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Software developers face a number of challenges re-
lated to exception handling by first having to take
into account new development paradigms such as agents
[SDUV04], components [RdLFF05], services, ambient sys-
tems [MDB+06], pervasive systems [MECL10], aspects,
product lines programming [TDR+11] etc. It has to be noted
that new paradigms raise new issues but also propose new
challenging solutions for exception handling, as it has been
the case for opbect [Don90b].

They also have the challenging task to deal with excep-
tion handling strategies in a multi-dimensional context that
include :

• the life cycle dimension [dLR01] : exceptions strategies
have to be specified, designed, programmed, tested and
updated

• the structural dimension of applications architectures
[MECL10] : exceptions strategies should be detailed
not only at the programs blocks level but also at
the class, module, package, system level. It should
be possible to design strategies at different conceptual
levels.

• the dimension of coordination for fault-tolerance :
exception handling strategies should be compatible
and behave correctly in presence of other companion
techniques for software reliability such as for example
the different forms of redundancy.

These challenges are compounded by a global conjunc-
tural issue, if on the one hand there is a global agreement
for what concerns programming languages primitives for
exception handling[GRRX01], on the other hand there is
a crucial lack of standards[RDKT04] for what concerns :
(1) the terminology : the following terms, exception, error,
failure, condition, alarm, etc, used in our domain papers
denote either the same thing or subtly different things, (2)
the classification of exceptions kinds : early terms such as
”domain”, ”range” or ”monitoring” exceptions introduced
by Goodenough’s seminal paper are not standardized and
almost each new system provides its own classification,
(3) the common patterns to handle exceptions or to write
fault-tolerant or defensive programs. Research results on
exception handling are only very partially integrated into

mainframe software programming environments and lan-
guages (for example, UML and Java). Today’s developers
using these systems do not benefit from known results, they
frequently reinvent existing solutions or make well-known
mistakes.

We will globally discuss the above challenges and issues
while presenting two systems.

The first system [DUV06] is dedicated to all kind of
autonomous software agents communicating with each other
asynchronously, such agent subsume autonomous distributed
components and services and raise various issues common
to new development paradigms : preserving agent auton-
omy, taking into account collaborative concurrent activities,
providing mechanisms for their coordination, and handling
concurrent exceptions, signaling and researching handlers
asynchronously[Kri10], and executing handlers in the correct
definition context.

The second system [DTUV08] addresses the coordination
dimension; it proposes a specification and an implemen-
tation of a combination of two independent but comple-
mentary mechanisms : exception handling and replication.
The main advantages of this combination are: to provide
agent programmers with an exception handling system that
behaves correctly in presence of seamless active replication,
to improve replication strategies, on the base of information
conveyed while propagating exceptions from replicas. It also
offer new solutions to implement the forgotten resumption
strategy by providing active copies of the computation state.
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