Discussion on some
Challenges and Evolutions

| for Exception Handling

Christophe Dony
Montpellier-11 University - LIRMM
http://www.lirmm.fr/~dony

Presentation at :

Workshop on Exception Handling in Contemporary
Software Systems - LACD'11

A Programming language point of view

Giving programmers control structures
to manage those situations

in which standard execution is blocked

EHCoS'11

Some challenges for Exception Handling

= C1:Toward usages, best practices and patterns.
= Convince that EH is necessary and useful
= Improve today mainframe EHS languages (Java, ...?)
= Problems? misuses? solutions?

= C2: Abstraction, Efficiency, Reuse : rediscovering lost ideas
= Architecture level handlers
= Exception handling as a dialog (resumption, restarts)

= C3: Build new EHS for the new world and using the new world

= components, aspects, services, ambient, ubiquitous, concurrent
= Example of MAS

= C4 : Orthogonal dimensions
= Cover the life cycle
= Combination of tools and techniques
= Example of exception handling and replication

EHCoS'11

Some challenges for Exception Handling

C1 : Toward usages, best practices and patterns.
= Convince that EH is necessary and useful

Improve today mainframe EHS languages (Java, ...?)
= Problems? misuses? solutions?

EHCoS'11

Are exception handling systems useful?
Many people are not convinced

= Alternative opinion do make sense

[Bla82] Andrew P. Black. Exception Handling: The Case Against.
Phd dissertation, University of Oxford, January 1982.

See also ECOOP 2005 EH workshop reader.

= “‘what should be specifically handled is not what is exceptional but
what is unexpected i.e. deviation from specifications” ...

» “EHS is undesirable because exception handling constructs introduce
difficulties with programming languages semantics and use,”

= “EHS are unnecessary because exception handling specific
constructs could be provided or subsumed by less specific ones”

Passing handlers as parameters ...
Exceptional values

EHCoS'11

o

Running discussions (papers, web) ...

‘-g-. a ‘__? m @ ‘_:_‘ b= http://c2.com/cgi/wiki7CategoryException

Les plus visités « Recherche Informatique « Enseignement httpz/ /www.webmas... Services « Perso v

| =

Catrtegory Exception

« Arguments against Exceptions

o

0

0

AvoidExceptionsWheneverPossible

CodeWithoutExceptions
hup://www.joelonsoftware.com/items/2003/10/13 .html
hup://blogs.msdn.com/oldnewthing/archive/2005/01/14/352949 .aspx

hup://www.joelonsoftware.com/articles/Wrong .html

« Alternatives to Exceptions

o

Arrow AntiPattern

BottomType / BottomPropagation ,0
DeferredExceptionObject O’?}
ErrorValue (but see UseExceptionsInsteadOfErrorvValues) QOO’
ExceptionHandlingChallenge e
ExceptionReporter Gﬁ
ExceptionalValue O/‘@
InvisibleExceptionHandlers

NilFalseExceptionsFailure

NullObject

PassAnErrorHandler

RefactorExtractExceptionHandlingToAspect

What can we do?

= P1: Discuss the term “exception” ...

= P2 : Convince developers that built-in solutions are less
powerful than EHS

= P3: Write patterns.
= Unified set of constructs?
= Mainframe languages?

= P4 : Suggest improvements to Java seen as a mainframe
language for EHS

EHCoS'11

What can we do?

= P1: Discuss the term “exception” ...

EHCoS'11

Exceptions are not exceptional !!!

= EXxceptions (in our computer science context)
= does not denote in whole generality
= exceptional situations
= but
= situations that prevent standard executions to pursue

= Some are rare (exceptional :-()
« VirtualMachineError
= Eyjakjallajokul eruption

= Some are frequent

= IOExceptions
= printer out of paper or inc

EHCoS'11

Exception are not exceptional !!!

= This « lapsus linguae » is a bigger issue :

= Induces recurrent new suggestions :
« fault, failure, condition, alarm, signal, emergency, ...

