
Discussion on some
Challenges and Evolutions

for Exception Handling

Christophe Dony
Montpellier-II University - LIRMM

http://www.lirmm.fr/~dony

Presentation at :

Workshop on Exception Handling in Contemporary
Software Systems - LACD’11

EHCoS’11

A Programming language point of view

…

Giving programmers control structures

to manage those situations

in which standard execution is blocked

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Are exception handling systems useful?
Many people are not convinced

 Alternative opinion do make sense
 [Bla82] Andrew P. Black. Exception Handling: The Case Against.

Phd dissertation, University of Oxford, January 1982.
 See also ECOOP 2005 EH workshop reader.

 “what should be specifically handled is not what is exceptional but
what is unexpected i.e. deviation from specifications” …

 “EHS is undesirable because exception handling constructs introduce
difficulties with programming languages semantics and use,”

 “EHS are unnecessary because exception handling specific
constructs could be provided or subsumed by less specific ones”

 Passing handlers as parameters …
 Exceptional values ….

EHCoS’11

Running discussions (papers, web) …

Portland pattern repository

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Write patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggest improvements to Java seen as a mainframe
language for EHS

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Exceptions are not exceptional !!!

 Exceptions (in our computer science context)
 does not denote in whole generality

 exceptional situations
 but

 situations that prevent standard executions to pursue

 Some are rare (exceptional :-()
 VirtualMachineError
 Eyjakjallajokul eruption

 Some are frequent
 IOExceptions
 printer out of paper or inc

EHCoS’11

Exception are not exceptional !!!

 This « lapsus linguae » is a bigger issue :

 Induces recurrent new suggestions :
 fault, failure, condition, alarm, signal, emergency, …

 Induces recurrent discussions :
 “what should be specifically handled is not what is exceptional but

what is unexpected …”

 …

of which this discussion is another example

EHCoS’11

Another term?

 Is it reasonable ?
 If yes, which one?

 “unexpected”? No, we know such situations do happen
 “unpredictable”? No, what is unpredictable is “when”, not “what”

 We have lists of “what”

 “Uncontinuable” … why not?
 “Throwable” … quite good but …

EHCoS’11

Problem gets even more complicated with
classifications

 A classification (Java’s one) of “exceptions” in which “Exception” is
one of the categories

EHCoS’11

I’ll continue to use the term “exception” in this
talk anyhow …

Imposing an appropriate and definitive term is
a true challenge …

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Convince developers that built-in solutions are less
powerful than EHS

Example

EHCoS’11

The case for higher order functions (1)

Requires lexical closures

EHCoS’11

The case for higher order functions (2)

 To write them all would be painful

is better
 …

Many functions are
Lacking :

findFirst:ifNone:
findLast:ifNone:

…

try{call anyFindFunction}
catch (ItemNotFound e) {…}

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Design Pattern need :
unified basic constructs AND operational languages

 Classes, Composition
 Inheritance
 Message Sending
 C++, Smalltalk

 [WB06] R.J. Wirfs-Brock. Toward
exception-handling best practices
and patterns.

 No unified construct set
 See next slide

 Which mainframe language?

? Exception
Handling
Design

Patterns ?

EHCoS’11

Do we have operational unified construct set?

 We do not !

 [GRRX01] Garcia, Rubira,
Romanovsky, Xu. A comparative
study of exception handling
mechanisms for building de-
pendable object-oriented software.

EHCoS’11

Challenges

 Continue to write language independent patterns (various proposals -
papers, web)
 http://c2.com/cgi/wiki?ExceptionPatterns
 Impact somehow low without unified construct set

 Establish next mainframe languages integrating complete and well-
designed EHS …
 Difficult

 Suggest adaptations to today’s mainframe language,
 Influence the next mainframe languages …

EHCoS’11

What can we do?

 P1 : Discuss the term “exception” …

 P2 : Convince developers that built-in solutions are less
powerful than EHS

 P3 : Propose patterns.
 Unified set of constructs?
 Mainframe languages?

