| mproving exception handling
with Object-Oriented Programming

Christophe Dony

Equipe mixte Rank-Xerox France & LITP
University Paris VI
4 place Jussieu, 75221 Paris cedex 05.

blems through the description of their compound

Abstract - The aim of this papéris to show and objects) and software quality (modularity,
to explain how the object-oriented formalism caninformation hiding, sharing of code, reusability and
improve the expressive power of an exceptiorextendibility) [5] [8][14].
handling system and how it can simplify its _)
implementation and its utilization. Object-oriented The key-idea of the present work is to apply OOD
design allows implmentors to solve easily many 0 the specification of an exception handling system
classical exception handling issues such as creatif§HS). as proposed earlier Fetalisp[15], Taxis
user-defined exceptions, passing arguments froft7] or in [1] [16]. Our work is an extension of
signalers to handlers, etc. Besides, nepatdities these systems towards a full object-oriented
arise, such as defining generic protocols forrepresentation of exceptional events and of
handling exceptions, organizing them into aProtocols designed to handle them.
hierarchy leading to an inheritance of these
protocols, signaling and handling multiples excep
tions. The proposed system (implemented and use@(: L .
is powerful, user-friendly, extendible and reusable€XCePtions handling issues, such as those quoted in
without any code duplication. This paper canliCl (P- 268): ability for users to create new
interest the non specialist of object-orientedexcept'ons’ to signal and handle them in the same

programming concerned with the problem ofVay as system defined ones, to parameterize
exception handling exceptions (i.e. to pass arguments from signalers to

handlers), etc. Moreover, the expressive power of
the OOP paradigm makes it possible to introduce
|. Introduction new facilities that could not be simply implemented
_ _ _ within procedural languages. E.g., exceptions can
Exception handling techniques [3] [9] [12] [13] be first class objects and can be organized in a
became an important issue because of theifierarchy that will be taken into account by the
implications in sofare engineering: fart handling mechaisms; properties can be defined on
tolerance [13] [3], modularity [13] [11] [19], 3) exceptions; all handling operations can be
reusability (by extending definition domains andperformed via message sending, which makes them
functionality of operations signaling exceptions), generic (fatal or continuable exceptions can thus be
and readability (by specify in its interface all thesignaled with the same primitive); the hierarchy
possible reponses of a module to its legal inputs). allows users to catch any set of unexpectedly raised
) _ _ . __exceptions, etc. Finally, the fundamental adege
Object oriented programming (OOP) and desigryf gch a choice is that the proposed EHS inherits
(OOD), mainly initiated bySimula[5] and by Alan ¢ the software qualities induced by the utilization

Kay works leading tésmalitalk [8], is a software ¢ the OOP paradigm : modularity, extendibility
decomposion technique that has also led to manyg,q reusability.

improvements in system specification (thanks to a

more natural way to specify a certain kind of pro The ideas described in this paper are parts of an
EHS designed for OOLs [7]. However, our goal is
1o ' _ . not to discuss the exception handling requirements
This paper has been published in the proceedings of the 14¢hat are specific to OOP [7], but to present solutions

IEEE computer software and application conference ; S
(COMPSAC'90). pp. 36-42, Chicago, November 1990, that could be of interest within any EHS.

The proposed concept organization first provides
promising set of solutions to most classical

restart. Handlers have to choose, knowing about
The following section will recall some basic their definition context and using information
vocabulary and concepts. After that, our system wilbrovided by thesignaler, whether to (1) transfer
be described in a logical order: status of exceptiongontrol to the statement following thegsialing one
protocols for signbng and for handling. For each (resumption, (2) discard the context between the
point, the originality of the described solution (bothsjgnaling statement and the one to which the
from the user and from the implementor point ofhandler is attachedefmination or (3) signal a new
view) will be highlighted, some examples of useexception. For further precisions on terminology

and a comparison with existing systems will beand explanations on these concepts, see [9], [13] or
provided. [19].

I1. Terminology and Concepts B. Object-oriented design.

