
Discussion on some
Challenges and Evolutions

for Exception Handling

Christophe Dony
Montpellier-II University - LIRMM

http://www.lirmm.fr/~dony

Presentation at :

Workshop on Exception Handling in Contemporary
Software Systems - LACD’11

EHCoS’11

A Programming language point of view

…

Giving programmers control structures

to manage those situations

in which standard execution is blocked

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Are exception handling systems useful?
Many people are not convinced

 Alternative opinion do make sense
 [Bla82] Andrew P. Black. Exception Handling: The Case Against.

Phd dissertation, University of Oxford, January 1982.
 See also ECOOP 2005 EH workshop reader.

 “what should be specifically handled is not what is exceptional but
what is unexpected i.e. deviation from specifications” …

 “EHS is undesirable because exception handling constructs introduce
difficulties with programming languages semantics and use,”

 “EHS are unnecessary because exception handling specific
constructs could be provided or subsumed by less specific ones”

 Passing handlers as parameters …
 Exceptional values ….

EHCoS’11

Running discussions (papers, web) …

Portland pattern repository

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Write patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggest improvements to Java seen as a mainframe
language for EHS

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Exceptions are not exceptional !!!

 Exceptions (in our computer science context)
 does not denote in whole generality

 exceptional situations
 but

 situations that prevent standard executions to pursue

 Some are rare (exceptional :-()
 VirtualMachineError
 Eyjakjallajokul eruption

 Some are frequent
 IOExceptions
 printer out of paper or inc

EHCoS’11

Exception are not exceptional !!!

 This « lapsus linguae » is a bigger issue :

 Induces recurrent new suggestions :
 fault, failure, condition, alarm, signal, emergency, …

 Induces recurrent discussions :
 “what should be specifically handled is not what is exceptional but

what is unexpected …”

 …

of which this discussion is another example

EHCoS’11

Another term?

 Is it reasonable ?
 If yes, which one?

 “unexpected”? No, we know such situations do happen
 “unpredictable”? No, what is unpredictable is “when”, not “what”

 We have lists of “what”

 “Uncontinuable” … why not?
 “Throwable” … quite good but …

EHCoS’11

Problem gets even more complicated with
classifications

 A classification (Java’s one) of “exceptions” in which “Exception” is
one of the categories

EHCoS’11

I’ll continue to use the term “exception” in this
talk anyhow …

Imposing an appropriate and definitive term is
a true challenge …

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Convince developers that built-in solutions are less
powerful than EHS

Example

EHCoS’11

The case for higher order functions (1)

Requires lexical closures

EHCoS’11

The case for higher order functions (2)

 To write them all would be painful



is better
 …

Many functions are
Lacking :

findFirst:ifNone:
findLast:ifNone:

…

try{call anyFindFunction}
catch (ItemNotFound e) {…}

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Design Pattern need :
unified basic constructs AND operational languages

 Classes, Composition
 Inheritance
 Message Sending
 C++, Smalltalk

 [WB06] R.J. Wirfs-Brock. Toward
exception-handling best practices
and patterns.

 No unified construct set
 See next slide

 Which mainframe language?

? Exception
Handling
Design

Patterns ?

EHCoS’11

Do we have operational unified construct set?

 We do not !

 [GRRX01] Garcia, Rubira,
Romanovsky, Xu. A comparative
study of exception handling
mechanisms for building de-
pendable object-oriented software.