 P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS’11

Problems with Java EHS as a mainframe for EH

 Good news : with JAVA people do use EHS
 With benefit in many cases
 Java EHS globally sound, simple to use and efficient

 But, various issues

 Misuses related to “checked exceptions”

 Lack of control structures
 At least a “retry”

 Classification problematic

EHCoS’11

Standard misuses

 [RS03] D. Reimer and H. Srinivasan. Analyzing exception
usage in large java applications - ECOOP03 workshop on
EHS

 swallowed exceptions

 Handler that neither log, rethrow nor handle
exceptions (simplest version : empty catch
blocks)

 Standard reason : stop writing “throws
clauses” readInt()

EHCoS’11

Standard Misuses …

 And by extension :
 Dev. tend not to use libraries that throw
exceptions

 Dev. tend to badly classify their own
exception kinds

MyApp-Exception

Cause : hardcoded combination
of classifications

EHCoS’11

Solutions to the “swallowed exceptions” misuse?

 Monitor programmers?
 Relax checking rules?

 “Unhandled exception type FileNotFoundException”
 Could be a warning
 Could be considered at package level instead of method level

 “throws clauses” could be automatically generated
 By the compiler
 By the IDE (see workshop presentations on exception flow tools -)

 Provide for decoupling classifications …

EHCoS’11

Decouping classifications
… one of the most challenging issue

 Use whatever known technique
 Meta-classes, aspects, annotations, multiple-inheritance, mixins, MDE, …

 To decouple and combine all necessary classifications
 Ontological, reuse-based, properties-based …

CheckedUnchecked Terminable
exit()

Resumable
resume() CompilerException

UnknownVariableUninitializedVariable

EHCoS’11

P4 : Adding more control structures

 At least a “retry”.

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Architecture level handlers …

 Specify Exception Handling policies at any place within a
software architecture
 Now a common research subject

 [IB01] Issarny, Banatre. Architecture-based exception
handling.

 Filho, Brito, Rubira. Specification of exception flow in
software architectures.

 Lost idea : Class-level handlers
 Simple and Useful solution for basic OOP

 Key issue was …
 to combine class-level with block-level handlers

EHCoS’11

Architecture level handlers :
 the case for class-level handlers

 Inspired from historical Smalltalk lexical scope class-level handlers

object
method error
method doesNotUnderstand
....

application1
method error

application2
method doesNotUnderstand

"default handlers"

"user-defined handlers"

class

subclass

EHCoS’11

Class-level handlers

 A short application example

Stack
 when: #(FullStack EmptyStack)
 do: ‘:e | e signal’
 when: Exception
 do: 'e: | StackInternalException signal’.

Class Stack extends Object{
 catch(FullStack e) {throw e;}
 catch(EmptyStack e) {throw e;}
 catch (Exception e) {throw new StackInternalException()}
 …

Exception

StackException

FullStack

EmptyStack

Java syntax simulation

StackInternalException

EHCoS’11

Class-level handlers

Class GrowingStack extends Stack{
 catch(FullStack e) {this.grow(). e.retry();}
 public void grow() {…}

 Work in combination with block-level thanks to
 A dynamic-scope policy
 a “callee-caller based” handler search

 Simple to implement (could be done with annotations, aspects)
 Manageable at design time (UML classdiagrams)
 Introduce exception-based reuse schemes

EHCoS’11

Resumption and Restarts

 Resumption policy …
 Restarts : solution for dialogs between signallers and handlers in

order not to restart exception halted computation from scratch
 [Moon86] Moon. Object-oriented programming with flavors.
 [Pit01] K. Pitman. Condition handling in the Lisp language family.
 Ported to Smalltalk [Don01] C. Dony. A fully object-oriented

exception handling system: rationale and smalltalk implementation.
 Everyday-life : most problems solved by dialog
 Interests

 Interactive applications
 Task collaborative applications
 Dialog based (web) client-server applications
 Ubiquitous computing

EHCoS’11

(defun my-symbol-value (name)
 (if (boundp name)
 (symbol-value name)
 (restart-case (error ’unbound-variable :name name)
 (use-value (value)
 :report "Specify a value to use."
 :interactive (lambda ()
 (format t "~&Value to use: ")
 (list (eval (read))))
 value)
 (store-value (value)
 ….
)))