Object-oriented programs are built aroutasses
of objects that implement abstract data types.
Attributes of classes (usually namedots or

Software failures reveal either programming. t iables determine the struct £t
errors or the application of correct programs to af'Stance variablep determine the structure of its
lements. Operations related to types (usually

ill-formed set of data. An exception can be defined® dmethod oted to cl
as a situation leading to an impossibility of hamedmethods, are associated to classes.
finishing an opeation. Instancesof classes can be though of as elements

of the types; each one owns a particular value for
The term “exception” indicates that such a€ach slot defined on its clasSverloadingallows
situation does not always denote an error case afogrammers to define methods with the same name
can be handled. The problem of handlingon different domainsinheritance distinguishes
exceptions is to provide matals allowing to ©OOLs from modular languages like Ada. Since
establish a communication between a routine whicl§/asses can be organized in a hierarchy, each
detects an exceptional situation while performinginstance of a class inherits the properties defined on
an operation and those entities that asked for thiéS Upper classegalso calledancestory
operation (or have something to do with it). An The communication protocol (callesiessage

EHS alows users to signal exceptions and to definéending takes into account (either dynamically or
handlers. at compile-time) overloading and inheritance.

Sending the message M to an object O with

To signal an exception amounts to identify the arguments al...aN (that we will note “[O M al
excefional situation, to interrupt the usual ...eN]”) can be thought of as an indirect procedure
sequence, to look for a relevant handler, to invoke i¢all, where the procedure to be exeed is the first
and to pass it relevant information about thefound method, named M and the sigma of which
exceptional situation, such as the context in whichis a superset of “class(O) x class(al) x class(aN)”,
the situation aroseHandlersare attahed to (or arguments being checked from left to right.
associated with) entities for one or severat ex) o
ceptions (according to the language, an entity may One of the major contributions of OOP to
be a program, a procedure, a statement, an exprezoftware engineering is reusability. To write
sion, a data, etc). Handlers are invoked when affusable programs with OOL can be achieved by
excepion is signaled during the execution or thedefining polymorphic opetézons (valid for several
use of one of these protected entities.We will usélata types) on abstraotlasses (C) witch are nodes
the following syntax to denote the association of &f the inheritance tree. A polymphic operation

A. Exception handling.

handler with instructions or expressions. (O) is based on lower level (concrete) ogi®ns
(01, 02), which can be defined (or overloaded
{<protected-instructions> when default ones have been provided) on
{when:<exception-names> (parameter) subclasses (C1, C2) that implement concrete data
do: <handling-expressions>}} types. O can then be extended to (and reused for) a

To handle means to set the system back to a

coherent state, so that standard computation C&#a class designed to be a place where common pieces-of be
havior are grouped together, rather than to be instantiated.

new data type by the creation of a new subclastgether behaviors common to all exceptions but
(C3) of C on which O1 and O2 will be redefined. does not permit to group those relevant for all
occurrences of a particular exception.

I11. Improving the status of exceptions, A second solution which eliminates this drawback

status of exceptions; how are exception§gqesentation also provides a solution -as does the
represented and referenced? How can they b

ﬁrevious one- to group together characteristics
ommon to exceptions viewed as concepts,

implications on the expressive power of the Whol€q\ided that meta-classes (classes representing and

system. owning knowledge about classes) can be
_ manipulated in the language (as $malltalk
A. Exceptions and abstract data types Objvlisp[4], Clos, Lore).

A transfer of control towards a label, or a specific Kerne ti |
procedure call wired into the signaler, are the mos{?" erné exception classes.

simple solutions for signaling an exception. The Thus in our system, both exceptions viewed as
label t_or _tEe plr%edur% nta_rp_e st%n((zljs dfqrt tr,:ﬁ concepts and occurrences of exceptions can take
exception, knowledge about 1t IS embodied INto &, 4\ 5htaqe of the object-oriented representation
expressions associated to the label or into th cf.fig.1). Exceptions viewed as concepts are
procedure body. In such systems, users have NRgiance of the meta-class exceptionClass (a
simple way to define handlers. In most of theg ,, |ass of the keel meta-classlasg and are
important exception handling systems that can bg ,.jass of exceptionalEverEach occurrence of
found in procedural languages (eR)/l, Ada[1l], 5. ey cantional situation will be modelized by an
Clu [13], Mesa [15]), exceptions are identifiers. i,qance of 4 sub-class ekceptionalEventvhich
When an exception is raised, a handler thap, s yheir common behavior and two basic slots

references this identifier is looked for and invoked. (cf. fig. 1& 3).
A common characteristic of the above systems is
that knowledge relative to exceptions (even the C:(Class) < '(Object)

most general one) is uneasy to grasp since, in thg methodnew

first case, concenttad in a unique and may-be * _
inaccessible handler, and in the second case (_ExceptionalEvent)
scattered in user-defined and default handlers|(ExceptionClas3|q | slots:signalingContext,...
provided by the system. In both cases, eticep method:signal methodshandlesDefault, .
are not first class objects; they cannot own preper [~5ss <€— Instance | Class <@— Subclass

ties, cannot be inspected, modified, reused or - :
enriched. Fig.1l: Kernel exception classes.