= Induces recurrent discussions :

» “what should be specifically handled is not what is exceptional but
what is unexpected ...”

of which this discussion is another example

EHCoS'11

Another term?

Is it reasonable ?

If yes, which one?
“‘unexpected”? No, we know such situations do happen
“unpredictable”? No, what is unpredictable is “when”, not “what”

= We have lists of “what”

\ i

.{ ClassNotFoundException I

ClonaMotSupportedExcaption
HllegalAccessExcaption

I Throwable I

Exception

[3 "
r 4

NoSuchMethodException

RuntimeException

-I ArithmeticException I

HlegalMonitorStateExcaption
IndexOutOfBoundsException

NegativeArroySizeException
NullPointerException
“Uncontinuable” ... why not? java.lang
Throwable” ... quite good but ... o — -

EHCoS'11

Problem gets even more complicated with
classifications

= A classification (Java’'s one) of “exceptions” in which “Exception” is
one of the categories

.l ClassNotFoundException I
CloneNetSuppertedExcaption

ArithmeticException

lllognmmdsmcixapﬁ-

ArraylndexOutOfBoundsException

«
f’% The Java™ Tutorials

Exceptions « Previous * Trail « Next »
What Is an Exceptipn?
The Catch or Specify How to Throw Exceptions
Requirement

EHCoS'11

I’ll continue to use the term “exception” in this
talk anyhow ...

Imposing an appropriate and definitive term is
a true challenge ...

EHCoS'11

What can we do?

= P2 : Convince developers that built-in solutions are less
powerful than EHS

EHCoS'11

Convince developers that built-in solutions are less
powerful than EHS

S OO Catego

http: //c2.com/cgifwiki7CategoryException

Les plus visités « Recherche -« Informatique -« Enseignement https/ /www.webmas... Services « Perso v

|, Cartegory Exception

- Arguments against Exceptions

o AvoidExceptionsWheneverPossible

o CodeWithoutExceptions

o hup://www. joelonsoftware.conv/items/2003/10/13 .html

o htup://blogs.msdn.com/oldnewthing/archive/2005/01/14/352949 .aspx

o hup://www. joelonsoftware.comy/articles/Wrong .html

« Alternatives to Exceptions
o ArrowAntiPattern

o BottomType / BottomPropagation

o DeferredExceptionObject

o ErrorValue (but see UseExceptionsInsteadOfErrorValues)

o ExceptionHandlingChallenge

0

ExceptionReporter

Example

o ExceptionalValue

o InvisibleExceptionHandlers

o NilFalseExceptionsFailure
o NullObject

o PassAnErrorHandler

o RefactorExtractExceptionHandlingToAspect

The case for higher order functions (1)

Object *Balloon erroanrstObject
Collection *Newlnspector errorLastObject:
SequenceableCollection *Polymorph-EventEnhancements errorOutOfBounds
ArrayedCollection *kernel-extensions fifth
Array *morphic-newcurves-cubic supp findBinary:
ActionSequence *nile-base findBinaryifNone:
Cubic *traits findBinarylndex:
WeakActionSequence | accessing findBinaryindexifNone:
WeakActionSequenc g comparing findFirst:
Pl R ' converting findLast:
copying g = first

ProtoObject I-— all --

1 1GE ? class

-
(browse)(hierarchy) variables) im Iementors)Cinheritance)(senders)(versions)(view)

findBinary: aBlock ifNoné&; exceptlonBIock
"Search for an element in the using binary sea
The argument aBlock is a one-element block returning
0 -if the element is the one searched for
<0 -if the search should continue in the first half
>0 -if the search should continue in the second half
If no matching element is found, evaluate exceptionBlock™
| index low high test item |
low =1.
high := self size.
[index = high + low // 2.