Signalers can establish restarts cases

signaling

one “restart”

Argument returned by the handler

If to be used interactively

another “restart”

EHCoS’11

Handlers can choose restarts

 Resume the execution at a restart point

(handler-bind ((unbound-variable
 #'(lambda (e)
 (let ((restart (find-restart use-value e)))
 (if restart
 (invoke-restart restart 2)
 (throw e))))))
 (* 4 (+ 3 x)))
= 20

Send control back to the signalerA handler for “unbound-variable” exception

EHCoS’11

application to interactive applications

 If not handled, the exception restarts can be use by a debugger

(+ x 3)
 Error: The variable THIS-SYMBOL-HAS-NO-VALUE is unbound.
 Please select a restart option:
 1 - Specify a value to use.
 2 - Specify a value to use and store.
 3 - Return to Lisp toplevel.
 4 - Exit from Lisp.
 Option: 1
 Value to use: 2
 => 5

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Cover orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Building new EHSs for the new world
Many researches and results

 Agents
 [SDUV04] Souchon, Dony, Urtado, Vauttier. Improving exception

handling in multi-agent systems.

 Components
 [RdLFF05] Rubira, De Lemos, Filho. Exception handling in the

development of dependable component-based systems.

 Services
 [TIRL03] Tartanoglu, Issarny, Romanovsky, Levy. Dependability in

the Web services architecture.

 Aspects
 [CCF+ 09] Castor, Cacho, Figueiredo, Garcia, Rubira, de Amorim,

da Silva. On the modularization and reuse of exception handling
with aspects.

 …

Examples

EHCoS’11

Building new EHSs for the new world
Many researches and results …

 Exceptions at the software architecture level
 [IB01] Issarny, Banatre. Architecture-based exception handling.
 Filho, Brito, Rubira. Specification of exception flow in software

architectures.

 Ambient systems
 [MDB+06] Mostinckx, Dedecker, Boix, Van Cutsem,De Meuter.

Ambient-oriented exception handling.

 Pervasive systems
 [MECL10] Mercadal, Enard, Consel, Loriant. A domain-specific

approach to ar- chitecturing error handling in pervasive computing.

 Product Lines Architectures
 [BDBR08] Bertoncello, Dias, Brito, Rubira. Explicit exception

handling variability in component-based product line architectures.
 …

Examples

EHCoS’11

C3 : Build new EHS using the new world
 Abstraction, Modularization, Reuse

 Advances coming with the component world … an example

Extr
ac

ted
 fro

m : [
MECL1

0]

EHCoS’11

C3 : Build new EHS using the new world
 Simplification, abstraction, modularization, reuse

 Advances coming with the aspect world … an example

Extr
ac

ted
 ffo

m : [
CCF+ 09

]

EHCoS’11

Some suggested meta-rules to build new EHS in new
contexts

 Provide for “propagation of locally unhandled
exceptions to callers”
 If any “software contract” [meyer 88] broken, tell the

caller.
 Execute caller handlers in the caller environment

 Consider software architectures
 mix block-level handlers and architecture level handlers

 …

Caller contextualization

All kind of lexical scope handlers are unused

EHCoS’11

Some suggested meta-rules to adapt EHS to new
contexts … contd.

 …

 Provide for a simple to use mode
 Complex features are rarely used

 Respect the philosophy of the destination paradigm

 Reuse appropriate existing works

EHCoS’11

Discussing the above meta-rules
on an EHS for MAS programmers

 Work with Christelle Urtado and Sylvain Vauttier (LGI2P EMA)
 [DUV06] Christophe Dony, Christelle Urtado, and Sylvain Vauttier. Exception

handling and asynchronous active objects: Issues and proposal.