EHCoS’11

Challenges

 Continue to write language independent patterns (various proposals -
papers, web)
 http://c2.com/cgi/wiki?ExceptionPatterns
 Impact somehow low without unified construct set

 Establish next mainframe languages integrating complete and well-
designed EHS …
 Difficult

 Suggest adaptations to today’s mainframe language,
 Influence the next mainframe languages …

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Problems with Java EHS as a mainframe for EH

 Good news : with JAVA people do use EHS
 With benefit in many cases
 Java EHS globally sound, simple to use and efficient

 But, various issues

 Misuses related to “checked exceptions”

 Lack of control structures
 At least a “retry”

 Classification problematic

EHCoS’11

Standard misuses

 [RS03] D. Reimer and H. Srinivasan. Analyzing exception
usage in large java applications - ECOOP03 workshop on
EHS

 swallowed exceptions

 Handler that neither log, rethrow nor handle
exceptions (simplest version : empty catch
blocks)

 Standard reason : stop writing “throws
clauses” readInt()

EHCoS’11

Standard Misuses …

 And by extension :
 Dev. tend not to use libraries that throw
exceptions

 Dev. tend to badly classify their own
exception kinds

MyApp-Exception

Cause : hardcoded combination
of classifications

EHCoS’11

Solutions to the “swallowed exceptions” misuse?

 Monitor programmers?
 Relax checking rules?

 “Unhandled exception type FileNotFoundException”
 Could be a warning
 Could be considered at package level instead of method level

 “throws clauses” could be automatically generated
 By the compiler
 By the IDE (see workshop presentations on exception flow tools -)

 Provide for decoupling classifications …

EHCoS’11

Decouping classifications
… one of the most challenging issue

 Use whatever known technique
 Meta-classes, aspects, annotations, multiple-inheritance, mixins, MDE, …

 To decouple and combine all necessary classifications
 Ontological, reuse-based, properties-based …

CheckedUnchecked Terminable
exit()

Resumable
resume() CompilerException

UnknownVariableUninitializedVariable

EHCoS’11

P4 : Adding more control structures

 At least a “retry”.

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Architecture level handlers …

 Specify Exception Handling policies at any place within a
software architecture
 Now a common research subject

 [IB01] Issarny, Banatre. Architecture-based exception
handling.

 Filho, Brito, Rubira. Specification of exception flow in
software architectures.

 Lost idea : Class-level handlers
 Simple and Useful solution for basic OOP

 Key issue was …
 to combine class-level with block-level handlers

EHCoS’11

Architecture level handlers :
 the case for class-level handlers

 Inspired from historical Smalltalk lexical scope class-level handlers

object
method error
method doesNotUnderstand
....

application1
method error

application2
method doesNotUnderstand

"default handlers"

"user-defined handlers"

class

subclass

EHCoS’11

Class-level handlers

 A short application example

Stack
 when: #(FullStack EmptyStack)
 do: ‘:e | e signal’
 when: Exception
 do: 'e: | StackInternalException signal’.

Class Stack extends Object{
 catch(FullStack e) {throw e;}
 catch(EmptyStack e) {throw e;}
 catch (Exception e) {throw new StackInternalException()}
 …

Exception

StackException

FullStack

EmptyStack

Java syntax simulation

StackInternalException

EHCoS’11

Class-level handlers

Class GrowingStack extends Stack{
 catch(FullStack e) {this.grow(). e.retry();}
 public void grow() {…}

 Work in combination with block-level thanks to
 A dynamic-scope policy
 a “callee-caller based” handler search

 Simple to implement (could be done with annotations, aspects)
 Manageable at design time (UML classdiagrams)
 Introduce exception-based reuse schemes

EHCoS’11

Resumption and Restarts

 Resumption policy …
 Restarts : solution for dialogs between signallers and handlers in

order not to restart exception halted computation from scratch
 [Moon86] Moon. Object-oriented programming with flavors.
 [Pit01] K. Pitman. Condition handling in the Lisp language family.
 Ported to Smalltalk [Don01] C. Dony. A fully object-oriented

exception handling system: rationale and smalltalk implementation.
 Everyday-life : most problems solved by dialog
 Interests

 Interactive applications
 Task collaborative applications
 Dialog based (web) client-server applications
 Ubiquitous computing

EHCoS’11

(defun my-symbol-value (name)
 (if (boundp name)
 (symbol-value name)
 (restart-case (error ’unbound-variable :name name)
 (use-value (value)
 :report "Specify a value to use."
 :interactive (lambda ()
 (format t "~&Value to use: ")
 (list (eval (read))))
 value)
 (store-value (value)
 ….
)))