1%

Each exception is nevertheless a complex entitie€. User -defined exceptions.
of which characteristics can be given regardless of
local handling considerations (for example which In the languages where the types “exception” is
kind of arguments are to be passed to handlerglefined, users have the ability to define new
which message is to be reported when the exceptiggxceptions by declaring identifiers to be of that
is not handled or which interactive propositions argype. In our system, creating a new (kind of)
to be provided). exception can be done by instating our specific

meta-clasgxceptionClass

Using the class-instance model, a first, obvious
and partial solution to represent exceptions consistsHere is a small example where new exceptions
in the creation of a class “exception” of which have to be defined. Consider (1) the clagésdow
concrete exceptions (e.g. division-by-zero) wouldwith the slotsorigin and lengthy and (2) the class
be some instances. This provides a place to grougrminal, with the slotlength and the method

displayWindowwhich signals an exception when a
window is longer than the current terminal. 2- Methods.
Displaying a window on a screen is asked by

sending to the object representing the current, S Stated earlier, functional knowledge is, in
terminal the messageisplayWindow with the classical EHSs, discarded in various handlers and

window to be displayed passed as argument. n O'ﬁannot be easily retrieved. This looks right for local
der for the possibly raised exception 'to be nowledge, as e.g. the one embodied into a handler
specifically handled, a new exception class i%ttached to a particular instruction (for example a

created in the following way{8xceptionClass new nandler saying that a particular call of the divide
name: windowLargerThanScreen] p_rocedure should return 0 if divide-by-zero is
signaled).

There is no difference between system and-user Besides, both the most general default handlers
defined exceptions, all can be created, raised ar@d the routines used within them are indejsen
handled exactly in the same way. New created one¥ any execution context. Instead of defining them
are automatically integrated into the inheritance®s isolated pieces of code, our system allows to
graph. Since the main interest of such a graph liekePresent them as methods defined on exceptions.
so far in property inheritance, let us detail what Here is for example the methéendlesDefault

does it mean to define properties on exceptions an@efined orexceptionalEventwhich is our system'’s
how this can be done. most general default-handler, always invoked when

a more specific handler cannot be found. Each
selector used in this method points out a method, a
default version of which being also defined on

Two levels of knowledge about exceptional event€XxceptionalEvent
are of interest. The former is made of all pieces of -
information, concerning a particular occurrence of [self® describeException]Reports th .
an exception, that have to be transmitted from 31 CESCHDELEXCEPIONEPOIS e even

. ’ . . [self describeContext]Displays its context
signaler to handlers. The latter consists in all [seif displayPropositionsjDisplays propositions
functional properties designed to handle them. [self returnToTopLevel.Jif no proposition is chosen.

1. Sots.

D. Propertiesdefined on exceptions.

ody of handlesDefault on exceptionalEvent

A second example of functional knowledge
éiefined on exception classes are those methods

When exceptions are identifiers, there is no simpl . X ; . "
E;&gned to display some interactive propositions

way to associate them knowledge. Whereas whe handli this id be found .
exceptions are classes, a slot can be designed fift handling (this idea can be found e.g. in

each piece of information to be transmitted to~ctaliSP. For example, when the exdem
handlers. windowLargerThanScreeis raised, the following

proposition: ‘Display window's visible part.is
Consider, for example, our exceptiondisplayed (cf.fig.4) by the proposition method
windowLargerThanScreeagain, any handler for displayVisiblePart For each proposition, a joined
that exception is likely to make use of themethod (in our examptbDisplayVisiblePaitis
characteristics of the window which was to bedesigned to achieve actions corresponding to the
displayed. A slot where this information can beProposition.

stored is defined on it As far as global knowledge is directly attached to

[exceptionClass new excepion classes, inspecting them provides a good
name: windowLargerThanScreen idea of what can happen when they are raised. The
slotwindowToBeDisplayed type: window] figure 2 shows a part of the information delivered

by the inspection oéxceptionalEvent

In the same way, some general purpose slots are
defined onexceptionalEvent For example
signalingContex{cf. fig. 2 & 3) will allow each
handler to know in which stack context an3.ei represents the receiver of the current messagelf*

exception has been signaled. describe-exceptioh.means: to send the messadescribe-
exceptionto the instance of the exception for which
handlesDefaulhas been called .