Requires lexical al@Sures

The case for higher order functions (2)

Many functions are

findBinary: !
findBinaryifNone: « Lacking :
findBinaryindex: findFirst:ifNone:
findBinarylndexifNone:| findLast:ifNone:
findFirst:

findLast:

= To write them all would be painful

= try{call anyFindFunction}
catch (ltemNotFound e) {...}

IS better

EHCoS'11

What can we do?

= P3: Propose patterns.
= Unified set of constructs?
= Mainframe languages?

EHCoS'11

Design Pattern need :
unified basic constructs AND operational languages

Design Patterns
Classes, Composition Clrers of R

Inheritance
Message Sending
C++, Smalltalk

L2]

« [WBO06] R.J. Wirfs-Brock. Toward
exception-handling best practices
and patterns.

No unified construct set

= See next slide /

Which mainframe language?

EHCoS'11

We do not !

[GRRXO01] Garcia, Rubira,
Romanovsky, Xu. A comparative
study of exception handling
mechanisms for building de-

pendable object-oriented software.

Do we have operational unified construct set?

T M%gem'ionsl g || |2 z| o 8
Aspecis Design N EBHEERBEEEHE
Decisions 2|3 |a|am| 25| 8|8|a|d|d| =
. Symbols | -1 Al 4|
Al Exception -
Representation Data Objects + | #+1| +1 +1
Full Objects +1 +1
Unsupported | -1 -1]-1 -1 -1
A2 External Exceptions Optional 0 0 0
in Signatures Compulsory + 1| #1
Hybrid +1
A3, Separation between Internal Unsupported | =1 | -1 |-1[-1|-1|-1|-1|[-1|-1]-1|-1|~1
and External Exceptions Supported
Statement | +1| +1 #1141 + +#1| 4+
Block |-1 A0-1]-1]- -1
Ad. Attachment of (+) Method + +1 +1
Handlers Object wla
Class | +1| +#1|+1| +1 +1 +1| +1
Exception + +1
AS. Handler Stali.c -1 -1]-1
Binding Dynamic
Semi-Dynamic | +1| +1 +#1+# #]+ +1] + +1
A6. Propagation of (4) Unsupporte.d —- 1 T b
Exceptions Automatic |-1|-1 1|1 |-1|-1|-1
Explicit | +1] +1 #1+H| #1 |+ + +1
A7. Continuation of) Resumption 1)1 -1
Control Flow Termination | +1| #1| #1| +1| #1| #1| #1| 1| #1] #1| +1| 1
Unsupported -1
AB. CIe?““P Use of Explicit Propagation | 0 0 0 0
. Specific Construct +1| + +1 +#1|+1| +1 +1
Automatic Cleanup
A9. Reliability) Dynamic Checks | +1| #1| #1| +1| 1] #1| #1| 41| +1 +1
Checks Static Checks Al e a4l alalala
Concurrent Unsupported A-1]-1]-1 41 -1
Al0. Exception Limited | 0 0
Handling Complete +1
Final Score|1 |53 [1|3 /3|6 (3|7 |36

Challenges

= Continue to write language independent patterns (various proposals -
papers, web)
= http://c2.com/cgi/wiki?ExceptionPatterns
= Impact somehow low without unified construct set

= Establish next mainframe languages integrating complete and well-
designed EHS ...
= Difficult

= Suggest adaptations to today’s mainframe language,
= Influence the next mainframe languages ...

EHCoS'11

What can we do?

= P4 : Suggestions to improve Java as a mainframe language for
EHS

EHCoS'11

Problems with Java EHS as a mainframe for EH

= Good news : with JAVA people do use EHS
= With benefit in many cases
= Java EHS globally sound, simple to use and efficient

= But, various issues

= Misuses related to “checked exceptions™

= Lack of control structures
= Atleast a “retry”

= Classification problematic

EHCoS'11

Standard misuses

[RSO03] D. Reimer and H. Srinivasan. Analyzing exception
usage in large java applications - ECOOPO3 workshop on
EHS

swallowed exceptions

public int readInt() {
BufferedReader keyboard;

try {

keyboard = new BufferedReader(new FileReader("truc"));

} catch (FileNotFoundException el) {}

/...

