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Abstract

Although component-based software development have been subject to extensive
research for many years, most software systems are still based on the object-
oriented paradigm. We believe that one of the main causes is a lack of support
for Component-Oriented Programming (COP). Indeed, a lot of work proposed
component models such as Unified Modeling Language (UML), Enterprise Jav-
aBeans (EJB) or Corba Component Model (CCM) that are only available at
design time. At the implementation stage, object-oriented languages are mainly
used which prevent developers to fully switch to COP. In this paper, we identify
five requirements (decoupling, adaptability, unplanned connections, encapsula-
tion and uniformity) for COP based on an analysis of the state of the art and
limitations of existing work. We then propose an extended version of the Scl
component language that fulfills these requirements.

Keywords: Components, Programming language, Unplanned connection,
Encapsulation, Uniformity

1. Introduction

For decades, component-based software development (CBSD) promises bet-
ter reusability of software pieces called components [McI68, Szy02, LW05,
CSVC10]. Past researches have introduced or adapted concepts such as com-

ponent, port, architecture, composite and mechanisms such as connection or
composition. However, CBSD is still not widely used in practice. One of the rea-
sons is because there are few solutions that really enable Component-Oriented
Programming (COP). COP is twofold as shown in Figure 1: (i) programming
reusable components (design for reuse achieved by a component developer) and
(ii) programming an application by reusing, or connecting, or composing com-
ponents (design by reuse achieved by an application developer) [Ous05].
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Figure 1: The Component-Oriented Programming Duality.

There are four families of COP approaches:

1. Using a general programming language (usually object-oriented) and re-
lying on a set of conventions (such as Javabeans [Ham97])

2. Extending an object-oriented framework (such as Julia/Fractal [BCL+06],
EJB1.0 and EJB2.0 [MH99])

3. Doing some model transformation such as generating OO code from a
component specification (such as annotations in EJB3.0 [BMH06])

4. Using a component-oriented language (COL) (such as ArchJava [ACN02],
ComponentJ [SC00])

The study of COP approaches from these different families allows us to
exhibit some open issues in current COP practices. The contributions of this
article are multiple. First, we propose a list of requirements for COP based on
the open issues detected in the state of the art. These requirements will make
COP approaches more usable at the implementation level. Second, we propose
a revised and extended version of our component language called Scl [FDH08]
to fulfill these requirements. A first extension proposes a uniform solution to
manage self-references in a COL. And a second one solves the encapsulation and
communication integrity issue using an argument passing mechanism based on
automatic bindings.

This article is organized as follows. Section 2 is a study of the state of the
art exhibiting open issues in some representative COP approaches. This section
ends with a list of requirements for COP. Section 3 describes the revised version
of some core elements of Scl which are descriptors, components, ports, inter-
faces, bindings, connectors and composites. Section 3.5 and Section 3.6 present
the two main extensions of Scl. Section 3.5 is about allowing self references
in a COL while ensuring the encapsulation and the uniformity requirements.
Section 3.6 describes connection-based argument passing which ensures encap-
sulation and communication integrity in Scl. Finally, Section 4 concludes this
paper by a summary and presents some future work.
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2. Component-Oriented Programming: Open Issues and Require-

ments

In this section, we present five open issues we identified in today component-
oriented programming practices. Our study is focused on Julia and ArchJava
because they both enable COP at implementation level and on some high level
approaches such as Unified Modeling Language [Obj10] (UML), Corba Compo-
nent Model [Gro06] (CCM) or Enterprise Javabeans [BMH06] (EJB). We believe
that these approaches are representative of current COP practices. From these
open issues, we propose some requirements to support COP at the implemen-
tation level.

2.1. Decoupling

In order to enable reuse, components should be decoupled one from the
other. The decoupling principle aims at avoiding hardwired references. Con-
nections between components should be deferred until deployment or execution,
as opposite to “traditional” OOP where connections between objects may be
defined at design-time and hardwired inside constructors or initialization meth-
ods. An initialization method in some class A may directly reference another
class B in order to instantiate it for example. This is generally used for compo-
sition and aggregation, and the reference of the newly created object (instance
of B) is stored in an instance variable of the class A. Such a direct reference
to B in the source code of A is not desirable because it prevents to reuse A
with another B-compliant implementation. Components should never hold a
reference on each other until they get assembled in a software.