Reusability and extendibility are the fundamental
; a slot defined on exceptionalEvent: consequences of such an organization.
signalingContext ;to be stored at signaling time

; examples of methods defined on exceptionalEvent

handlesDefault ;the most general default handler

describeException ; displays a general error message

abortProposition an interactive proposition F. Inheritance
abort ;aborts the current computation.) ’
Fig.2: Inspecting exceptional Event. Each new exception inherits, as soon as it is
created, from the characteristics of its ancestors in
E. Exception hierarchies. the hierarchy. For example, the above displayed

generic methodhandlesDefaultis part of the
Beyond properties defined on exceptions, the keyprotocol of any exception. All systems as well as
idea which underlies the choice of designinguser-defined exceptions can be defined as
exceptions as classes are to organize them intoappropriate sub-classes efrror and warning
static hierarchy, to group common characteristicslepending on whether the exception is intended to
on abstract exceptions, to reuse and to extend thehe fatal or proceedable and has to own protocols for
on concrete ones via property inheritance andermination or resumption.
overloading. For example, the exceptidinide-by
zero can be implemented as a sub-concept of th&. Reusability.
higher level exceptioarithmeticException
Reusability is achieved as explained in section
Similarly, exceptionalEventis divided 11.2. All parts P (e.g.describeExceptionof a
(cf.fig.2&3) into fatalEvent to which are attached polymorphic method (e.diandlesDefault can be
generic protocols for termination, and overridden at each level in the tree (say on
proceedableEventb which are attached those for exception X), all parts non redefined being reused.
resumption (we chose to implement a model wherg/hen X (or a subclass of X) is signaled, if
both resumption and termination are possible)handlesDefaults executed then the new method P
Then, from the user's viewpoint, our system isdefined on X will be executed.
based on three main classes: €ifor (cf.fig.3) is
the set of excejonal events for which resumption We have for example oefined the method
is impossible(2) warningis the set of exceptional descrbeException on windowLargerThanScreen
events for which the termination is impossible, (3)so that a new error message be reported to users.
finally, multiple inheritance is used to create theConsidering that two new intactive propositions
class exception for which both capabilities are (No2&3) have been defined on this new exception,

allowed. here is what happen when it is sad and not
handled:
(ExceptionalEvent) < } ' W is larger than current screerdescribeException
methoddpokForHandlers Clas Subclas ' while sending display-window ; describeContext
N 1: Abort. djsplayPropositions ...

’ 2 : Inspect or modify W

(FatalEvent) || (__ProceedableEvent) 3 : Retry the display.
methodexit slothprdqtocolsForResumptior 4 : Display only the visible part of W.

propositions:abort | Drepesition: reiryOperation Fig.4: inheriting default handlers.

ﬁ \ This example reveals that the propositions for

(C Error) (_Event) proceeding are also inherited. In order to highlight
. ; ; this point, let us complete our little window

Fig.3: Top of the exception hierarchy. example to present a hierarchy of user-defined

exceptions with embedded grositions (cf.fig.5).

methods: handlesDefault, describeException,
displayPropositions, look-for-handlers, etc.
| {method: Resume
proposition: RetryOperation

excception : - . Slot: WindowToBeDisplayed
> | WindowDisplayExceptior) { proposition: Inspect, RetryOperation

| ExceptionalEevent | {

| ProceedableEvent

1 : { Methods: DescribeExceptiddnDisplayVisiblePart]
| WindowLargerThanScreef\ ' proposition: DisplayVisiblePart,
{ Methods: DescribeException, DoWrapAround

sub-exceptio

| WrongWindowOrigin Proposition: WrapAround

Fig.5: A hierarchy of user-defined exceptions.