= Handler that neither log, rethrow nor handle

exceptions (simplest version

blocks)

empty catch

= Standard reason : stop writing “throws

clauses”

—> —>

EHCoS'11

readint()

Stan

dard Misuses ...

= And by extension :

Dev. tend not to use libraries that throw

MyApp-Exception

u
exceptions
= Dev. tend to badly classify their own
exception kinds
S T linkegetrror | T R
— Error [~ VirtualMachineError UncheckedExcepﬁons\\
AWTError ArithmeticException
Throwable K :
- NullPointerException x
_ll‘u_r'l—'l:-':l.-nl-e-E-)(_c-e—pi‘li:i:on < ArrayIndexOutOfBoundException “:
| Bxeeption < IOException \3 —| IllegalArgumentException :
AWTException 5:5t~--:: ----------------]
L InterruptedIOException

Checked Exceptions

(must be caught or declare to be thrown)

EOFException

FileNotFoundException

EHCoS'11

Cause : hardcoded combination
of classifications

Solutions to the “swallowed exceptions” misuse?

Monitor programmers?

= Relax checking rules?

= “‘Unhandled exception type FileNotFoundException”
« Could be a warning
= Could be considered at package level instead of method level

= “throws clauses” could be automatically generated

= By the compiler
= By the IDE (see workshop presentations on exception flow tools -)

= Provide for decoupling classifications ...

EHCoS'11

Decouping classifications
... one of the most challenging issue

= Use whatever known technique
= Meta-classes, aspects, annotations, multiple-inheritance, mixins, MDE, ...

= [0 decouple and combine all necessary classifications
= Ontological, reuse-based, properties-based ...

Resumable Terminable

Unchecked Checked resume() exit(CompilerException
UninitializedVariable UnknownVariable

EHCoS'11

P4 . Adding more control structures

= Atleast a “retry”.

int ilu = 0;
boolean succes = false;
while (! succes) {
try {ilu = Integer.parselnt(keyboard.readLine());
succes = true;}
catch (NumberFormatException e){
System.out.println("Error : " + e.getMessage());
System.out.println("Please try again! ");}
} // end while
return ilu;

int ilu = 0;
try {ilu = Integer.parselnt(keyboard.readLine());}
catch (NumberFormatException e)
{ System.out.println("Error : " + e.getMessage());
System.out.println("Please try again! ");
£3 retryQ; // or e.retry(Q);}
return ilu;

EHCoS'11

Some challenges for Exception Handling

= C2: Abstraction, Efficiency, Reuse : rediscovering lost ideas
= Architecture level handlers
Exception handling as a dialog (resumption, restarts)

EHCoS'11

Architecture level handlers ...

= Specify Exception Handling policies at any place within a
software architecture
= Now a common research subject

[IBO1] Issarny, Banatre. Architecture-based exception
handling.

Filho, Brito, Rubira. Specification of exception flow in

software architectures.
s Lost idea : Class-level handlers

= Simple and Useful solution for basic OOP

= Key issue was ...
= to combine class-level with block-level handlers

EHCoS'11

Architecture level handlers :
the case for class-level handlers

= Inspired from historical Smalltalk lexical scope class-level handlers

“default handlers" class

method error

method doesNotUnderstand A
subclass

"user-defined handlers"

Gpphcatlonl) —/
method error /
(apphcatlonZ)

method doesNotUnderstand

EHCoS'11

Class-level handlers

= A short application example

Stack

when: #(FullStack EmptyStack)

do: ‘:e | e signal’

when: Exception

EXxception do: 'e: | StackInternalException signal’.

!

