
On challenges and evolutions for exception handling
Abstract of LADC-EHCOS’11 Presentation

Latin-American Conference on Dependable Computing - Exception Handling
Workshop

Christophe Dony∗
∗LIRMM, CNRS and Montpellier II University Montpellier, France

Software developers face a number of challenges re-
lated to exception handling by first having to take
into account new development paradigms such as agents
[SDUV04], components [RdLFF05], services, ambient sys-
tems [MDB+06], pervasive systems [MECL10], aspects,
product lines programming [TDR+11] etc. It has to be noted
that new paradigms raise new issues but also propose new
challenging solutions for exception handling, as it has been
the case for opbect [Don90b].

They also have the challenging task to deal with excep-
tion handling strategies in a multi-dimensional context that
include :

• the life cycle dimension [dLR01] : exceptions strategies
have to be specified, designed, programmed, tested and
updated

• the structural dimension of applications architectures
[MECL10] : exceptions strategies should be detailed
not only at the programs blocks level but also at
the class, module, package, system level. It should
be possible to design strategies at different conceptual
levels.

• the dimension of coordination for fault-tolerance :
exception handling strategies should be compatible
and behave correctly in presence of other companion
techniques for software reliability such as for example
the different forms of redundancy.

These challenges are compounded by a global conjunc-
tural issue, if on the one hand there is a global agreement
for what concerns programming languages primitives for
exception handling[GRRX01], on the other hand there is
a crucial lack of standards[RDKT04] for what concerns :
(1) the terminology : the following terms, exception, error,
failure, condition, alarm, etc, used in our domain papers
denote either the same thing or subtly different things, (2)
the classification of exceptions kinds : early terms such as
”domain”, ”range” or ”monitoring” exceptions introduced
by Goodenough’s seminal paper are not standardized and
almost each new system provides its own classification,
(3) the common patterns to handle exceptions or to write
fault-tolerant or defensive programs. Research results on
exception handling are only very partially integrated into

mainframe software programming environments and lan-
guages (for example, UML and Java). Today’s developers
using these systems do not benefit from known results, they
frequently reinvent existing solutions or make well-known
mistakes.

We will globally discuss the above challenges and issues
while presenting two systems.

The first system [DUV06] is dedicated to all kind of
autonomous software agents communicating with each other
asynchronously, such agent subsume autonomous distributed
components and services and raise various issues common
to new development paradigms : preserving agent auton-
omy, taking into account collaborative concurrent activities,
providing mechanisms for their coordination, and handling
concurrent exceptions, signaling and researching handlers
asynchronously[Kri10], and executing handlers in the correct
definition context.

The second system [DTUV08] addresses the coordination
dimension; it proposes a specification and an implemen-
tation of a combination of two independent but comple-
mentary mechanisms : exception handling and replication.
The main advantages of this combination are: to provide
agent programmers with an exception handling system that
behaves correctly in presence of seamless active replication,
to improve replication strategies, on the base of information
conveyed while propagating exceptions from replicas. It also
offer new solutions to implement the forgotten resumption
strategy by providing active copies of the computation state.

REFERENCES

[BDBR08] I.A. Bertoncello, M.O. Dias, P.H.S. Brito, and C.M.F.
Rubira. Explicit exception handling variability in
component-based product line architectures. In Pro-
ceedings of the 4th international workshop on Excep-
tion handling, pages 47–54. ACM, 2008.

[Bla82] Andrew P. Black. Exception Handling: The Case
Against. Phd dissertation, University of Oxford, Jan-
uary 1982.

[CCF+09] F. Castor, N. Cacho, E. Figueiredo, A. Garcia, C.M.F.
Rubira, J.S. de Amorim, and H.O. da Silva. On
the modularization and reuse of exception handling
with aspects. Software: Practice and Experience,
39(17):1377–1417, 2009.



[CFBR06] F. Castor Filho, P.H.S. Brito, and C.M.F. Rubira. Spec-
ification of exception flow in software architectures.
Journal of Systems and Software, 79(10):1397–1418,
2006.

[DKRT06] C. Dony, J. L. Knudsen, Alexander Romanovsky, and
Anand Tripathi, editors. Advanced Topics in Exception
Handling Techniques. LNCS, vol. 4119. Springer,
2006.

[dLR01] Rogério de Lemos and Alexander B. Romanovsky.
Exception handling in the software lifecycle. Comput.
Syst. Sci. Eng., 16(2):119–133, 2001.

[Don90a] Christophe Dony. Exception Handling and Object-
Oriented Programming: Towards a Synthesis. ACM
SIGPLAN Notices - Proceedings of the joint confer-
ence ECOOP-OOPSLA’90, 25(10):322–330, October
1990.

[Don90b] Christophe Dony. Improving Exception Handling with
Object-Oriented Design. In Proceedings of IEEE
COMPSAC’90, Fourteenth Computer Software and
Applications Conference, pages 36–42, Chicago, USA,
November 1990.

[Don01] C. Dony. A fully object-oriented exception handling
system: rationale and smalltalk implementation. In
Romanovsky et al. [RDKT01], chapter 2, pages 18–38.

[DTUV08] Christophe Dony, Chouki Tibermacine, Christelle Ur-
tado, and Sylvain Vauttier. Specification of an ex-
ception handling system for a replicated agent envi-
ronment. In Proceedings of WEH ’08, the 4th inter-
national workshop on Exception handling - Atlanta,
Georgia, pages 24–31. ACM, 2008.

