
Improving exception handling
with Object-Oriented Programming

Christophe Dony

Equipe mixte Rank-Xerox France & LITP
University Paris VI

4 place Jussieu, 75221 Paris cedex 05.

Abstract - The aim of this paper1 is to show and
to explain how the object-oriented formalism can
improve the expressive power of an exception
handling system and how it can simplify its
implementation and its utilization. Object-oriented
design allows implementors to solve easily many
classical exception handling issues such as creating
user-defined exceptions, passing arguments from
signalers to handlers, etc. Besides, new capabilities
arise, such as defining generic protocols for
handling exceptions, organizing them into a
hierarchy leading to an inheritance of these
protocols, signaling and handling multiples excep-
tions. The proposed system (implemented and used)
is powerful, user-friendly, extendible and reusable
without any code duplication. This paper can
interest the non specialist of object-oriented
programming concerned with the problem of
exception handling.

I. Introduction

Exception handling techniques [3] [9] [12] [13]
became an important issue because of their
implications in software engineering: fault-
tolerance [13] [3], modularity [13] [11] [19], 3)
reusability (by extending definition domains and
functionality of operations signaling exceptions),
and readability (by specify in its interface all the
possible responses of a module to its legal inputs).

Object oriented programming (OOP) and design
(OOD), mainly initiated by Simula [5] and by Alan
Kay works leading to Smalltalk [8], is a software
decomposition technique that has also led to many
improvements in system specification (thanks to a
more natural way to specify a certain kind of pro-

1This paper has been published in the proceedings of the 14th
IEEE computer software and application conference
(COMPSAC'90), pp. 36-42, Chicago, November 1990.

blems through the description of their compound
objects) and software quality (modularity,
information hiding, sharing of code, reusability and
extendibility) [5] [8][14].

The key-idea of the present work is to apply OOD
to the specification of an exception handling system
(EHS), as proposed earlier in Zetalisp [15], Taxis
[17] or in [1] [16]. Our work is an extension of
these systems towards a full object-oriented
representation of exceptional events and of
protocols designed to handle them.

The proposed concept organization first provides
a promising set of solutions to most classical
exceptions handling issues, such as those quoted in
[10] (p. 268): ability for users to create new
exceptions, to signal and handle them in the same
way as system defined ones, to parameterize
exceptions (i.e. to pass arguments from signalers to
handlers), etc. Moreover, the expressive power of
the OOP paradigm makes it possible to introduce
new facilities that could not be simply implemented
within procedural languages. E.g., exceptions can
be first class objects and can be organized in a
hierarchy that will be taken into account by the
handling mechanisms; properties can be defined on
exceptions; all handling operations can be
performed via message sending, which makes them
generic (fatal or continuable exceptions can thus be
signaled with the same primitive); the hierarchy
allows users to catch any set of unexpectedly raised
exceptions, etc. Finally, the fundamental advantage
of such a choice is that the proposed EHS inherits
of the software qualities induced by the utilization
of the OOP paradigm : modularity, extendibility
and reusability.

The ideas described in this paper are parts of an
EHS designed for OOLs [7]. However, our goal is
not to discuss the exception handling requirements
that are specific to OOP [7], but to present solutions
that could be of interest within any EHS.

The following section will recall some basic
vocabulary and concepts. After that, our system will
be described in a logical order: status of exceptions,
protocols for signaling and for handling. For each
point, the originality of the described solution (both
from the user and from the implementor point of
view) will be highlighted, some examples of use
and a comparison with existing systems will be
provided.

II. Terminology and Concepts

A. Exception handling.

Software failures reveal either programming
errors or the application of correct programs to an
ill-formed set of data. An exception can be defined
as a situation leading to an impossibility of
finishing an operation.

The term “exception” indicates that such a
situation does not always denote an error case and
can be handled. The problem of handling
exceptions is to provide materials allowing to
establish a communication between a routine which
detects an exceptional situation while performing
an operation and those entities that asked for this
operation (or have something to do with it). An
EHS allows users to signal exceptions and to define
handlers.

To signal an exception amounts to identify the
exceptional situation, to interrupt the usual
sequence, to look for a relevant handler, to invoke it
and to pass it relevant information about the
exceptional situation, such as the context in which
the situation arose. Handlers are attached to (or
associated with) entities for one or several ex-
ceptions (according to the language, an entity may
be a program, a procedure, a statement, an expres-
sion, a data, etc). Handlers are invoked when an
exception is signaled during the execution or the
use of one of these protected entities.We will use
the following syntax to denote the association of a
handler with instructions or expressions.