The very generahbort proposition is defined on . . .
fatalEvent(not represented). The inspect and retry |'V. Improving protocolsfor signaling .
(P3) propositions, relevant for all exceptions raised
while manipulating windows, are defined on
windowDiglayExceptiona new abstract exception.
The slot windowToBeDisplayedtself generally re
levant, is also defined on it, rather than on
windowLargeiThanScreen Notice that P3 is a
specialzation of the retry proposition (P) defined
on proceeddleEvent P3 hides P to provide a
similar but more specific proposition.

Signaling an exception in our system consists in
sending it the messagégnal Signaling is generic
as far as message sending makes ftassible to
signal anything but an exception. The method
signal is defined orexceptionClasgcf.fig.1).

This method firstcalls the methodew (cf. fig. 1)
in order to create an instance of the signaled
exception. The slots of this instance can be
ginitialized at signaling time with, on the one hand
values given by the signaler (ewgndowToBeDis
ayed or protocolsForResumptiongf. fig. 6),
rB:Jefault values being used if no ones are provided,
nd on the other hand, values owned by the system

A last exception in the hierarchy, name
wrongWindowOrigin, is raised when a window
comes out of the screen because its origin added
its length is higher than the screen length. Whe
this situation is about to happen, all the previou .

e.g.signdingContexj.

ropositions are relevant and can be inherited\~:2 .
propost v ! ! Signal then sends to the created instance the

Considering the screen to be circular and displayin
the right-end of the window on the left of the Screer%essage lookForHandlers understood by all
Instances of exceptions (cf.fig.3&5), which will

is andher solution for resumption. Subsequently,_. .

our last exception can be created with benefit as 4nd @nd invoke a handler.dokForHandlerscan be

subclass ofvindowLargerThanScreenA method 'edefined on any new exception in order to provide,

named describeExceptioras well as the new O any specific applicaon, specific rules for
searching and invoking handlers (cf. [12]). New

proposition namedvrapAroundare defined on it. EHS thus b . ted | il
WhenwrongWindowOriginis raised, the following s can thus be experimented in a very simple

information is reported. way. L

P Other advantages lies in signaling simplicity,
T Window W - offset + length exceed screen length. parameterisation and communication with handlers.
I While sending displayWindow to current-terminal.
1: Abort , A. A unique signaling primitive.
2 : Inspect or modify W
3 : Retry the display. ; ; ; ; ;
4" Display the visible part of W, Here is a piece of coo_le in which the exception
5 : Wrap W around the screen. windowLargerThanScrees signaled and two of its

slots explcitly assigned. The slot

The hierarchic organization also has consequencd¥CtocolsForResumptian allows - signalers to
on the way exceptions are signaled and hetdve specify, at S|gnallng_ time, which method's names,
will develop these points in the following @Mmong those allowing to resume the execution,
paragraphs. handlers will be allowed to use.

; body of “displayWindow” defined on “terminal” ; inspection of an instance of windowLargerThanScreen

....if [[wlength] > [self length]] type: windowLargerThanScreen
then [windowLargerThanScreen signal signalingContext: <an object representing a stack frame>
windowToBeDisplayed: w windowToBeDisplayed: w
protocolsForResumption: doDisplayVisiblePart] protocolsFor Resumption: doDisplayVisiblePart ...
Fig. 6: Signaling an exception. Fig.7: Inspection of an exception instance.

It is generally agreed that a signaler is responsible; Cooperation for resumption.
for choosing between signaling either a fatal or a

continuable egeption whereas the handler has to Resumption raises another issue: it needs a
say how the calculus will be restarted. Withincommunication between the signaler and the
standard EHSs, a set of primitives is generallyhandler. Although the handler is responsible for
provided to support the various signaling casessaying what to do, it may happen that the operations
E.g., in Goodenough's proposal, signaling withallowing to restart the computan must be per-
escapestates that termination is mandatomptify formed by the signaler in its envirorent. In such a
forces resumption andsignal let the handler res- case, the signaler might want to predict which kind
ponsible for the decision. of resumpion have been implemented. Not all
systems allowing resumption have taken such issues

In our system signalis theunique signaling jno accountPL/I, Mesaor Goodenough's progel
primitive. This is possible because knowing giq not, execution simply restart at the expression

whether the signaled eeption is proceedable or ¢o||owing the signaling one. [19] allows users to
not only depends of its type and because all thgiates, in procedure headings, the type of results that
information need_ed to handlt_a it will be stored in themay be retuned by handlers. Isbisp proposal [18]
argument that will be transmitted to handlers. provides powerful control structures allowing

o signalers to write named pieces of programs to be
B. Parameterization. executed in the signaling emenment after

