduced the & operator10 for any port p, &p is such a re-
quired port. On our previous example, it is then possible to
write &printingPort.isConnected(). &printingPort
is a primitive internal required port which is created on de-
mand and automatically connected to the default port 11,
itself a primitive port, of the printingPort port. Invoca-
tions sent through such a port are invocations sent to the
component representing the printingPort port. An exam-
ple of use of the & operator is given in the next paragraph.
Because primitive ports are not reified, the application of the
& operator on a primitive port returns itself, then a double
application of the operator returns the same result as a single
application, i.e. &printingPort == &&printingPort.

Example: A new kind of port - an aspect port The fol-
lowing code snippet shows a toy integration of basic aspects
to serve as an illustrating example. AspectPort defines in
COMPO a new kind of required ports that have a special
required port named aspectComp, to be connected to any
component having before and after services, let’s call

10 Semantics of the operator is similar to the & operator semantics in C++,
where p represents a value and &p represents the memory address of the
value.
11 As explained in Section 3.1 any component has a default provided port
thought which all services the component owns are accessible.
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Figure 5. The visualization of the use of an aspect-port

such a component an aspect component. It redefines the stan-
dard service invocation so that the before and after ser-
vices of the aspect component are invoked before and after
the standard invocation. The descriptor TextEditor shows
a use of an aspect-port (note the ofKind statement to specify
that an aspect required port is used). The connect statement
in the architecture section of TextEditor descriptor says
that the aspectComp port of the aspect required port &p,
here used as a first-class component, should be connected
to the default provided port of a MyAspectComponent, see
Figure 5.

Descriptor AspectPort extends RequiredPort {
requires { aspectComp : {before(); after(); }}
service invoke(service) {
aspectComp.before();
super.invoke(service);
aspectComp.after();}

}

Descriptor MyAspectComponent {
provides { default : {before(); after()}}
service before(){...}
service after(){...}

}

Descriptor TextEditor {
requires { printer ofKind AspectPort : {print()} }
architecture {
connect aspectComp@(&p)

to default@(MyAspectComponent.new());
}
...

}

Example: A new kind of port - a read-only port The
following code snippet shows the ReadOnlyProvidedPort
descriptor realizing a new kind of provided ports through
which only constant services, i.e. services not affecting the
state of the component, could be invoked. It redefines the
standard service invocation to check whenever it is correct or
not to invoke the requested service and it also redefines the
standard connecting service in a way, that a provided port of
kind read-only can be delegated only to another read-only
port.

Descriptor ReadOnlyProvidedPort
extends ProvidedPort

{

service invoke(service) {
|bool1 bool2|
bool1 := owner.implements(service);
bool2 := owner.isConstantService(service);
if(bool1.and([bool2]))
{ super.invoke(service); }
else { ... }

}
service connectTo(port) {
if(port.getDescriptor().isKindOf(ReadOnlyPort))
{ super.connectTo(port); }

}
}

To conclude this part on ports, we can say that their
explicit status is a way to further control references between
entities. For example, the above case of aspect required ports
represents a way to realize a join point defined for all the
users of a component having such a port. Or, the read-
only example illustrates the fact that using different kinds
of provided ports can facilitate different view-points on a
component, in this case the read-only view-point.

3.3 First-class services
Listing 5 shows the COMPO implementation of the Service
descriptor. Each service has a signature (port serviceSign
to which an instance of ServiceSignature descriptor will
be connected), temporary variables names and values (col-
lection ports tempsN[] and tempsV[] ports), a program text
(port code), actual parameters (collection port paramsV), an
execution context (port context, to be connected at run-
time to a component represent an execution context). For the
sake of simplicity Listing 5 omits the architecture section
and implementation of the execute() service. The service
execute() checks if all requirements are satisfied, i.e. if a
context component and components representing values of
parameters are connected. Then it performs a system primi-
tive to execute the code.

Descriptor Service extends Component
{

requires {
context : IComponent;
paramsV [] : *;

}
internally requires {

serviceSign : ServiceSign;
tempsN [] : IString;
tempsV [] : *;
code : IString;

}
...
service execute () {...}

}

Listing 5. The Service descriptor.
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The next section give insights into the implementation
that makes this meta-model and these definitions of COMPO
descriptors in COMPO executable.