Signalers can establish restarts cases

signaling

one “restart”

Argument returned by the handler

If to be used interactively

another “restart”

EHCoS’11

Handlers can choose restarts

 Resume the execution at a restart point

(handler-bind ((unbound-variable
 #'(lambda (e)
 (let ((restart (find-restart use-value e)))
 (if restart
 (invoke-restart restart 2)
 (throw e))))))
 (* 4 (+ 3 x)))
= 20

Send control back to the signalerA handler for “unbound-variable” exception

EHCoS’11

application to interactive applications

 If not handled, the exception restarts can be use by a debugger

(+ x 3)
 Error: The variable THIS-SYMBOL-HAS-NO-VALUE is unbound.
 Please select a restart option:
 1 - Specify a value to use.
 2 - Specify a value to use and store.
 3 - Return to Lisp toplevel.
 4 - Exit from Lisp.
 Option: 1
 Value to use: 2
 => 5

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Cover orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Building new EHSs for the new world
Many researches and results

 Agents
 [SDUV04] Souchon, Dony, Urtado, Vauttier. Improving exception

handling in multi-agent systems.

 Components
 [RdLFF05] Rubira, De Lemos, Filho. Exception handling in the

development of dependable component-based systems.

 Services
 [TIRL03] Tartanoglu, Issarny, Romanovsky, Levy. Dependability in

the Web services architecture.

 Aspects
 [CCF+ 09] Castor, Cacho, Figueiredo, Garcia, Rubira, de Amorim,

da Silva. On the modularization and reuse of exception handling
with aspects.

 …

Examples

EHCoS’11

Building new EHSs for the new world
Many researches and results …

 Exceptions at the software architecture level
 [IB01] Issarny, Banatre. Architecture-based exception handling.
 Filho, Brito, Rubira. Specification of exception flow in software

architectures.

 Ambient systems
 [MDB+06] Mostinckx, Dedecker, Boix, Van Cutsem,De Meuter.

Ambient-oriented exception handling.

 Pervasive systems
 [MECL10] Mercadal, Enard, Consel, Loriant. A domain-specific

approach to ar- chitecturing error handling in pervasive computing.

 Product Lines Architectures
 [BDBR08] Bertoncello, Dias, Brito, Rubira. Explicit exception

handling variability in component-based product line architectures.
 …

Examples

EHCoS’11

C3 : Build new EHS using the new world
 Abstraction, Modularization, Reuse

 Advances coming with the component world … an example

Extr
ac

ted
 fro

m : [
MECL1

0]

EHCoS’11

C3 : Build new EHS using the new world
 Simplification, abstraction, modularization, reuse

 Advances coming with the aspect world … an example

Extr
ac

ted
 ffo

m : [
CCF+ 09

]

EHCoS’11

Some suggested meta-rules to build new EHS in new
contexts

 Provide for “propagation of locally unhandled
exceptions to callers”
 If any “software contract” [meyer 88] broken, tell the

caller.
 Execute caller handlers in the caller environment

 Consider software architectures
 mix block-level handlers and architecture level handlers

 …

Caller contextualization

All kind of lexical scope handlers are unused

EHCoS’11

Some suggested meta-rules to adapt EHS to new
contexts … contd.

 …

 Provide for a simple to use mode
 Complex features are rarely used

 Respect the philosophy of the destination paradigm

 Reuse appropriate existing works

EHCoS’11

Discussing the above meta-rules
on an EHS for MAS programmers

 Work with Christelle Urtado and Sylvain Vauttier (LGI2P EMA)
 [DUV06] Christophe Dony, Christelle Urtado, and Sylvain Vauttier. Exception

handling and asynchronous active objects: Issues and proposal.