. . . resumption, these names can be usedhiwi
How to pass information from signalers to pandiers to entail resumption.

handlers is a classical issue. In standsdd or PL/I

, handlers cannot have parameters; global variablespur solution is to define oproceed#&leEventa
have to be used to communicate. In many otheglot named protocolsForResumptigrallowing
languages such aSlu, or Mesa solutions for signalers to specify, at signaling time, which
associating peameters with exceptions are method's names, among those allowing to resume
provided; parameter names (and types) are declargtbm the current exception and needing the

either in each handler headingl() or while de collaboration of the signaler, can be used in this
claring the exceptionMesa). A handler can only be particular case (cf. fig. 6 & 7).

invoked if the signaling arguments match the

parameters types. Besides, in order to a”OV\D.SignaJing multiple exceptions.
handlers to trap all exceptions, whatever arguments

are passed, some kind of pattern-matching starSjgnaling multiple exceptions is useful either to
convertions must be designed. avoid the creation of a specific classto report
. very general situations. Within our system,
Our model provides a solution to parameterlzatlorgigna”ng multiple excefions can be done by
which is both simple to use and to implement. Allganging the messagdgnal to exceptions that are
the handlers receiveuniqueargument which is the 4es in the class hierarchy. Here is an example
previously described instance of the current excepyhere a hanr achieves information hiding by

tion. This argument is a structured object holdingyapping a low level exception and by re-signaling a
all pieces of information about the exception. Heresemantically higher level one.

are the pieces of information about the signaling
time created instance of the above signaled
exception that can be accessed within a handler.

{body of a method In our system, the set of actions that can be
{when: overflow (e) do: [arithmeticException signal]}} performed by handlers only depends on the signaled
Let us now see, while describing protocols forexception. They depend on the one hand of its
handling, how multiple exceptions can be trappedosition in the hierarchy and on the other hand of
too. the content of its slots (e.qg.
protocolsForResumptign Any method allowing
. . users to put the system back into a coherent state
V. Improving protocolsfor handling have to be invoked within handlers via reage

. , sending to the handler argument. Inheritance and
Handlers are responsible for saying what to dogwessage sending rules make these invocations

after the occurrence of an exceptional _situation. Ou eneric
default handers are defined on exceptions classes; '
they are grouped together, are inherited and can begenericity first means that implementors do not
reused (cf. 8111.G). Other handlers are associated tQ,ye 1o perform tests to ensure that operations not
expressions. All handlers have a unique paramet%:ompatible with the signaled exception will not be

bound to the instance of the current exception ang,,oked. Resumption (resp. termination) is achieved
through which signaling arguments are conveyedby sending the messagesume, (resp.exit). As the

Let us now see how to handle multiple exceptio”%orresponding midod resume is defined on

and to write handlers in a generic way. proceedableEvensending the message to an object
) _) which is not an element g@roceedableEventwill
A. Handling multiple exceptions. automatically fail.

All' handlers are aware of the exception hierarchy, Genericity also means that operations relevant to
defining a handler for an exception amounts tothe current exception will automatically be selected
defining a handler for all exceptions that arefor each handling action. When the message
subclasses of it. In der to determine whether a handlesDefaulis sent to the handler argument, the
handler is to be invoked, the system simply testgnost specific method (according tbe argument
whether the exception it references is an upper typglass) of that name will be invoked, even though the
of the signaled exception. Thus, any (may benandler does not know which exception has been
unexpected) exception which is a subclass of therapped (multiple exceptions). Thus if
exception for which the handler has been designedvindowLargerThanScreeis trapped by a handler
can be caught by defining a sole handler. Fofor windowDisplayExceptionall methods specific

example, any handlers faindowDisplayException to the trapped excéipn will anyway be invoked.
catches just as welvindowLargerThanScreeor

wrongWindowOrigin .
Notice that the current exception can be signaled V1. Conclusion
again, even though being handled in a multiple way,
by writing: “when: windowDisplayException (e)
do:[[e type] signal]

In this paper, we have explained how giving
exceptions the status of abstract data types
hierarchically organized and to occurrences of
exceptional events the status of instances of those

types, fits well to implement a user-friendly,
c1LquwerfuI, extendible and reusable exception
andling system. We have described a specification
of such a system using an OOL. Several classical
d exception handling requirements have been easily
but handlers can be defined independently of ho’Plémented and new functionalities have been
Oproposed, among which the most important is

the excepion is signaled. The system then has t - .
check that the actions undaken within handlers PErhaps the ability for users to reuse and customize
the existing system in order to provide specific

g;eeg%rgggtlble with the signaling primitive that hasexception handling in applitian programs.