+ A () { }
+ IB getB() { ... }
+ void setB(IB bn) { ... }
+ void foo() {
     ...
     b.bar();
     ...
}

- b : IB
A

+ void bar() {
     ...
}

BImpl

void bar();

<<interface>>
IB

+ void main (...) { 
     A a = new A();
     IB b = new Bimpl();
     a.setB(b);
}

app : Application

Figure 2: A decoupled implementation in OOP

In approaches such as EJB, Fractal and ArchJava, decoupling relies on the so
called dependency injection technique [Fow04]. Figure 2 illustrates this approach
in the context of the Java programming language, where an interface acts as
a contract specification. Only interfaces are used as types, so class A only
references interface IB (type of the b instance variable and related methods).
The decision to use class BImpl and to connect its instances to instances of
A is made by the developer of application app. This solution also enables to
dynamically changeBImpl by another implementation. But some other technics
are not dynamically adaptable as we will see in the next section.

3



2.2. Adaptability

Adaptability is the ability to revise an assembly at run-time. This can be
performed by changing connections between components, adding new compo-
nents, or removing existing ones. It eases developing context-aware applications
that change according to their environment change [DL03, GBV08, GBV06].

EJB and CCM do support only static connections. In order to change an
architecture, developers have to stop the application. ArchJava does support
dynamically creating and connecting components. However, the set of possible
connections at run-time should be explicitly described by the application (or
the composite component) developers.

Fractal does support adaptation by providing structural reflection [BCS02].
Therefore, developers can build components or applications that reason and act
upon their structure and connections.

2.3. Unplanned Connections

Unplanned connections refer to connections between components that were
developed in different contexts, or by different component developers. These
connections are decided by the application developer. So, components that have
compatible functionalities should be connectable, even-though their developers
didn’t plan such connections. Indeed, it is impossible to a component developer
to foresee all possible connections to components he develops.

While predicting all connections is not possible, COP should still support
proper compositions by allowing application developers to find out compatible
components. Therefore, a component should be self-documented. There should
be a set of contracts [BJPW99] attached to every component to document its
functionalities. Application developers can rely on these contracts to select
components appropriate to the application’s needs, and check what they are
building.

In COP approaches such as EJB, Fractal and ArchJava, components pro-
vided and required functionalities are expressed using syntactic contracts
[BJPW99]. That is, they rely on matching types to ensure the validity of con-
nections between components. An example of such contract, though in an OOP
context, is provided in Figure 2. Definition of class A states that an instance a
requires to be connected to an object compliant with interface IB. Definition of
class BImpl states that every instance is compliant with interface IB. Indeed,
compliance with interface IB is the contract in this example.

Most COLs are based on Java and rely on names and types as discussed
above. As shown on Figure 3, a connection between two components is only
possible if there is an explicit sub-typing relation between their linked interfaces.
This sub-typing relationship is mandatory even if components were developed
by different people. Therefore, in this context, application developers should
share some ontology and agree about names and types.

This hypothesis is not realistic, even if we assume the existence of stan-
dards. Component developers may choose different names or types for their
components’ functionalities. Still, two components might be compatible from
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void foo()

I1

I2

void foo()

void bar()

I1 I2

C1 C2

Figure 3: The problematic typing relation of independently developed components

the functionalities point of view. Consider simply two methods that have the
same name, do the same processing, but have different parameter orders. They
are syntactically different, though they are semantically equivalent. Therefore,
a COL should provide facilities to application developers handling these situa-
tions and building unplanned connections between components that might be
syntactically incompatible, though semantically compatible.

(a) Bidirectional Ports (b) Unidirectional Ports

Figure 4: Unidirectional ports better support reuse by enabling unplanned connections

Another issue related to unplanned connections is the structure of ports. In
the UML component model, ports can be bi-directional. A bidirectional port
can only be connected to another bi-directional compatible port as shown on
figure 4(a). This rule constraints the set of possible connections and goes against
the unplanned connections principle. Indeed, with bidirectional ports, the unic-
ity of the connected component is enforced. On the other hand, unidirectional
ports offer more reuse opportunities since they enable multiple possibilities for
connections as shown in figure 4(b).