4. Bootstrap Implementation

Figure 6. Zoom in to the relation between Component and
Descriptor descriptors

Although COMPO can be implemented in different lan-
guages, we have chosen Smalltalk, because its meta-model
is extensible enough to support another meta-class system as
shown in [4, 12].

Our meta-model is based on the two core concepts (cap-
tured in Figure 3): Component and Descriptor, the Fig-
ure 6 zoom in to their relation. Both are implemented as sub-
classes of Smalltalk-classes: Object and Class, respec-
tively. Figure 7 shows their integration into the Smalltalk
meta-model. This integration makes COMPO components
and descriptors manageable inside Pharo Smalltalk envi-
ronment. For example, one can use basic inspecting tool,
the Inspector. Descriptor being defined as a sub-class of
Smalltalk-class Class enables us to benefit from class man-
agement and maintenance capabilities provided by the envi-
ronment. For example, all descriptors are “browsable” with
the standard SystemBrowser tool.

One of the problems we challenged during the im-
plementation is the fact that Smalltalk supports single-
inheritance only. The meta-model shown in Figure 3 says
that Descriptor inherits from Component, but as it is
said above, we implement Descriptor as a sub-classe
of Smalltalk-classes (Class). Consequently Descriptor
should have two parents and multiple-inheritance12 is
needed. Concretely, there are two critical points, where
multiple-inheritance is needed, marked with red ellipses in
Figure 7: (i) Descriptor should inherit from Smalltalk-
class Class and from Compo-class Component, to keep all
benefits of Smalltalk’s classes management and in the same
time to implement the meta-model design of COMPO; (ii)
the automatically created Smalltalk-meta-class Component
class should inherit from Smalltalk-meta-class Object
class and from Compo-class Descriptor, to implement
the fact that Component is an instance of Descriptor. To
solve this we simulate the multiple inheritance by copy-

12 Although there is a solution based on single-inheritance, the solution in-
troduces an issue when distinguishing components/descriptors from object-
s/classes in the implementation level.

ing attributes and methods from Component to Descriptor
and from Object class to Component class. When one
of the parents evolves, classes Descriptor and Component
class have to be manually updated, but fortunately, these
parent classes are not changed frequently.

Figure 7. Integration of basic COMPO classes into
Smalltalk meta-model

Another problem we encountered is the implementation
of Descriptor as an instance of itself. Smalltalk-class
Descriptor is a unique instance of Smalltalk-meta-class
Descriptor class, which is automatically created as a
sub-class of Smalltalk-meta-class Class class (parallel
hierarchy rule of Smalltalk) and therefore it does not have
the same structure as Descriptor class. To solve this prob-
lem we have extended Smalltalk-meta-class Descriptor
class in a way that it has the same attributes and provides
the same methods as Smalltalk-class Descriptor.

Additionally, we have extented Object to behave as
a primitive component providing all methods defined by
Object (seen as compo services) through a unique provided
port. Thus Smalltalk-objects are seen as primitive COMPO-
components and they are usable in COMPO. This makes
it possible to reuse Smalltalk class library. For example,
the PrimitivePort Smalltalk-class can be used as rock-
bottom primitive component used to implement primitive
ports.

5. Application
Examples of introspection, intercession and meta-modeling
applications have already been given in Section 3. Here
we present two larger applications of these features, which
were our main motivation to develop this work: a runtime
component-based model transformation, and an architecture
constraint checking.

The first application deals with a transformation sce-
nario performed on COMPO’s implementation of the sim-
ple HTTP server, described in Section 2. This transforma-
tion migrates this component-based application from classic
front-end/back-end architecture into a bus-oriented architec-
ture. The transformation (sketched in Fig. 8) was motivated
by a use-case when a customer (already running the server)
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needs to turn the server with multiple fronts-ends and back-
ends.

Figure 8. Simplified diagram illustrating the transforma-
tion from classic front-end back-end architecture into bus-
oriented architecture.