[DUV06] Christophe Dony, Christelle Urtado, and Sylvain Vaut-
tier. Exception handling and asynchronous active
objects: Issues and proposal. In Dony et al. [DKRT06],
chapter 5, pages 81–101.

[Goo75] John B. Goodenough. Exception handling: Issues and
a proposed notation. In CACM, 18(12):683–696, 1975.

[GRRX01] Alessandro F. Garcia, Cecı́lia M. F. Rubira, Alexan-
der B. Romanovsky, and Jie Xu. A comparative study
of exception handling mechanisms for building de-
pendable object-oriented software. Journal of Systems
and Software, 59(2):197–222, 2001.

[HH06] Oddleif Halvorsen and Oystein Haugen. Proposed
notation for exception handling in uml 2 sequence
diagrams. In Proceedings of the Australian Software
Engineering Conference, pages 29–40, Washington,
DC, USA, 2006. IEEE Computer Society.

[IB01] V. Issarny and J. Banatre. Architecture-based excep-
tion handling. In hicss, page 9058. Published by the
IEEE Computer Society, 2001.

[Kri10] Roy Krischer. Advanced Concepts in Asynchronous
Exception Handling. PhD thesis, University of Water-
loo, Canaa, 2010.

[MDB+06] Stijn Mostinckx, Jessie Dedecker, Elisa Gonzalez
Boix, Tom Van Cutsem, and Wolfgang De Meuter.
Ambient-oriented exception handling. In Dony et al.
[DKRT06], pages 141–160.

[MECL10] Julien Mercadal, Quentin Enard, Charles Consel, and
Nicolas Loriant. A domain-specific approach to ar-
chitecturing error handling in pervasive computing.
In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, OOPSLA, pages 47–61. ACM, 2010.

[Moo86] David A. Moon. Object-oriented programming with
flavors. In Proceedings OOPSLA ’86, ACM SIGPLAN
Notices, pages 1–8, November 1986. Published as
Proceedings OOPSLA ’86, ACM SIGPLAN Notices,
volume 21, number 11.

[Pit01] K. Pitman. Condition handling in the lisp language
family. In Romanovsky et al. [RDKT01], pages 39–
59.

[RDKT01] Alexander Romanovsky, Christophe Dony,
Jorgen Lindskov Knudsen, and Anand Tripathi,
editors. Advances in Exception Handling Techniques,
volume 2022 of Lecture Notes in Computer Science.
Springer, 2001.

[RDKT04] A. Romanovsky, C. Dony, J. L. Knudsen, and A. Tri-
pathi. Workshop reader : Exception hanling, towards
emerging application areas and new programming
paradigms. In F. Buschmann, A. P. Buchmann, editor,
Object-Oriented Technology, ECOOP 2003 Workshop
Reader, number 3013, pages 1–10. LNCS, 2004.

[RdLFF05] Cecı́lia M. F. Rubira, Rogério de Lemos, Gisele
Rodrigues Mesquita Ferreira, and Fernando Castor
Filho. Exception handling in the development of
dependable component-based systems. Softw., Pract.
Exper., 35(3):195–236, 2005.

[RM00] M.P. Robillard and G.C. Murphy. Designing robust
Java programs with exceptions. In ACM SIGSOFT
Software Engineering Notes, volume 25, pages 2–10.
ACM, 2000.

[RS03] D. Reimer and H. Srinivasan. Analyzing exception
usage in large java applications. Proceedings of the
ECOOP’03 workshop on : Exception Handling in Ob-
ject Oriented Systems: Towards Emerging Application
Areas and New Programming Paradigms, page 10,
2003.

[SDUV04] Frédéric Souchon, Christophe Dony, Christelle Urtado,
and Sylvain Vauttier. Improving exception handling
in multi-agent systems. In Software engineering for
multi-agent systems II, Research issues and practical
applications, number 2940 in LNCS, pages 167–188.
Springer, 2004.

[SMKD05] Aaton Shui, Sadaf Mustafiz, Jrg Kienzle, and
Christophe Dony. Exceptional Use Cases. In Proceed-
ings of Models/UML, ACM/IEEE 8th International
Conference on Model Driven Engineering Languages
and Systems, pages 568–583, Montego Bay, Jamaque,
October 2005.

http://www.lirmm.fr/~dony/postscript/ecoopsla.pdf
http://www.lirmm.fr/~dony/postscript/ecoopsla.pdf
http://www.lirmm.fr/~dony/postscript/exc-compsac90.pdf
http://www.lirmm.fr/~dony/postscript/exc-compsac90.pdf
http://www.lirmm.fr/~dony/postscript/exc-models05.pdf


[TDR+11] Leonardo P. Tizzei, Marcelo Oliveira Dias, Cecı́lia
M. F. Rubira, Alessandro Garcia, and Jaejoon Lee.
Components meet aspects: Assessing design stability
of a software product line. Information & Software
Technology, 53(2):121–136, 2011.

[TIRL03] F. Tartanoglu, V. Issarny, A. Romanovsky, and
N. Levy. Dependability in the Web services architec-
ture. Architecting dependable systems, pages 90–109,
2003.

[WB06] R.J. Wirfs-Brock. Toward exception-handling best
practices and patterns. Software, IEEE, 23(5):11–13,
2006.


	References