 Agents :
 Reactive
 Autonomous
 Collaborate through Asynchronous request-response interaction protocol

 Middleware independent
 External and Internal concurrency

 One thread to read the mbox
 One thread for each service method) execution

EHCoS’11

A running example …

EHCoS’11

Agent autonomy and reactivity

 Request-response interaction scheme

Client Broker Provider

pollProviders(…)‏contactBroker() ‏ findFlight(…) ‏

findflights(destination, date)

Async. com

EHCoS’11

… Think to architecture

 Agents level (AH), Services level (SH), Request level (RH) handlers

Client

contactBroker() ‏

RHSHAH

EHCoS’11

Example of a request level handler …

public class Client extends X-SaGEAgent

@service
public void contactBroker (…) {

...
sendMessage

(new RequestMessage
(aBrokerAgent,
”PollProviders”,
destination,
date)

{@requestHandler
public void handle (NoAvailablePlaces exc){

date = date +- 1;
retry();}

 });
...

}

Client

contactBroker() ‏

RHSHAH

EHCoS’11

Example of a service level handler

public class Broker extends X_SaGEAgent {

@service
public void pollProviders (destination date) {

 ... }

@serviceHandler(servicename=pollProviders) ‏
public void handle (NoAirportForDestination exc) {

signal(exc);}

Broker

pollProviders() ‏

RHSHAH

EHCoS’11

Example of agent level handlers

//Trap all low-level technical exceptions
// signals a higher-level one

@handler
 public void handle(NetworkConnectionException e){

signal(new TemporaryTechnicalProblem(…));}
@handler

public void handle (DatabaseConnectionException e){
signal(new TemporaryTechnicalProblem(…));}

public class Provider extends X_SaGEAgent {
 …

}

Provider

findFlights()‏

RHSHAH

EHCoS’11

… Provide for “caller contextualization”

 Dynamically maintain the request
tree

 Do not follow the idea of
independent “exceptions
supervisors”

 [Klein, Dellarocas 99] :
Supervisors

 Propagate exceptions through the
call chain

 Take into account all kind of
handlers

EHCoS’11

… Respect the philosophy of the destination paradigm

 Maintain agent autonomy and reactivity
 By using the standard asynchronous response

mechanism
 For normal or exceptional responses

async. com.

aClient aBroker aProvider

pollProviders() ‏()contactBroker‏ findFlights()‏

Collection AvailableFlights
Exception NoAvailablePlaces
Exception NoAirportForDestination
Exception NoFlightForDestination
Exception TemporaryTechnicalProblem

EHCoS’11

… Respect the philosophy of the destination paradigm

 maintain agent autonomy and
reactivity
 asynchronous progagation of

exceptions between agents

async. com.

EHCoS’11

… Reuse appropriate existing works

 Resolution function [ISS 91] to concert
concurrent exceptions when needed

Client Broker Provider 2

pollProviders() ‏()contactBroker‏ findFlights()‏

Provider 3

findFlights()‏

Provider 1

findFlights()‏

Collection AvailableFlights
Exception NoAvailablePlaces
Exception NoAirportForDestination
Exception NoFlightForDestination
Exception TemporaryTechnicalProblem

EHCoS’11

An example of a resolution function

 Resolution function
 invoked each time an exception signaling reaches a complex service,

before invoking a potential handler
 In this example, used to control n-versions providers

@serviceResolutionFunction(servicename=pollProviders) ‏
public Exception concert(Exception e) {
 //log e
 //log current failing sub-service

 //example of decision
 if ((numberOf(NoAvailablePlaces)

 >=
 0.8 * numberOf(subServices)) ‏

 return e;
 else
 return null;
}

Signaling stops

Signaling continue

EHCoS’11

… Provide for a simple to use mode

 Do not propagate exceptions to
“brother” agents
 Less expressive power but

simpler to use
Broker Provider 2

pollProviders() ‏ findFlights()‏

Provider 3

findFlights()‏

Provider 1

findFlights()‏

Exception TemporaryTechnicalProblem

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Covering the life cycle
various researches and results …

 [dLR01] de Lemos, Romanovsky. Exception handling in the
software lifecycle.

 [SMKD07] Shui, Mustafiz, Kienzle, Dony. Exceptional Use
Cases.