To avoid the explosion of point-to-point connections we
have decided to transform the original architecture into a
bus-oriented one. A bus-oriented architecture reduces the
number of point-to-point connections between communicat-
ing components. This, in turn, makes impact analysis for ma-
jor software changes simpler and more straightforward. For
example, it is easier to monitor for failure and misbehav-
ior in highly complex systems and allows easier changing of
components.

Descriptor ToBusTransformer {
requires { context : IDescriptor }
service stepOne -AddBus () {
|pd cd|
pd := PortDescription.new(’bus ’

,’required ’
,’internal ’
,IBus);

context.addPortDescription(pd);
cd := ConnectionDescription

.new(’bus ’
,’default@(Bus.new ()) ’);

context.addConnectionDescription(cd);
}
service stepTwo -ConnectAllToBus () {
|cd|
cd := ConnectionDescription

.new(’backEnd@fE ’,’inputs@bus ’);
context.addConnectionDescription(cd);

cd := ConnectionDescription
.new(’default@bE ’,’outputs@bus ’);

context.addConnectionDescription(cd);
}
service stepThree -RemOldConns () {
|cd|
cd := DisconnectionDescription

.new(’backEnd@fE ’,’default@bE ’);
context.removeConnectionDescription(cd);

}
}

Listing 6. The ToBusTransformer descriptor.

The results of the transformation are checked using ar-
chitecture constraints also implemented as COMPO compo-
nents [32].

The transformation is modeled as a descriptor named
ToBusTransformer. An instance was connected to the
HTTPServer descriptor (COMPO’s code in Listing 1) and
it performs the following transformation steps: (i) introduce
a new internal required port named bus to which an instance
of a Bus descriptor (not specified here) will be connected;
(ii) extends the original architecture with new connections
from front-end and back-end to bus; (iii) removes the orig-
inal connection from front-end to back-end. Finally, a con-
straint component, an instance of the VerifyBusArch de-
scriptor will be connected to the server to perform post-
transformation verification. The constraint component exe-
cutes a service verify which does the following steps: (i)
verifies the presence of the bus component; (ii) verifies that
the bus component has one input and one output port; (iii)
verifies that all the other components are connected to the
bus only and the original delegation connection is preserved.

Listings 6 and 7 show COMPO code of the
ToBusTransformer descriptor and the VerifyBusArch
descriptor. The following code snippet shows the use of the
transformation and verification components:

transformer := ToBusTransformer.new();
constraint := VerifyBusArch.new();

connect context@transformer to default@HTTPServer;
connect context@constraint to default@HTTPServer;

transformer.transform();
constraint.verify();

6. Related Work
In this section we compare reflection capabilities of COMPO
with reflection capabilities provided by other component
models. We classify the selected models into three cate-
gories: Modeling languages, Middleware component models
and Component-based programming languages.

In the object-oriented world, two global approaches ex-
ist, when combining modeling and programming languages.
The first one, takes a modeling language (such as EMOF)
and integrates support for behavior description, i.e. program-
ming support. For example KerMeta [20] explores how a
meta-data language and a statically typed action language
can be woven into a consistent executable meta-language.
The second approach goes in the opposite direction, i.e. it
extends programming languages with modeling languages
features. Both approaches took advantage of maturity of sup-
port tools for their starting language, for example KerMeta is
based on EMOF and therefore it is well-supported by mod-
eling tools such as Eclipse/EMF; [12] is based on Smalltalk
and therefore its programming facet is very well supported
by Smalltalk’s environment (browser, inspector, debugger.)
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Descriptor VerifyBusArch extends Constraint
{
service verify () {...}
service stepOne -IsBusPresent () {
|ports|
ports := context.getDescribedPorts ();
if(ports.select ([:p|

p.getInterface ()== IBus])
.size ()==1 )

{ return ports.select(
[:p|p.getInterface ()== IBus ])}

else { return false };
}
service stepTwo -HasBusIOPorts(busPD ){
|ports|
ports := Bus.getDescribedPorts ();

if(ports.any ([:p|p.getName ()==’input ’]))
{ return true } else { return false };

if(ports.any ([:p|p.getName ()==’output ’]))
{ return true } else { return false };