2.4. Encapsulation and Communication Integrity

One of the properties of components is encapsulation. A component only
knows the contracts of the other components it is connected with. Internal
structure of a component is always hidden. Connections are the only means of
interaction.

It is important to preserve encapsulation for two reasons. The internal struc-
ture of components may change, possibly at run-time in the case of adaptive
components [GBV08, GBV06, DL03]. A component may want to enforce some
extra-functional behavior (such as log or authentication) for some of its func-
tionalities. In this context, communication integrity stands for ensuring that
interactions among components do preserve encapsulation.
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Ensuring communication integrity is a challenging issue. Consider the Frac-
tal [BCL+06] component model and Julia, its OO-based implementation in Java.
In Fractal, each component has a content that holds its internal state and im-
plements its behavior. The component’s content is wrapped by an envelope con-
sisting of interfaces that are supposed to be the hooks for connections from other
components. Each Fractal component materializes in the Julia OO framework,
as a set of objects. Each interface is represented by an object. The component
content is represented by an object too3.

The top part of Figure 5 shows an example of two Fractal components (C1
and C2) connected thanks to a binding between their respective client interface
IC1 and server interface IS2. The bottom part of Figure 5 shows the object
counterparts of components C1, C2 in Julia. Through the established connec-
tion, C1content is allowed to make a service invocation through IC1 and IS2, in
order to have it eventually executed by C2content. Assume that service setX is
provided by component C2 through interface IS2. When it executes its setX
service, C2content may store the argument it receives which is a reference to the
C1content object (this has been passed) in this example. If C2content does so,
it may use it later in the program execution to directly communicate with the
C1content object. We face here a violation of the communication integrity since
it “short-cuts” the component interfaces.

C1 C2setX(T)

IC1 IS2

C1content

IC1

C2content

Fractal

Julia

IS2

Violation

setX(this)

setX(C1content)

setX(C1content)

Figure 5: Violation of the communication integrity in Julia [LCL06]

This issue has been identified and solved in Julia by supervision mechanisms
at runtime [LCL06]. But it brings a runtime overhead to check the validity
of communications whereas it would be better to add a mechanism that pre-
vents communication violations. Archjava uses another solution based on a

3This is true for the primitive components. The content of composite components is a
component assembly. Our analysis still hold for composites, but we don’t discuss this case.
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specific type system named AliasJava [Ald03, ACN02]. This solution ensures
that components can communicate only through connections that are declared
by developers. Data flow is constrained and controlled based on annotations
that developers put on variables to express precisely the expected behavior.
Thus, it’s possible in ArchJava to express properties such as uniqueness (an
object can only be referenced by a unique variable in the system) or sharing
(i.e. an object is shared among different components).

The encapsulation problem also reveals an issue about self-references. How
a component should reference itself when invoking services of other components
(self as a parameter) or when answering some invocations sent by other compo-
nents (self as a result)? How should it invoke its own services? We can draw here
a parallel with work on “composition filters” [AWB+93] in which an object can
be wrapped by several layers of filters that process incoming or outgoing mes-
sages. There exist different pseudo-variables to reference the current object in
its own computations. By choosing the appropriate pseudo-variable, developers
make an explicit decision whether to short-cut the filters or not.

2.5. Uniformity

Most of the existing COLs and approaches to COP are based on object-
oriented languages. Some, such as Fractal and EJB allow designers to reason
upon components. However, developers still have to deal with objects during
development. Therefore, we end up with a gap between design and implemen-
tation that makes development and maintenance difficult as shown in Figure 6.
Indeed, software engineers have to deal with different abstractions and map
components to objects and keep both representations synchronized. There is
often some support to components based on code generation. While it has the
nice property of reducing the amount of code typed by developers, it makes
debugging difficult and reverse engineering almost impossible. Contrary to the
use of an object-oriented language or code generation, a component-oriented
language (COL) enables the programmer to directly manipulate component
concepts (components, connections, . . . ) in the source code. A COL would ease
code writing, code generation from ADL specifications and reverse engineer-
ing because the concepts are close enough. Only COLs offer such a continuum
between design, implementation and even runtime.