 Agents :
 Reactive
 Autonomous
 Collaborate through Asynchronous request-response interaction protocol

 Middleware independent
 External and Internal concurrency

 One thread to read the mbox
 One thread for each service method) execution

EHCoS’11

A running example …

EHCoS’11

Agent autonomy and reactivity

 Request-response interaction scheme

Client Broker Provider

pollProviders(…)contactBroker() findFlight(…)

findflights(destination, date)

Async. com

EHCoS’11

… Think to architecture

 Agents level (AH), Services level (SH), Request level (RH) handlers

Client

contactBroker()

RHSHAH

EHCoS’11

Example of a request level handler …

public class Client extends X-SaGEAgent

@service
public void contactBroker (…) {

...
sendMessage

(new RequestMessage
(aBrokerAgent,
”PollProviders”,
destination,
date)

{@requestHandler
public void handle (NoAvailablePlaces exc){

date = date +- 1;
retry();}

 });
...

}

Client

contactBroker()

RHSHAH

EHCoS’11

Example of a service level handler

public class Broker extends X_SaGEAgent {

@service
public void pollProviders (destination date) {

 ... }

@serviceHandler(servicename=pollProviders)
public void handle (NoAirportForDestination exc) {

signal(exc);}

Broker

pollProviders()

RHSHAH

EHCoS’11

Example of agent level handlers

//Trap all low-level technical exceptions
// signals a higher-level one

@handler
 public void handle(NetworkConnectionException e){

signal(new TemporaryTechnicalProblem(…));}
@handler

public void handle (DatabaseConnectionException e){
signal(new TemporaryTechnicalProblem(…));}

public class Provider extends X_SaGEAgent {
 …

}

Provider

findFlights()

RHSHAH

EHCoS’11

… Provide for “caller contextualization”

 Dynamically maintain the request
tree

 Do not follow the idea of
independent “exceptions
supervisors”

 [Klein, Dellarocas 99] :
Supervisors

 Propagate exceptions through the
call chain

 Take into account all kind of
handlers

EHCoS’11

… Respect the philosophy of the destination paradigm

 Maintain agent autonomy and reactivity
 By using the standard asynchronous response

mechanism
 For normal or exceptional responses

async. com.

aClient aBroker aProvider

pollProviders() ()contactBroker findFlights()

Collection AvailableFlights
Exception NoAvailablePlaces
Exception NoAirportForDestination
Exception NoFlightForDestination
Exception TemporaryTechnicalProblem

EHCoS’11

… Respect the philosophy of the destination paradigm

 maintain agent autonomy and
reactivity
 asynchronous progagation of

exceptions between agents

async. com.

EHCoS’11

… Reuse appropriate existing works

 Resolution function [ISS 91] to concert
concurrent exceptions when needed

Client Broker Provider 2

pollProviders() ()contactBroker findFlights()

Provider 3

findFlights()

Provider 1

findFlights()

Collection AvailableFlights
Exception NoAvailablePlaces
Exception NoAirportForDestination
Exception NoFlightForDestination
Exception TemporaryTechnicalProblem

EHCoS’11

An example of a resolution function

 Resolution function
 invoked each time an exception signaling reaches a complex service,

before invoking a potential handler
 In this example, used to control n-versions providers

@serviceResolutionFunction(servicename=pollProviders)
public Exception concert(Exception e) {
 //log e
 //log current failing sub-service

 //example of decision
 if ((numberOf(NoAvailablePlaces)

 >=
 0.8 * numberOf(subServices))

 return e;
 else
 return null;
}

Signaling stops

Signaling continue

EHCoS’11

… Provide for a simple to use mode

 Do not propagate exceptions to
“brother” agents
 Less expressive power but

simpler to use
Broker Provider 2

pollProviders() findFlights()

Provider 3

findFlights()

Provider 1

findFlights()

Exception TemporaryTechnicalProblem

EHCoS’11

Some challenges for Exception Handling

 C1 : Toward usages, best practices and patterns.
 Convince that EH is necessary and useful
 Improve today mainframe EHS languages (Java, …?)

 Problems? misuses? solutions?

 C2 : Abstraction, Efficiency, Reuse : rediscovering lost ideas
 Architecture level handlers
 Exception handling as a dialog (resumption, restarts)

 C3 : Build new EHS for the new world and using the new world
 components, aspects, services, ambient, ubiquitous, concurrent
 Example of MAS

 C4 : Orthogonal dimensions
 Cover the life cycle
 Combination of tools and techniques

 Example of exception handling and replication

EHCoS’11

Covering the life cycle
various researches and results …

 [dLR01] de Lemos, Romanovsky. Exception handling in the
software lifecycle.