}
service stepThree -AreAllConnsToBus(busPD ){
|conns|
conns := context.getConnsDescs ();
conns.remove ([:cd|cd.getSrcPort ()

.getInterface ()== IBus ]);

if(( conns.remove ([:cd|
cd.isDelegation ()]))

{} else { return false };

if(conns.forEach ([:cd|
(cd.srcPortDesc ()== busPD)
.or([cd.destPortDesc ()== busPD])

]) {return true } else { return false };
}

}

Listing 7. The VerifyBusArch descriptor.

In COMPO we apply the later approach in the component-
oriented world.

Modeling languages UML 2 provides support for CBSE.
UML itself is not a reflective language, but its meta-model
(defined with MOF [21]) is. Reflection capabilities (manip-
ulation of properties, invoke method, instance creation, etc.)
provided by MOF are specifications only, i.e. there is no sup-
port for run-time reflection capabilities (as we introduced in
COMPO).

A specific category of modeling languages are Archi-
tecture Description Languages (ADLs). The static nature
of ADLs also do not match with reflection very well [16].
Reflection or at least introspection capabilities depend on
code which is generated from architectures that these ADLs

describe. For example, reflection is partially supported in
C2 [17] through context reflective interfaces. Each C2 con-
nector is capable of supporting arbitrary addition, removal,
and reconnection of any number of C2 components.

Middleware component models Existing middleware
technologies and standards provide very limited support for
platform openness, usually restricted to high-level services,
while the underlying platform is considered a black box. Re-
cently, technologies such as interceptors, are a trend towards
more openness. Nevertheless, the kind of openness provided
is still limited to a few aspects of the platform.

CORBA Component Model (CCM) [23], Enterprise Java
Beans (EJBs) [24] or Component Object Model (COM) [19]
do not provide support for explicit architecture definition,
the black-box approach they support does not fit with reflec-
tion very well. Introspection interfaces, which can be used to
discover the capabilities of components, are the only reflec-
tion capability they offer. For example CCM Navigation in-
terface for discovering facets (provided ports) or IUnknown
interface in COM for discovering external (client and server)
interfaces of a COM object. The interface EJBContext de-
fines methods to retrieve references to the bean’s EJB home
and remote interfaces classes, then normal Java reflection
can be used to introspect the methods available to a client.

Only very few solutions consider reflection as a general
approach which can be used as an overall framework that
encompasses platform customization and dynamic reconfig-
uration. These models try to overcome the limitations of
black-box approach by providing components with meta-
information about their internal structure.

Projects OpenCORBA [15] and DynamicTAO [14] adopt
reflection as a principled way to build flexible middleware
platforms.

OpenCORBA is based on the meta-class approach and on
the idea of modifying the behavior of a middleware service
by replacing the meta-class of the class defining that service.
This is mainly used to dynamically adapt the behavior of
remote invocations, by applying the above idea to the classes
of stubs and skeletons.

DynamicTAO is a CORBA compliant reflective ORB,
which makes explicit the architectural structure of a sys-
tem in a causally connected way. Component configurators
keep the consistency of dependencies as new components
are added or removed from the system. Reflection capabili-
ties are limited to coarse-grained components, without pos-
sibility to control more detailed structures of the platform.

OpenCOM [7] (a lightweight and efficient component
model based on COM) enables users to associate (dissoci-
ate) interceptor components with (from) some particular in-
terface or to obtain all current connections between the host
components’ receptacles and external interfaces.

Many reflection capabilities are supported in Fractal [5]
component model, but the capabilities vary depending on
kinds of Controllers (e.g. Attribute controller, Binding con-
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troller, Content controller, ...) a Fractal component mem-
brane contains. The Fractal specification provides several
examples of useful forms of controllers, which can be com-
bined and extended to yield components with different in-
trospection and intercession features. An advanced example
of using controllers is FRASCATI [29] model for develop-
ment of highly configurable SCA solutions. In COMPO, re-
flection capabilities are the same for all components (an or-
thogonal model). In addition, we go further in the reification
of component-level concepts: services, ports and descriptors
are components.