Programming

Code Generation Tests

Maintenance

Reengineering

Architecture Description 
Langages

Component Models

Object-oriented 
Languages (OOLs)

Component-oriented 
Languages (COLs)

Analysis / Design Implementation

Figure 6: The need for Component-Oriented Languages to reduce the gap between design and
implementation.
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ArchJava is a step forward since it is a COL. However, while it does bridge
the gap between design and implementation, it does not address the uniformity
issue. Indeed, ArchJava provides concepts related to both OOP and COP.
The following example shows the code of two component classes: Helloer and
StdInputOutput. An instance of Helloer named h is then connected to p an
instance of StdInputOuput through their respective ports printing and stdout.

component class Helloer {
public port hello {

provides String
sayHello(String name);

}
public port printing {

requires void print(String s);
}

String sayHello(String name) {
printing.print("Hello , " + name);

}
}

component class StdInputOutput {
public port stdout {

provides void print(String s);
}
void print(String s) {...}

}

Helloer h = new Helloer ();
StdInputOuput p = new StdInputOutput ();
connect h.printing , p.stdout;
h.hello.sayhello("luc");

The main drawbacks of ArchJava come from two non-uniformities:

1. A component can be connected, but it cannot be passed as a parameter
2. An object can be passed as a parameter, but it cannot be connected

This strict separation between components and objects is a difficulty for
developers that must choose at design time if a concept should be implemented
as a component or as an object. This decision has a deep impact on design and
programming, and it is then difficult to change it in future software evolutions.

In our previous work, we proposed two different solutions to this non-
uniformity issue by integrating components and objects. In Scl [FDH08] we
proposed a COL based on the main concepts of components and connections.
Plain old objects are wrapped to be considered as regular components. In
Clic [BF09], we adopted an opposite approach where we unified components
and objects. Indeed Clic lives symbiotically with Smalltalk, since each Clic
component is a Smalltalk object.

2.6. Summary

Regarding the open issues presented, we think that a COP approach should
fulfill the five following requirements:

1. A component must not reference directly another external component.
(R1 - Decoupling)

2. Connecting and disconnecting components must be possible at run-time.
(R2 - Adaptability)
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3. Connections between semantically compatible components must be possi-
ble even if they weren’t planned by developers. (R3 - Unplanned connec-
tions)

4. Component encapsulation must be ensured especially by enforcing com-
munication integrity. (R4 - Encapsulation and Communication Integrity)

5. Only component-related concepts should be used throughout the software
life-cycle from design to deployment. (R5 - Uniformity)

These requirements were partially addressed in our COL Scl. In the next
section, we propose an extension to Scl that completes our previous work and
addresses the five requirements listed above.

3. Revised Scl

The design of Scl has originally been driven by the aim of building a
clean COL in an incremental way by adding only features that enable COP.
This section describes some of the core elements of Scl which have evolved
since [FDH08]. We introduce here optional interfaces and a new binding mech-
anism which eases the use of connectors and composites. These evolutions are
a consequence of the better identification of the requirements presented in sec-
tion 2.

3.1. Structure of a Component

A component is an instance of a descriptor, which is similar to the concept
of class in OOP. Each component has a set of ports which are the only means
to interact with other components. Component services (operations) can be in-
voked through its provided ports. Symmetrically, it can send service invocations
to other components through its required ports.

Ports are dedicated to support connections and service invocations. Connec-
tion validation can be checked using interfaces. Indeed, an interface corresponds
to the contract of a port. In Scl, we only focus on syntactic contracts. So, an
Scl interface specifies signatures of services of a given port. A connection be-
tween two ports is valid if their interfaces match. This matching is based on
the inclusion relationship between the sets of service signatures. It’s worth that
a port may have no interface. In this case, it accepts connections to any other
port, regardless of the interface of the latter.

The use of unidirectional ports and the set inclusion relation for interface
compatibility contribute to enable unplanned connections (cf. Section 2.3) in
Scl. The following example shows the declaration of a TCPServer component
descriptor in Scl4. A TCPServer has two provided ports (RequestHandling and
LifeCycle) and one required port (RequestProcessing). Each port is described by
an interface i.e. the set of available services through this port.

4Scl uses a Smalltalk compliant syntax.
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(SclComponentDescriptor new: #TCPServer)
providedPorts: {

#RequestHandling -> #( handle: ).
#LifeCycle -> #( start stop ) };

requiredPorts: { #RequestProcessing -> #( process: ) }.