StackException

Java syntax simulation

Class Stack extends Object{
catch(FullStack e) {throw e;}
catch(EmptyStack e) {throw e;}
catch (Exception e) {throw new StackInternalException()}

FullStack

EmptyStack

StacklInternalException

EHCoS'11

Class-level handlers

s Work in combination with block-level thanks to
= A dynamic-scope policy
= a “callee-caller based” handler search

= Simple to implement (could be done with annotations, aspects)
= Manageable at design time (UML classdiagrams)
= Introduce exception-based reuse schemes

Class GrowingStack extends Stack{
catch(FullStack e) {this.grow(). e.retry();}
public void grow() {...}

EHCoS'11

Resumption and Restarts

Resumption policy ...

Restarts : solution for dialogs between signallers and handlers in

order not to restart exception halted computation from scratch
[Moon86] Moon. Object-oriented programming with flavors.
[Pit01] K. Pitman. Condition handling in the Lisp language family.

Ported to Smalltalk [Don01] C. Dony. A fully object-oriented
exception handling system: rationale and smalltalk implementation.

= Everyday-life : most problems solved by dialog
= Interests
= Interactive applications
= Task collaborative applications
= Dialog based (web) client-server applications
= Ubiquitous computing

EHCoS'11

Signalers can establish restarts cases

(defun my-symbol-value (name)
(if (boundp name)
(symbol-value name) signaling
(restart-case (error "'unbound-variable :name name)
one ‘restart” —_ (use-value (value)
:report "Specify a value to use."
:interactive (lambda ()
(format t "~&Value to use: ")
(list (eval (read))))

value)

another “restart” ——_(store-value (value)
)

Arqument returned by the handler

— [f to be used interactively

EHCoS'11

Handlers can choose restarts

= Resume the execution at a restart point

A handler for “unbound-variable” exception Send control back to the signaler

|

(handler-bind ((unbound-variable
#'(lambda (e)

(let ((restart (find-restart use-value e)))
(if restart
(i -

(throw €))))))

("4 (+ 3x)))
=20

EHCoS'11

application to interactive applications

= [f not handled, the exception restarts can be use by a debugger

(+x3)
Error: The variable THIS-SYMBOL-HAS-NO-VALUE is unbound.
Please select a restart option:
1 - Specify a value to use.
2 - Specify a value to use and store.
3 - Return to Lisp toplevel.
4 - Exit from Lisp.
Option: 1
Value to use: 2
=>5

EHCoS'11

Some challenges for Exception Handling

C3 : Build new EHS for the new world and using the new world

components, aspects, services, ambient, ubiquitous, concurrent
Example of MAS

EHCoS'11

Building new EHSs for the new world

Agents

Components

Services

Aspects

Many researches and results

[SDUV04] Souchon, Dony, Urtado, Vauttier. Improving exception
handling in multi-agent systems.

[RALFFO05] Rubira, De Lemos, Filho. Exception handling in the
development of dependable component-based systems.

[TIRLO3] Tartanoglu, Issarny, Romanovsky, Levy. Dependability in
the Web services architecture.

[CCF+ 09] Castor, Cacho, Figueiredo, Garcia, Rubira, de Amorim,
da Silva. On the modularization and reuse of exception handling
with aspects.

EHCoS'11

Building new EHSs for the new world
Many researches and results ...

= EXxceptions at the software architecture level
[IBO1] Issarny, Banatre. Architecture-based exception handling.
Filho, Brito, Rubira. Specification of exception flow in software
architectures.

= Ambient systems
[MDB+06] Mostinckx, Dedecker, Boix, Van Cutsem,De Meuter.
Ambient-oriented exception handling.

= Pervasive systems
[MECL10] Mercadal, Enard, Consel, Loriant. A domain-specific
approach to ar- chitecturing error handling in pervasive computing.

= Product Lines Architectures

[BDBRO08] Bertoncello, Dias, Brito, Rubira. Explicit exception
handling variability in component-based product line architectures.

