Centralisation of replicas responses for exception concertation in
Dimaxx

ANR FACOMA - Technical note - January 2010

Christophe Dony, Selma Kchir, M. El Jouhari, Chouki Tibermacine
LIRMM - CNRS UMR 5506 - Univ. Montpellier IT - Montpellier (France)
{dony, tibermacin}@lirmm.fr, selma_kchir@hotmail.com

Christelle Urtado, Sylvain Vauttier
LGI2P - Ecole des Mines d’Ales - Nimes (France)
{Christelle.Urtado, Sylvain.Vauttier } @mines-ales.fr

February 4, 2010

1 Introduction

This technical note describes the technical solution we propose, within the DARX middleware, to
centralise responses to requests computed by replicas of a given replicated agent within that agent
context and before any response is returned to the client. This solution will allow for (1) trapping
any responses coming from replicas including exceptions they could throw and (2) for concerting
them. Concertation will be the next stage of the implementation, it will for example consist in either
transmitting a normal response to the client or in throwing a concerted exception or in waiting for
responses for other replicas, or in passive replication mode to elect a new leader and to retry the
request after the current one has signaled a replica specific exception.

2 Analysis of the DARX framework : Replicas responses to clients

When a message is sent by an agent A to a replicated agent B, the ActiveReplicationStrategy
or the PassiveReplicationStrategy object that rules replication for agent B (and is associated
to the leader for agent B) treats the received message object. Messages are either treated by the
deliverAsyncMessage() method or by the deliverSyncMessage() method, depending on the chosen
communication mechanism.

In case of synchronous message invocation, the deliverSyncMessage() method associated to agent B
collects the results that are produced by the treatment of the message for all replicas of the replication
group. These return values might be normal return values or exceptions, indifferenty. This collection
process acts as a synchronization point. After all return values have been locally collected, the return
value for the message treatment from the leader of agent B is returned to the message-sender A (the
agent who requested the treatment of the message). This return value results from a decision by
the leader of agent B. In case of synchronous message invocation, we could then easilly extend the
ActiveReplicationStrategy class to manage exceptions. Unfortunately, DIMAX agents do not use
these synchronous communication features.

ProactiveComponent I
I

DarxTask
BasicReactiveAgent I
|
£
BasicCommunicatingAgent
DarxTaskEngine I step()
i setAlive()
receivehayncf‘ﬂeaaage[}l isAlive()
live()

Ahstrac:tl'ulailhnxl rcvilessage()
|
|

CommunicationComponent I
|

TaskShell sendMessage() I

DarxSewer'
:I deliverSyncMessage()

deliverAsyncMessage()

DaerDmmunicatinntnmpnnentI
|

RemoteTask DarxComminterface
sendSyncMessage() o sendSyncMessage()
sendAsyncMessage() sendAsyncMessage()

Figure 1: Darx Class diagram

Let us now have a look at the equivalent mechanism for asynchronous messages. As for synchronous
messages, the deliverAsyncMessage() method broadcasts the received message object to the replicas
of agent B (locally to the replication group). What strongly differs is that the deliverAsyncMessage()
method does not collect responses. Each replica directly sends its response to the message-sender. This
response mechanism is both asynchronous and concurrent. As a consequence, the message-sending
agent A receives redundant response messages that come from the various replicas of agent B. The
message-sending agent has a filtering mechanisms that enables to handle such situations. To do so,
messages are identified with serial numbers. As all replicas of a given agent have the same behaviour,
they all send identical messages. This means that agent A will receive several messages from the
replicas of agent B that all have the same serial number. Darx, as a middleware, is then able to
memorize the serial numbers of all the messages it receives to detect redundant (or obsolete) messages
and ignore them (acceptMsg() method of the TaskShell class).

J— Agent B

Agent A

Request

O Fud Request Replication group

leader ¢~ "\ O

Fwd Request

Response

Response

Response

Figure 2: Overview of the DARX message-sending mechanism

To sum up, the DARX replicated middleware initially (see Fig. 2) ensures that response messages from
replicas, that are all sent back to the client agent, are filtered at their entry into the client message
box.