Scl supports multi-port to deal with multiple related connections. A multi-

port is an indexed collection of ports (all required or all provided). Ports of a
same kind (required or provided) can be grouped in a multi-port and therefore
dynamically and automatically managed. Indeed, a multi-port is a collection
with unlimited number of ports. New ports can be added to the collection upon
need.

The new primitive of Scl creates a component from a descriptor. It returns
a reference to a special provided port of the newly created component. Indeed,
in Scl, ports are the only means to handle components. There exist no other
means to reference a component.

3.2. Bindings and Connectors

As stated above, components can only be handled through their ports. Thus,
components assembling consists in connecting their ports. Connections can be
achieved either through bindings or through connectors.

A binding is a directed link from a source port to a target port. Service
invocations that reach the source port are routed to the target port. The source
and the target of a binding must be compatible ports, that is, their interfaces
match as described in section 3.1.

A port can be the target of multiple bindings. But it can be the source of
only a single binding. Given a port P which is the source of an existing binding
B1, if we attempt to make P the source of another binding B2, an exception is
raised. The developer should first explicitly unbind port P before using it as
source for B2.

A novelty in this revisited version of Scl is that the source and the target
ports can be of any kind. Thus, ports linked by a binding can be both required,
or both provided. Alternatively, the source of a binding can be a required port
and the target can be a provided port. Last, the source of a binding can be a
provided port and the target can be a required port.

The example below illustrates a binding. It links a required port
(RequestProcessing) to a provided one (Processing) of two newly instantiated
components. This binding ensures that all service invocations that reach the
RequestProcessing port will be redirected to the Processing port.

(TCPServer new @ #RequestProcessing)
bindTo: (ASynchronousRequestProcessor new @ #Processing)

Bindings correspond to simple communication routes between two compo-
nents. In order to express complex interactions involving two or more compo-
nents, developers are provided with the concept of connector. A connector is a
component dedicated to route and adapt service invocations from components
which emit them to components which process them. As shown by Figure 7,
in its general form a connector has two multi-ports. The sources multi-port
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contains provided ports through which the connector receives invocations. It
then intercepts incoming invocations, adapts them and transmits them through
its required ports that belong to the targets multi-port. A typical use of con-
nectors is for connecting ports with mismatching interfaces. It plays the role of
an adaptor and converts invocations in order to fit the target port interface.

s1

t1

Sources

c : Connector

s2

t2

t3

Targets

provided port 

Caption

required port 

provided 

multi port 

required 

multi port 

Figure 7: General Form of a Connector

3.3. Service Invocations

Service invocations issued by a component go out through a required port.
The invocation is transmitted if the required port is the source of a binding.
Otherwise, the invocation fails raising an exception.

For provided ports, the invocation handling is more complex. Four priori-
tized rules determine how the invocation is processed.

1. The rule of highest priority corresponds to the situation where the pro-
vided port is the source of a binding. In this case, the invocation is routed
to the port that is the target of the binding.

2. If the provided port that receives the invocation is not the source of any
binding, the pre-condition of second rule is checked. The second rule
is applicable if the component that owns the provided port implements a
service that matches the invocation. This matching is based on the service
name and the number of its arguments.

3. If none of the above rules apply, then the third rule pre-condition is
checked. The third rule is applicable if the component that owns the
provided port implements a glue service for this port. A glue service is
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analogous to the doesNotUnderstand: method in Smalltalk but, it is spe-
cific to a single provided port. Each time an invocation received through
port does not match a service implemented on its component, the glue
service is automatically executed. A component is therefore able to deal
with service invocations it receives even though it does not have a directly
matching implementation.

4. The rule of lowest priority consists in raising an exception to signal invo-
cation failure. It is performed if none of the three previous rules apply.

3.4. Composites

Composites are components that encapsulate other components often called
subcomponents. Composites are easily supported in Scl thanks to a visibil-
ity property associated to ports. Ports are either external i.e. accessible from
outside the code of a component or internal i.e. only accessible from the imple-
mentation of the component. Figure 8 shows an example of composite instance
of TCPServer. This example shows that internal ports are similar to instance
variables in Smalltalk. They are encapsulated inside the component and can
only be accessed by the component’s implementation. The example also shows
that the subcomponent is an instance of SmallInteger. Scl offers a uniform
component-based view, even primitive types can be connected.