Furthermore, middleware component models are often
designed to be platform independent. Then, for each plat-
form, the tool support of these models generate code skele-
tons to be filled later. Consequently run-time transforma-
tions on components and their internal structure are per-
formed through objects and not components. For example
SOFA [25] reifies connectors. It is thus possible to specify
high-level connectors within architecture descriptions. But
finally, each primitive part of a connector specification has
to be mapped by developers to some (object-oriented) code.
Then reflection can be used if it is provided by this tar-
get (object-oriented) implementation language. In this case
however, reflection do not address component-level concepts
as in COMPO.

Models@runtime [3] stream pushes the idea of reflec-
tion one step further by considering the reflection layer as a
real model that can be uncoupled from the running architec-
ture (e.g. for reasoning, validation, and simulation purposes)
and later automatically re-synchronized with its running in-
stance.

Meta-ORB [9, 26] proposes the design time use of mod-
els to generate middleware configurations, and, at runtime,
the use of these same models as the causally connected self-
representation of the middleware components that is main-
tained by the reective meta-objects for the purposes of dy-
namic adaptation. Meta-ORB provides the meta-information
management with a principled reflective meta-level. This
has the benefit of unifying the use of meta-information in
the system (e.g., preventing that different meta-object imple-
mentations use different meta-level representations), as well
as providing a basis to closely integrate the configuration and
adaptation features of the platform. In contrast to COMPO’s
orthogonal model where a change to a descriptor is propa-
gated to all its instances, Meta-ORB reflection is based on
per-object meta-objects, enabling to isolate the effects of re-
flection.

Kevoree is an open-source dynamic component model,
which relies on models at runtime to properly support the dy-
namic adaptation of distributed systems. Kevoree introduces
the Node concept to model the infrastructure topology and
the Group concept to model semantics of inter node com-
munication during synchronization of the reflection model
among nodes. Kevoree includes a Channel concept to al-

low for multiple communication semantics between remote
components deployed on heterogeneous nodes. All Kevoree
concepts (Component, Channel, Node, Group) obey the ob-
ject type design pattern to separate deployment artifacts from
running artifacts. In opposite to COMPO, where reflection
capabilities are similar to all entities, Kevoree’s adaptation
capabilities depend on different types of nodes (level 1 to 4)

The adaptation engine relies on a model comparison be-
tween two Kevoree models to compute a script for a safe sys-
tem reconfiguration; execution of this script brings the sys-
tem from its current configuration to the new selected config-
uration. Such adaptation scripts are written by designers, or
they can be generated by automated processes (e.g. within
a control loop managing the Kevoree system). In fact, the
adaptation scripts are comparable to model transformations
written in COMPO.

The above described component models provide
many sophisticated means for creating adaptable dy-
namic component-oriented solutions, but, in opposite to
component-based programming languages like COMPO,
they use object-oriented programming to implement
component-based software. Therefore there is no continuum
to achieve the various stages of component-based software
development using the same conceptual model.

Component-based programming languages, CBPLs The
big advantage of CBPLs is that they do not separate ar-
chitectures from implementation and so they have poten-
tial to manipulate reified concepts. In opposite to COMPO,
component-level concepts are often reified as objects, in-
stead of components. This leads to a mixed use of compo-
nent and object concepts. For example reflection package
of ArchJava [1] specifies class (not component class) Port
which represents a port instance. Very often the representa-
tions are not causally connected to concepts they represent.
In case of ArchJava, which relies on Java reflection, the rea-
son is that reflection in Java is mostly read-only, i.e. intro-
spection support only.

Reflection is not explicitly advocated in Compo-
nentJ [28]. It however appears that a running system cer-
tainly has a partial representation of itself to allow for dy-
namic reconfiguration of components internal architectures
as described in [28] but it seems to be a localized and ad.hoc
capability, the reification process being neither explicited nor
generalized as in our proposal.