 [HH06] Halvorsen, Haugen. Proposed notation for exception
handling in uml 2 sequence diagrams.

 …

EHCoS’11

Combination of tools and techniques
an example : exception handling and replication

 Collaboration
 Paris VI University- LIP6 - INRIA-REGAL

 Jean-Pierre Briot, Zahia Guessoum, Olivier Marin, Jean-François
Perrot

 Dima agent Framework (guessoum&al 06)
 DarX replication system (Marin&al 03-06)

 Montpellier-II University - LIRMM
 Christophe Dony, Chouki Tibermacine

 Ecole des Mines d’Ales - LGI2P
 Christelle Urtado, Sylvain Vauttier

EHCoS’11

Combination of exception handling and replication

 Simple idea :

 1) A transparent replication systems
 handles

 System (replica-spefic) fault or exception
 E.g. NetworkConnectionException

 2) A combined EHS :
 allow programmers to deal with

 Business (replica-independent) exceptions
 Improves the efficiency of the replication level

Yet another classification!

EHCoS’11

A replication system (DARX)

Criticality, replication group, leader, active and passive replicas …

S
ch

em
a

by
 Z

ei
ne

 A
zm

eh

EHCoS’11

Controlling replicated agents :
Replica-specific exception (1)

Broker

pollProviders() ‏

RHSHAH

ReplicationManager

 signals TemporaryTechnicalProblem

Provider 1 - Replica 1 - Active - Leader

findFlights()‏

RHSHAH

Provider 1 - Replica 2 - passive

findFlights()
‏

RHSHAH

EHCoS’11

Controlling replicated agents :
Replica-specific exception (2)

Broker

pollProviders() ‏

RHSHAH

Replica-specific exception

Provider 1 - Replica 1 - Active - Leader

findFlights()
‏

RHSHAH

Provider 1 - Replica 2 - passive

ReplicationManager

 handles TemporaryTechnicalProblem findFlights()

RHSHAH

EHCoS’11

Provider 1 - Replica 1 -
failed

Broker

pollProviders() ‏

RHSHAH

Provider 1 - Replica 2 - Active

ReplicationManager
findFlights()
‏

RHSHAH

findFlights()
‏

RHSHAH

Controlling replicated agents :
Replica-specific exception (3)

Another replica becomes active

EHCoS’11

Controlling replicated agents :
Replica-independent exception (1)

Broker

pollProviders() ‏

RHSHAH

ReplicationManager

 signals NoAvailablePlaces

Provider 1 - Replica 1 - Active - Leader

findFlights()‏

RHSHAH

Provider 1 - Replica 2 - passive

findFlights()
‏

RHSHAH

EHCoS’11

Controlling replicated agents :
Replica-independent exception (2)

Broker

pollProviders() ‏

RHSHAH

Replica-independent exception

Provider 1 - Replica 1 - Active - Leader

findFlights()
‏

RHSHAH

Provider 1 - Replica 2

ReplicationManager

 handles NoAvailablePlaces findFlights()

RHSHAH

EHCoS’11

Provider 1 - Replica 1 -
failed

Broker

pollProviders() ‏

RHSHAH

Provider 1 - Replica 2

ReplicationManager
findFlights()
‏

RHSHAH

Controlling replicated agents :
Replica-independent exception (3)

findFlights()

RHSHAH
Termination of all replicas

Propagation to caller.

EHCoS’11

Conclusion
 and opening discussion …

 “Uncontinuable” as a new name for what was called “exception”
 Usages, best practices, patterns

 Need more mainframe languages
 More Modularity, Reuse, Expressive power, high-level abstractions

 Too many research ideas left unexploited
 New solutions come with new paradigms

 components,
 Aspects … annotations
 Models

 Also …
 Adaptability (domain specific EH ?)
 Check, prove, reason on programs that handle exceptions

EHCoS’11

References

 See the associated abstract paper :
http://www.lirmm.fr/~dony/postscript/exc-AbstractEHCOS.pdf