 :SmallInteger
RequestHandling

srv : TCPServer

ListeningPortNumber

LifeCycle

initialize
!!...

handle:!aRequest
!!...

start
  ...

stop
  ...

handle:

start
stop

RequestProcessing

arp : ASynchronousRequestProcessor

Figure 8: Example of composite with external and internal ports.

3.5. Internal Ports and Self-References

In Scl, every service invocations is achieved through a port. In our former
work on Scl, the encapsulation could be violated by passing an internal port
as argument or a result for an invocation.

To improve encapsulation and communication integrity (Requirement R4),
we extended Scl by introducing an extra constraint on service invocation. Only
external ports can be passed as arguments of service invocations that go outside
a component. Therefore, references to internal ports can never be accessed by
external components5. This applies to the special internal port Self .

5Internal ports can still be connected to ports of sub-components of a composite.
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Self is an internal port available in every component. It allows the com-
ponent to invoke its own services, even if they are not available to the outside
through any external port. Through Self , a component provides all services
it implements. Figure 9 shows that the internal kill service can be invoked
through the Self port.

RequestHandling

srv : TCPServer

ListeningPortNumber

LifeCycle

initialize
!!...

handle:!aRequest
!!...

start
  ...
  Self handle: receivedReq

stop
  ...
  Self kill
  ...

kill
   ...

handle:

start
stop

RequestProcessing

Self

Figure 9: Some uses example of Self port.

Likewise other ports, the Self port can be bound (i.e. be the source of
a binding) or can even have a glue service attached to it. Figure 9 illustrates
these two situations by showing the code of the initialize service of two composite
components. In Composite1, Self is bound and all invocations made through
Self in the Composite1 code (such as in the doit service invocation made in the
foo service) will be treated by the subcomponent bound to the internal port Sc1.
In Composite2, a glue service is attached to Self . In this case, if Composite2
implements a matching service, it will be executed, otherwise the invocation is
delegated to the subcomponent.

Sc1

: Composite1

Self

initialize
   Sc1 bindTo: OtherComponent new.
   Self bindTo: Sc1

foo
   ...
   Self doit "must be provided by OtherComponnent"
   ...

:OtherComponent

Sc1

: Composite2

Self

initialize
   Sc1 bindTo: OtherComponent new.

glueSelf: si
   ^ Sc1 perforrm: si
   
foo
   ...
   Self doit "must be provided by OtherComponnent"
   ...

:OtherComponent

Figure 10: Self port can be delegated or even attached to a glue service.

These examples show that the developer is really able to control service
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invocation flow with bindings. Using connectors, even more complex examples
can be set up.

3.6. Argument Passing by Connection

In section 3.5, we introduced a solution to avoid exposing the internals (inter-
nal ports and subcomponents) of a component to other components. To com-
plete our encapsulation enforcement and to ensure communication integrity,
we modified the Scl service invocation to prevent connections from internal
ports to external components received as parameters or invocation result. For-
bidding such a connection is important, because otherwise we end up with a
sub-component that is already visible to external components.

Our extension relies on the connection mechanism. Every component is
equipped with a multi-port of required ports called “Args” to which the service
arguments will be automatically bound before the execution of a service. The
names used in the code for arguments are transparently aliased to Args ports.
At the end of a service execution, all Args ports are unbound.

Figure 11 shows an example. Initially, the TCPServer component is execut-
ing its handle: service. The argument named aRequest is an alias to the first
port in its multi-port Args. The first step shows that this TCPServer invokes a
process: service through its required port RequestProcessing passing the aRe-
quest as an agument. The second step shows that invocation is transmitted
through the binding of RequestProcessing . The third step apply before execut-
ing the process: service implemented by the ASynchronousRequestProcessor
component. All arguments passed in the service invocation are bound6 to the
Args ports of this component. The service is then executed in the fourth step
before unbinding the Args ports.

handle:!aRequest
!!"aRequest!aliased!to!(Args!at:!1)"
!!...
!!RequestProcessing process: aRequest
!!...

 : Request

Args

process:!aRequest
!!"alias!aRequest!to!(Args!at:!1)"
!!...