B. Handling in a generic way.

In Goodenough's proposal, programmers cann
define handlers without knowing whether they will
trap a fatal or a proceedable exception.

In Mesa, various signaling primitive are provide

[12] R.Levin : Program structures for exceptional
condition handling. Ph.D. dissertation, Dept. Comp.

object-oriented language and @malltalk the Sci., Carnegie-Mellon University Pittsburg, June

Smalltalk version is public-domain. See [6] for a 1977.

detailed description of the implementation. Here is[13] B.Liskov, A.Snyder : Exception Handling in CLU.

an example Of hOW to assoc|ate a handler to an IEEE Trans. on Software Englneenng, Vol. SE'5,

instruction in our Smalltalk implementation: No. 6, pp. 546-558, Nov 1979. .
P [14] B.Meyer: Object-oriented software construction.

Prentice-Hall, 1988.

[15] J.G.Mitchell, W.Maybury, R.Sweet: MESA
Language Manual. Xerox Research Center, Palo
Alto, California, Mars 1977.

[16] D. Moon, D. Weinreb : Signalling and Handling
Conditions, LISP Machine Manual, MIT Al Lab.,
Cambridge, Massachussets, 1983.

[17] B.A.Nixon : A Taxis Compiler. Tech. Report 33,
Comp. Sci. Dept., Univ. of Toronto, April 83.

[18] K.Pitman: Error/Condition Handling. Contribution
to WG16. Revision 18.Propositions pour ISO-LISP.
AFNOR, ISO/IEC JTC1/SC 22/WG 16N15, April
1988.

[19] S.Yemini, D.M.Berry : A Modular Verifiable

The system has been implemented inltbes [2]

[currentTerminal displayWindow: w]
when: wrongWindowOrigin
do: [:e | e wrapAround]

Acknowledgement

| would like to thank Michel Bidoit for its
comments and suggestions.

References
[1] A.Borgida Exceptions in Object-Oriented

Languages. ACM Sigplan Notices, Vol. 21, No. 10,
pp. 107-119, October 1986.

[2] Y.Caseau, C.Benoit,, C.Pherivong: Knowledge
Representation and Communication Mechanism in

Exception-Handling Mechanism. ACM Trans. on
Progr. Languages and Systems, Vol. 7, No. 2, pp.
213-243, April 1985

Lore. Proc. of ECAI'86, Brighton, July 1986.

[3] F.Christian : Exception Handling and Software Fault-
t Tolerance, IEEE Trans. on Computers, Vol. C-31,
No. 6, pp. 531-540, June 1982.

[4] P.Cointe: Metaclasses are first classes, the Objvlisp
model. Procs. of OOPSLA'87, Orlando, Sigplan
Notices, Vol. 22, No 12, pp. 156-167, October 1987.

[5] O.Dahl, B.Myhrhaug, K.Nygaard: SIMULA-67
Common Base Language. SIMULA Information, S-
22 Norwegian Computing Center, Oslo, Norway,
October 1970.

[6] C.Dony: Langages a objets et génie logiciel,
applications a la gestion des exceptions et a
I'environnement de mise au point. Thése de
l'université Paris VI, Mars 1989.

[7] C.Dony: Exception handling & Object-Oriented
Programming: Towards a Synthesis. Joint
conference Ecoop-OOPSLA'90. Ottawa, Oct. 1990.

[8] A. Goldberg, D. Robson: SMALLTALK 80, the
language and its implementation. Addison Wesley
1983.

[9] J.B.Goodenough : Exception Handling: Issues and a
Proposed Notation. Communication of the ACM,
Vol. 18, No. 12, pp. 683-696, December 1975.

[10] E. Horowitz: Fundamentals of Programming
Languages. Springer Verlag, Berlin-Heidelberg,
New York, 1984,

[11] J.lchbiah & al : Preliminary ADA Reference
Manual. Rationale for the Design of the ADA
Programming Language. Sigplan Notices Vol. 14,
No. 6, June 1979.