EHCoS'11

C3 : Build new EHS using the new world
Abstraction, Modularization, Reuse

= Advances coming with the component world ... an example

context SmokeDetected as Boolean
indexed by location as Location {
source smoke from SmokeDetector [skipped catch];
}
context AverageTemperature as Temperature
indexed by location as Location {
source temperature from TemperatureSensor [mandatory catch];
}
context FireState as Boolean
10 indexed by location as Location {
1 context SmokeDetected [mandatory catch];
12 context AverageTemperature [no catch];

13}

E =T~ THEE AT T T — P R o R

EHCoS'11

C3 : Build new EHS using the new world
Simplification, abstraction, modularization, reuse

= Advances coming with the aspect world ... an example

20 public aspect GOHandler { // another source file
21 pointcut crsHandler() :

22 execution(public static boolean closeResultSet(..));

23 boolean around(ResultSet rs) : crsEandler() && args(rs){ //
advice

24 try { return proceed(rs);

25 } catch (SQLException e) { System.out.println(e.toString());

26 return false;

27 }

28 }

29 declare soft : SQLException : crsHandler();

30 }

EHCoS'11

Some suggested meta-rules to build new EHS in new
contexts

= Provide for “propagation of locally unhandled
exceptions to callers”

= If any “software contract” [meyer 88] broken, tell the
caller.

m EXxecute caller handlers in the caller environment

All kind of lexical scope handlers are unused

s Consider software architectures
= Mix block-level handlers and architecture level handlers

EHCoS'11

Some suggested meta-rules to adapt EHS to new
contexts ... contd.

= Provide for a simple to use mode
= Complex features are rarely used

Respect the philosophy of the destination paradigm

= Reuse appropriate existing works

EHCoS'11

Discussing the above meta-rules
on an EHS for MAS programmers

= Work with Christelle Urtado and Sylvain Vauttier (LGI2ZP EMA)

[DUV06] Christophe Dony, Christelle Urtado, and Sylvain Vauttier. Exception
handling and asynchronous active objects: Issues and proposal.

= Agents:

= Reactive

= Autonomous

= Collaborate through Asynchronous request-response interaction protocol
= Middleware independent

= External and Internal concurrency
= One thread to read the mbox
= One thread for each service method) execution

EHCoS'11

A running example ...

Broker

O

Poll Provider 1

O
\@ Get

price

providers

Client

Provider 2

Organize Provider 3 §%:) Get
a travel (selected) price

;O

Validate Contact the
provider Get (>
Contac price
the client
Captions:) A

u Establish Validate
Agent Service Request e SUNETRCE

execution

context

(::) —

EHCoS'11

Agent autonomy and reactivity

= Request-response interaction scheme
>< Async. com

contactBroker(

findflights(destination, date)

EHCoS'11

... Think to architecture

= Agents level (AH), Services level (SH), Request level (RH) handlers

Client

contactBroker(),

AH SH RH

EHCoS'11

Example of a request level handler ...

public class Client extends X-SaGEAgent

@service
public void contactBroker (...) {

sendMessage

(new RequestMessage
(aBrokerAgent,
"PollProviders”,
destination,
date)

{@requestHandler
public void handle (NoAvailablePlaces exc){

date = date +- 1;

retry();}

contactBroker(),

EHCoS'11

Example of a service level handler

public class Broker extends X _SaGEAgent {

@service
public void pollProviders (destination date) {

1)

@serviceHandler(servicename=pollProviders)
public void handle (NoAirportForDestination exc) {
signal(exc);}

EHCoS'11

Broker

pollProviders()

Example of agent level handlers

/[Trap all low-level technical exceptions
// signals a higher-level one

@handler
public void handle(NetworkConnectionException e){
signal(new TemporaryTechnicalProblem(...));}
@handler
public void handle (DatabaseConnectionException e){
signal(new TemporaryTechnicalProblem(...));}

public class Provider extends X _SaGEAgent {

EHCoS'11

Provider

findFlights()

Dynamically maintain the request

Do not follow the idea of
independent “exceptions
supervisors”

[Klein, Dellarocas 99] :
Supervisors

Take into account all kind of
handlers

... Provide for “caller contextualization” D

Propagate exceptions through the
call chain ~_~"