The fact that the collection and treatment of response messages is assumed by the message-sender is
not suitable for exception handling (as it would neither be for a more cognitive treatment of responses
in general). Indeed, such message-sender localization implies that a part of agent B’s behavior is
contained in this filtering mechanism located in agent A. Such externalization of agent’s behavior
violates the agent autonomy principle and is not compatible with local exception handling decision-
making. Such decision-making relative to exception management (such as exception concertation,
for example) is considered to be a part of an agent’s behavior and thus should be localized into the
agent. To overcome this problem, we propose to handle responses that come from replicas in the
message-receiver. This will make the message-receiver responsible of all its behaviour.

3 A solution to trap replicas responses at the leader level

If we want to achieve responses handling at the server side (at the level of the agent who computes
the reponses), it is necessary to add a response management mechanism for asynchronous messages in
the class ActiveReplicationStrategy. It is then necessary to generally distinguish request messages

from response messages (they are indistinct in Darx) by creating explicit subclasses of MessageXX that
we call SageRequestMessage and SageResponseMessage as shown in figure 3 .

dima:hasicCommunicationComponents:Message dima:basicCommunicationZomponents:MessageSend
.5‘.0%”.’3}.

Servicelmvaker

SaGEMessage ==call==

> 1
Previlessage

SaGEResponseMessage SaGERequastMessage

ExceptionHandling::Shadowhlessagex

Figure 3: Overview of the modified message sending mechanism

Finally, it is necessary to specialize the Darx message sending primitive so that it processes specif-
ically the response messages. We thus have defined DARXCommunicationComponentX, a subclass of
DARXCommunicationComponent, and have redefined the method sendMessage() so that messages are
handled as follows (see Fig. 1).

e If the message is a request, it is sent directly.
e If the message is a response, two cases are possible :

— If the response is sent by a replica that is not the leader, the response must be delegated
to the leader to allow its monitoring and/or treatment.

The simplest solution to achieve that delegation is for the replica to send its response
message to its leader instead of to its client. This message will be received and han-
dled by the leader. To implement this, we propose a new kind of response messages,
called shadow messages , instances of a new subclass of SageResponseMessage called
ShadowResponseMessageX. Shadow messages are transmitted to the leader of the repli-
cation group and encapsulate the response message sent by the replica.

To summarize and in other words, when a replica that is not the leader wants to send
a response, the response is encapsuled into a ShadowResponseMessageX containing the
replica address, which is in turn sent to the leader in a standard way. The message
is thus intercepted by DARX, at the leader level, via the method sendMessage() of the

class DarxCommunicationComponentX The shadow response message will then be han-
dled in the method deliverAsyncMessage() of ActiveReplicationStrategy of the leader.
At this point we introduce a method called handleAsyncResponse to handle all cases of
synchronous responses including exceptions.

— If the response is sent by the leader, it will directly invoke the method handleAsyncRe-
sponse() of the ActiveReplicationStrategy associated to the leader and the same han-
dleAsyncResponse method will be invoked.

The method handleAsyncResponse() concretely implements our mechanism for exception handling.
All responses computed by replicas of an agent, either normal responses or exceptions (an exception
is a particular case of response), are sent back to their leader agent as shadow messages. The leader
is then able to record, filter, dismiss or concert responses so as to send a unique response to the client
(if needed). Such a capability prepares the leader to being active in managing the exception handling
issues for the whole replication group.

Agent B

Replication group

Agent A Request ‘ ‘ @ Fwd Request

O Jleader |7\ O

o : \//
esponse Shado

Response

hadow

- Fwd Response
Request

O

Figure 4: Overview of the modified message sending mechanism

4 Exceptional Response in presence of replication

public void HandlerSearch(String serviceName, Exception e){
/* local search */

Method[] meths = this.getClass().getMethods();
for (Method m : meths){
if (m.getAnnotation(serviceHandler.class) != null)
{ if (m.getAnnotation(serviceHandler.class).serviceName().toString().equals(serviceName))
if (m.getParameterTypes() [0].equals(e.getClass())) {
//Service handler found
runHandler (this, m, e);
return;}

for (Method m : meths){
if (m.getAnnotation(agentHandler.class) != null)
{ if (m.getParameterTypes() [0].equals(e.getClass())) {
//Agent handler found
runHandler(this, m, e);
return;}

//delegating the exception to the replication manager
sendExceptionMessage (serviceName, e);

Local search part of handler search including delegation to the replication manager.