 [SMKD07] Shui, Mustafiz, Kienzle, Dony. Exceptional Use
Cases.

 [HH06] Halvorsen, Haugen. Proposed notation for exception
handling in uml 2 sequence diagrams.

 …

EHCoS’11

Combination of tools and techniques
an example : exception handling and replication

 Collaboration
 Paris VI University- LIP6 - INRIA-REGAL

 Jean-Pierre Briot, Zahia Guessoum, Olivier Marin, Jean-François
Perrot

 Dima agent Framework (guessoum&al 06)
 DarX replication system (Marin&al 03-06)

 Montpellier-II University - LIRMM
 Christophe Dony, Chouki Tibermacine

 Ecole des Mines d’Ales - LGI2P
 Christelle Urtado, Sylvain Vauttier

EHCoS’11

Combination of exception handling and replication

 Simple idea :

 1) A transparent replication systems
 handles

 System (replica-spefic) fault or exception
 E.g. NetworkConnectionException

 2) A combined EHS :
 allow programmers to deal with

 Business (replica-independent) exceptions
 Improves the efficiency of the replication level

Yet another classification!

EHCoS’11

A replication system (DARX)

Criticality, replication group, leader, active and passive replicas …

S
ch

em
a

by
 Z

ei
ne

 A
zm

eh

EHCoS’11

Controlling replicated agents :
Replica-specific exception (1)

Broker

pollProviders()

RHSHAH

ReplicationManager

 signals TemporaryTechnicalProblem

Provider 1 - Replica 1 - Active - Leader

findFlights()

RHSHAH

Provider 1 - Replica 2 - passive

findFlights()

RHSHAH

EHCoS’11

Controlling replicated agents :
Replica-specific exception (2)

Broker

pollProviders()

RHSHAH

Replica-specific exception

Provider 1 - Replica 1 - Active - Leader

findFlights()

RHSHAH

Provider 1 - Replica 2 - passive

ReplicationManager

 handles TemporaryTechnicalProblem findFlights()

RHSHAH

EHCoS’11

Provider 1 - Replica 1 -
failed

Broker

pollProviders()

RHSHAH

Provider 1 - Replica 2 - Active

ReplicationManager
findFlights()

RHSHAH

findFlights()

RHSHAH

Controlling replicated agents :
Replica-specific exception (3)

Another replica becomes active

EHCoS’11

Controlling replicated agents :
Replica-independent exception (1)

Broker

pollProviders()

RHSHAH

ReplicationManager

 signals NoAvailablePlaces

Provider 1 - Replica 1 - Active - Leader

findFlights()

RHSHAH

Provider 1 - Replica 2 - passive

findFlights()

RHSHAH

EHCoS’11

Controlling replicated agents :
Replica-independent exception (2)

Broker

pollProviders()

RHSHAH

Replica-independent exception

Provider 1 - Replica 1 - Active - Leader

findFlights()

RHSHAH

Provider 1 - Replica 2

ReplicationManager

 handles NoAvailablePlaces findFlights()

RHSHAH

EHCoS’11

Provider 1 - Replica 1 -
failed

Broker

pollProviders()

RHSHAH

Provider 1 - Replica 2

ReplicationManager
findFlights()

RHSHAH

Controlling replicated agents :
Replica-independent exception (3)

findFlights()

RHSHAH
Termination of all replicas

Propagation to caller.

EHCoS’11

Conclusion
 and opening discussion …

 “Uncontinuable” as a new name for what was called “exception”
 Usages, best practices, patterns

 Need more mainframe languages
 More Modularity, Reuse, Expressive power, high-level abstractions

 Too many research ideas left unexploited
 New solutions come with new paradigms

 components,
 Aspects … annotations
 Models

 Also …
 Adaptability (domain specific EH ?)
 Check, prove, reason on programs that handle exceptions

EHCoS’11

References

 See the associated abstract paper :
http://www.lirmm.fr/~dony/postscript/exc-AbstractEHCOS.pdf