EHCoS'11

O

Broker

arent | 0.1

request
sernvice

agent

Search pro
travel
Select Contact
an offer parties

Provider 1

@

0

oll
ders

Get
price

Client

Organize
a travel /

Provider 3
(selected)

Provider 2

O
O

Get

the contract

Ge
price

Establish Validate

Validate Contact the
provider
Contac
the client
Captions:

Agent Service Request
execution
C) context

o

... Respect the philosophy of the destination paradigm

= Maintain agent autonomy and reactivity
By using the standard asynchronous response >< async. com.

mechanism
= For normal or exceptional responses

aBroker aProvider

aClient

contactBroker() >< pollProviders() >< findFlights()

Collection AvailableFlights
Exception NoAvailablePlaces
Exception NoAirportForDestination
Exception NoFlightForDestination
Exception TemporaryTechnicalProblem EHCo0S'11

... Respect the philosophy of the destination paradigm

= maintain agent autonomy and
reactivity

= asynchronous progagation of
exceptions between agents

Broker

11 Provider 1
provNlers Q
\@ Get
price

Provider 2

@

Organize Provider 3 b Get
a travel / (selected) price

Validate Contact the

>< async. com.

provider
Captions: . ;
a Establish Validate
Agent Service Request the contract
execu tion
C) context

EHCoS'11

... Reuse appropriate existing works

= Resolution function [ISS 91] to concert
concurrent exceptions when needed

Client Broker

findFlights()

k .

pollProviders()

contactBroker()

Exception NoAvailablePlaces
Exception NoAirportForDestination
Exception NoFlightForDestination
Exception TemporaryTechnicalProblem

EHCoS'11

An example of a resolution function

s Resolution function

= invoked each time an exception signaling reaches a complex service,
before invoking a potential handler

= In this example, used to control n-versions providers

@serviceResolutionFunction (servicename=pollProviders)
public Exception concert (Exception e) {

//1log e

//log current failing sub-service

//example of decision

if ((numberOf (NoAvailablePlaces)
>:
0.8 * numberOf (subServices))

return e; TTTTTTTTTTTTTITTT T > Slgnallng continue

else
return null; -

Signaling stops

EHCoS'11

... Provide for a simple to use mode

Provider 1
= Do not propagate exceptions to
“brother” agents
= Less expressive power but
simpler to use
Broker Proyider 2

pollProviders()

Exception TemporaryTechnicalProblem |

EHCoS'11

Some challenges for Exception Handling

C4 : Orthogonal dimensions
= Cover the life cycle
= Combination of tools and techniques
= Example of exception handling and replication

EHCoS'11

Covering the life cycle
various researches and results ...

[dLRO1] de Lemos, Romanovsky. Exception handling in the
software lifecycle.

[SMKDO07] Shui, Mustafiz, Kienzle, Dony. Exceptional Use
Cases.

[HHOG6] Halvorsen, Haugen. Proposed notation for exception
handling in uml 2 sequence diagrams.

:DAB

lient

receivedAmount

H

A 4

N <<Exception>>
D badCredit
L
E
R

seeBalance

PrintBalanceTicket

EHCoS'11

Combination of tools and techniques
an example : exception handling and replication

s Collaboration

= Paris VI University- LIP6 - INRIA-REGAL

= Jean-Pierre Briot, Zahia Guessoum, Olivier Marin, Jean-Francois
Perrot

Dima agent Framework (guessoum&al 06)
DarX replication system (Marin&al 03-06)
= Montpellier-Il University - LIRMM
= Christophe Dony, Chouki Tibermacine
= Ecole des Mines d’Ales - LGI2P
= Christelle Urtado, Sylvain Vauttier

EHCoS'11

Combination of exception handling and replication

= Simple idea:

= 1) A transparent replication systems
= handles

= System (replica-spefic) fault or exception
> E.g. NetworkConnectionException

= 2)Acombined EHS :
= allow programmers to deal with
= Business (replica-independent) exceptions
= Improves the efficiency of the replication level