This section explains how exceptions are signaled within replicated agents. More precisely it explains
how, if no handler can be found at the replica’s level, the signaling process transfers the control to the
leader for concertation. The Figure 5), proposes an activity diagram that synthezizes the solution we
propose.

Our solution is embedded in the global solution for signaling that we briefly recall here and which is
partially illustrated by the above code listing. When an exception is signaled, within a service of an
agent, the execution of that service is suspended and handler is search, first locally in the agent context
(what we have called localSearch(e)) and if no handler is found there, the signaling process, or handler
search process, is asynchronously delegated at the caller level (what we have called callerSearch). The
caller, or client of the current agent, is the agent that has sent the request that has entailed the
execution of the signaling service. If a handler is found, it is executed and its execution definitely
terminates the faulty service, and more generally the tree of services that have been interrupted by
the signaling mechanism; we apply a termination model of exception handling.

The new point for exception signaling, in presence of replication, is that before initiating the caller’s
search, the control should be transfered to the replication manager for exception concertation. As
for standard responses coming from replicas, transmitting exception signaling (exceptional responses)
from one replica to the replication manager will be achieved via the DARX middleware, by sending a
message to the object representing the current replication strategy.

of the leader of the leader

Replica ActiveReplicationstrategy SimplehailBox ActiveReplicationStrategy

| |

| |

| |

| |

|

InvokeRpcExceptionHandler(e) .—Jl i senchessage(ExceptionResponse m) 1

J]]:ﬂ signal(e)
-y Localzearchie)
acceptMessagelm)
Deliver Azynchlessage(m) o= InvokeleaderExceptionHandler(m)
; Concert(m])
- loghtsgim)
- ri=calchsgm)
[t = instanceCt Exception]
- callerSearchis)
[nat ¢ instanceot Exception]
[== nul] - sendRespanselr)
[terminateServicel) : : :
| : !

Figure 5: Exceptional response sequence diagram

It the faulty replica is not the leader of the group, the message InvokeReplicationExceptionHandler(e)
is sent (see Figure 5), and in the corresponding method, the signaling is propagated to the leader:
a message of kind EzceptionResponse is placed in the mailbox of the leader (via the method Ac-
ceptMsg(DarzMessage m) of the class TaskShell, this method checks the validity of a received message
and if accepted, its serial number is recorded for later checks). The message is then sent to the leader
using the method DeliverAsyncMessage(m) of the class taskShell. Finally the object representing the
replication strategy of the leader is invoked via the method InvokeLeaderExceptionHandler(m). This
method is in fact called each time a normal/exceptional response is received and is responsible for
organising the concertation thanks to the replication manager resolution (or concertation) function.

The resolution function of the leader is itself executed each time an exception handler is searched for;
let us recall some basic possible cases (mode advances cases have been sketched in [1]).

e The resolution function returns a normal response.

e All replicas have signaled the same exception. The resolution function propagates this exception
to the client. It is considered that this is the concerted response for the replica’s group, the
execution of the requested service of all replicas is stopped. “Caller search” part of the signaling
algorithm (see [1] is executed.

e Most of other replicas do not have answered yet. The exception is logged, the resolution function
returns null and the handler search stops.

References

[1] Christophe Dony, Chouki Tibermacine, Christelle Urtado, and Sylvain Vauttier. Specification of
an exception handling system for a replicated agent environment. In WEH ’08: Proceedings of
the 4th international workshop on Exception handling - Atlanta, Georgia , pages 24-31. ACM
Digital Library, nov. 2008.