 : ASynchronousRequestProcessor

RequestHandling

: TCPServer

 Args

RequestProcessing

LifeCycle

1

2

3

4
 Args

Figure 11: The four steps of arguments passing by automatic connection.

This arguments passing mechanism is uniform with the Scl model. It pre-
vent programmers to store references to third party ports because they only
manipulate Args ports that belong to the current component.

6Arguments are always ports in Scl.
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In order to deal with situations such as recursive invocations and currency,
the Scl interpreter manages a collection of argument bindings. In case of a
recursion, a component receives an invocation of a service before returning the
result of previous ones. Upon the reception of a new invocation, the interpreter
stores the Args bindings, next it unbinds the Args port, then it binds it with
the new arguments before performing the the latest invocation. Once the latest
invocation returns, the interpreter restores the bindings of Args of the previous
service invocation. A similar solution enbales dealing with concurrency.

3.7. Summary

In this section we presented Scl a COL that was initially introduced
in [FDH07]. Compared with our former work, we introduce multiple enhance-
ments and extensions such as: bindings between ports of any kind, service
invocation handling, and argument passing by connection to name a few. These
revision of Scl was driven by our goal to better match requirements for COP.
We list below each of the five requirements identified in Section 2 and we discuss
how they are fulfilled by Scl.

R1 - Decoupling. In Scl a component description only references ports it
declares. Contracts of ports are expressed as interfaces. But, matching
interfaces when binding ports, only relies on comparing names and pa-
rameters of declared services.

R2 - Adaptability. Connections in Scl can be either simple bindings or com-
plex connectors. In both cases, they can be created or destroyed at run-
time, enabling thus the adaptation of assemblies.

R3 - Unplanned connections. Different facilities in Scl enable connecting
components that are semantically compatible, but with different inter-
faces. First, Scl eases the creation of adapting connectors. Moreover,
interfaces are not mandatory. A port without interfaces accepts bindings
to other ports with any interface. Last, ports may be provided with glue
services, those are services that are called when no matching implementa-
tion is found for an incoming service invocation.

R4 - Encapsulation and Communication Integrity. Two major features
in Scl enforce this requirement. On the one hand, Scl forbids passing in-
ternal ports as invocation arguments, thus avoiding connections from the
outside to the internals of a component. On the other hand, invocation ar-
guments are referenced through a multi-port (the Args collection of ports)
which all ports are unbound after the invocation returns. Therefore, Scl
prevents connecting a component’s internal ports to external components.

R5 - Uniformity. Scl is a COL where only component related concepts where
introduced. Main concepts are: port, binding, connector, and component.
Moreover every entity is considered as a component, including basic enti-
ties such as numbers.
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4. Conclusion and Perspectives

The contribution of this paper is twofold. First, we identified five require-
ments that should be satisfied to fully support Component-Oriented Program-
ming (COP): decoupling, adaptability, unplanned connections, encapsulation
and uniformity. The study of the state of the art shows that no existing work
addresses all these requirements. Unplanned connections is often an issue, since
most approaches rely on typing to check components compatibility. There-
fore, component developers must know about types used in other components
to enable direct connections. Another major issue is a lack of communication
integrity. Components should be able to interact while preserving their encap-
sulation. Last, non-uniformity is a frequent criticism of existing work. We often
find COP concepts superposed with the OO ones either at the implementation-
level or even at the model-level. We advocate that only COP concepts should
be used from design to implementation.

The second contribution of this article is a Component-Oriented Language
(COL) that satisfies requirements mentioned above. We started from our pre-
vious work called Scl which we extended to make it fully compliant with COP.
Scl was first thought as a uniform language for COP. It thus satisfies the uni-
formity requirement. We show that the extended Scl also satisfies the other
requirements. An important evolution of Scl results in enforcing encapsulation
and communication integrity. It ensures that no connection can be set from/to
the internals of a component to/from external components. This is achieved
by forbidding outgoing service invocations that reference internal ports and by
aliasing parameters of incoming service invocations. Aliasing consist in refer-
encing parameters through a dedicated external port on every component.

Regarding future work, we plan to study the merge of Scl with our other
work Clic in order to take advantage of the Smalltalk tools and facilities to
support COP. This study will be validated in the context of a Multi-Robots
System. Our intent is to embed components on a set of robots that have to
collaborate in order to accomplish some mission.
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