7. Conclusion
We have described an original operational reflective
component-based programming language allowing for stan-
dard application development, and for static or runtime
model and program transformations. Such a language offers
a continuum to achieve the various stages of component-
based software development in the same conceptual con-
tinuum. Such a continuum makes debugging or reverse-
engineering simpler. It opens the essential possibility that ar-
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chitectures, implementations and transformations can all be
written at the component level and using a unique language.
For example a programmer can design a component-oriented
architecture, then verify the architecture’s properties and
then seamlessly fill it in with code, all using COMPO. We
have also given simple examples of how to write constraint
checking (based on constraint components) and model trans-
formations. As a reflective language giving a model access
(via meta-components) to elements of the component-based
meta-model, COMPO also makes it possible to design and
implement new component-based construct (as exemplified
with achieving a new kind of ports).

A key issue is uniformity, we have described a full
component-based meta-model and a reflective description
in COMPO of its main component descriptors made exe-
cutable via a concrete implementation. We have proposed
concrete, adapted (first-class descriptors) or new (first-class
ports), meta-level solutions for a component-based reifica-
tion of concepts leading to a “everything is a component”
operational development paradigm.

COMPO in its today’s state is an operational prototype
to develop complete component-based applications but is
mainly conceived as a research laboratory to experiment
with new ideas. To optimize programs efficiency is a remain-
ing task but reflexivity is now well understood and many so-
lutions do exist [6]. COMPO does not yet embed all new ca-
pabilities offered by existing ADLs or CBML, but its reflex-
ive architecture is especially designed to integrate them and
to rapidly experience the impact of their integration. We thus
have numerous perspectives in that direction such as to in-
tegrate first-class bound properties, aspects components, or
more powerful solutions to express requirements and provi-
sions.
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B. Stefani. The fractal component model and its support
in java: Experiences with auto-adaptive and reconfigurable
systems. Softw. Pract. Exper., 36(11-12):1257–1284, Sept.
2006. ISSN 0038-0644. doi: 10.1002/spe.v36:11/12. URL
http://dx.doi.org/10.1002/spe.v36:11/12.

[6] S. Chiba. Implementation techniques for efficient reflective
languages. Technical report, Departement of Information Sci-
ence, The University of Tokyo, 1997.

[7] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas.
An efficient component model for the construction of
adaptive middleware. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms
Heidelberg, Middleware ’01, pages 160–178, London, UK,
UK, 2001. Springer-Verlag. ISBN 3-540-42800-3. URL
http://dl.acm.org/citation.cfm?id=646591.697779.

[8] P. Cointe. Metaclasses are first class: The objvlisp
model. SIGPLAN Not., 22(12):156–162, Dec. 1987.
ISSN 0362-1340. doi: 10.1145/38807.38822. URL
http://doi.acm.org/10.1145/38807.38822.

[9] F. M. Costa, L. L. Provensi, and F. F. Vaz. Using runtime mod-
els to unify and structure the handling of meta-information in
reflective middleware. In Proceedings of the 2006 interna-
tional conference on Models in software engineering, MoD-
ELS’06, pages 232–241, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 978-3-540-69488-5.

[10] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron.
A classification framework for software component models.
Software Engineering, IEEE Transactions on, 37(5):593 –615,
sept.-oct. 2011.

[11] F.-N. Demers and J. Malenfant. Reflection in logic, functional
and object-oriented programming: a short comparative study.
In In IJCAI ’95 Workshop on Reflection and Metalevel Archi-
tectures and their Applications in AI, pages 29–38, 1995.

[12] S. Ducasse and T. Gı̂rba. Using smalltalk as a reflective ex-
ecutable meta-language. In Proceedings of the 9th interna-
tional conference on Model Driven Engineering Languages
and Systems, MoDELS’06, pages 604–618, Berlin, Heidel-
berg, 2006. Springer-Verlag. ISBN 3-540-45772-0, 978-3-
540-45772-5.

[13] L. Fabresse, N. Bouraqadi, C. Dony, and M. Huchard. A
language to bridge the gap between component-based design
and implementation. COMLAN : Journal on Computer Lan-
guages, Systems and Structures, 38(1):29–43, Apr. 2012.

[14] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, C. Magalhã,
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