EHCoS'11

Schema by Zeine Azmeh

A replication system (DARX)

©)

v 44X s O

—_—— 0 TWVnXWV o o

X v o 44X =~ o O
—_——0 JTWVnXxuv o o

xuv e 44X e O

—_—— 0 TWVnXwV o o

xuv o 44X e O

—_——0 TWVnXxWV o o

Machine 1
Darx Server

(@]
—_

xwvw o 44X 3o O
—_——0D TWVnXxWv o -

Machine 2
Darx Server

e}
) 2

o [T
a a
r S
« K
s
Tlh
a
s e
C
- &
-
O
\‘\(?K,J'
B1
o |T
a
a
r S
x|s
Tlh
a
s e
k1
Machine 3

Darx Server

Naming Server

Name Directory

Agent Location Status
A M1 L
B M1
B1 M3 L
C M1
1 M2 L
C2 M3
D M1 L

Dynamic Criticality Table

Agent Criticality
A 1
B 2
C 3
D 1

%\jé Leader of a group
O Replica

------> Update state

1 lookup(Agent C)

2 return proxyC

3 send(msg, proxyC)

4 send(msg, leader(C))

Criticality, replication group, leader, active and passive replicas ...

EHCoS'11

Controlling replicated agents :
Replica-specific exception (1)

Provider 1 - Replica 1 - Active - Leader

Broker findFIights()
ReplicationManager

4‘.llllllllllllli!!!!";3

Provider 1 - Replica 2 - passive

pollProviders()

AH SH RH

g
signals TemporaryTechnicalProblem

findFlights()

AH SH RH

EHCoS'11

Controlling replicated agents :
Replica-specific exception (2)

Provider 1 - Replica 1 - Active - Leader

Broker findFIights()
ReplicationManager

e

Provider 1 - Replica 2 - passive

pollProviders()

AH SH RH

v
handles TemporaryTechnicalProblem

findFlights()

AH SH RH

Replica-specific exception

EHCoS'11

Controlling replicated agents :
Replica-specific exception (3)

Provider 1 - Replica 1 -

failed

Broker findMights()
ReplicationManager

pollProviders()

AH SH RH

AH SH RH

Provider 1 - Replica 2 - Active

findFlights()

AH SH RH

Another replica becomes active

EHCoS'11

Controlling replicated agents :
Replica-independent exception (1)

Provider 1 - Replica 1 - Active - Leader

Broker findFIights()
ReplicationManager

4‘.llllllllllllli!!!!";3

Provider 1 - Replica 2 - passive

pollProviders()

AH SH RH

5
signals NoAvailablePlaces

findFlights()

AH SH RH

EHCoS'11

Controlling replicated agents :
Replica-independent exception (2)

Provider 1 - Replica 1 - Active - Leader

Broker findFIights()
ReplicationManager

e

Provider 1 - Replica 2

pollProviders()

AH SH RH

s
handles NoAvailablePlaces

findFlights()

AH SH RH

Replica-independent exception

EHCoS'11

Controlling replicated agents :
Replica-independent exception (3)

Provider 1 - Replica 1 -

failed

Broker

ReplicationManager

pollProviders()

AH SH RH

Provider 1 - Replica 2

finﬁligblts()
Termination of all replicas

Propagation to caller. AH SH RH

EHCoS'11

Conclusion
and opening discussion ...

= “‘Uncontinuable” as a new name for what was called “exception”

= Usages, best practices, patterns
= Need more mainframe languages

= More Modularity, Reuse, Expressive power, high-level abstractions
= Too many research ideas left unexploited
= New solutions come with new paradigms
= components,
= Aspects ... annotations
= Models
= Also ...
= Adaptability (domain specific EH ?)
= Check, prove, reason on programs that handle exceptions

EHCoS'11

References

= See the associated abstract paper :
http://www.lirmm.fr/~dony/postscript/exc-AbstractEHCOS. pdf

EHCoS'11