{<protected-instructions>
 {when:<exception-names> (parameter)
 do: <handling-expressions>}}

To handle means to set the system back to a
coherent state, so that standard computation can

restart. Handlers have to choose, knowing about
their definition context and using information
provided by the signaler, whether to (1) transfer
control to the statement following the signaling one
(resumption), (2) discard the context between the
signaling statement and the one to which the
handler is attached (termination) or (3) signal a new
exception. For further precisions on terminology
and explanations on these concepts, see [9], [13] or
[19].

B. Object-oriented design.

Object-oriented programs are built around classes
of objects that implement abstract data types.
Attributes of classes (usually named slots or
instance variables) determine the structure of its
elements. Operations related to types (usually
named methods), are associated to classes.

Instances of classes can be though of as elements
of the types; each one owns a particular value for
each slot defined on its class. Overloading allows
programmers to define methods with the same name
on different domains. Inheritance distinguishes
OOLs from modular languages like Ada. Since
classes can be organized in a hierarchy, each
instance of a class inherits the properties defined on
its upper classes (also called ancestors)

The communication protocol (called message
sending) takes into account (either dynamically or
at compile-time) overloading and inheritance.
Sending the message M to an object O with
arguments a1...aN (that we will note “[O M a1
...eN]”) can be thought of as an indirect procedure
call, where the procedure to be executed is the first
found method, named M and the signature of which
is a superset of “class(O) x class(a1) x class(aN)”,
arguments being checked from left to right.

One of the major contributions of OOP to
software engineering is reusability. To write
reusable programs with OOL can be achieved by
defining polymorphic operations (valid for several
data types) on abstract2 classes (C) witch are nodes
of the inheritance tree. A polymorphic operation
(O) is based on lower level (concrete) operations
(O1, O2), which can be defined (or overloaded
when default ones have been provided) on
subclasses (C1, C2) that implement concrete data
types. O can then be extended to (and reused for) a

2A class designed to be a place where common pieces of be-
havior are grouped together, rather than to be instantiated.

new data type by the creation of a new subclass
(C3) of C on which O1 and O2 will be redefined.

III. Improving the status of exceptions.

The first issue that arises for either the user or the
implementor of an exception handling system is the
status of exceptions; how are exceptions
represented and referenced? How can they be
manipulated or inspected? Such a status has
implications on the expressive power of the whole
system.

A. Exceptions and abstract data types

A transfer of control towards a label, or a specific
procedure call wired into the signaler, are the most
simple solutions for signaling an exception. The
label or the procedure name stands for the
exception; knowledge about it is embodied into the
expressions associated to the label or into the
procedure body. In such systems, users have no
simple way to define handlers. In most of the
important exception handling systems that can be
found in procedural languages (e.g. PL/I, Ada [11],
Clu [13], Mesa [15]), exceptions are identifiers.
When an exception is raised, a handler that
references this identifier is looked for and invoked.

A common characteristic of the above systems is
that knowledge relative to exceptions (even the
most general one) is uneasy to grasp since, in the
first case, concentrated in a unique and may-be
inaccessible handler, and in the second case,
scattered in user-defined and default handlers
provided by the system. In both cases, exceptions
are not first class objects; they cannot own proper-
ties, cannot be inspected, modified, reused or
enriched.

Each exception is nevertheless a complex entities
of which characteristics can be given regardless of
local handling considerations (for example which
kind of arguments are to be passed to handlers,
which message is to be reported when the exception
is not handled or which interactive propositions are
to be provided).

Using the class-instance model, a first, obvious
and partial solution to represent exceptions consists
in the creation of a class “exception” of which
concrete exceptions (e.g. division-by-zero) would
be some instances. This provides a place to group

together behaviors common to all exceptions but
does not permit to group those relevant for all
occurrences of a particular exception.

A second solution which eliminates this drawback
is to represent each exception as a class [16], the
slots of which will represent its structure and the
methods of which its functional properties. This
representation also provides a solution -as does the
previous one- to group together characteristics
common to exceptions viewed as concepts,
provided that meta-classes (classes representing and
owning knowledge about classes) can be
manipulated in the language (as in Smalltalk,
Objvlisp [4], Clos, Lore).

B. Kernel exception classes.

Thus in our system, both exceptions viewed as
concepts and occurrences of exceptions can take
advantage of the object-oriented representation
(cf.fig.1). Exceptions viewed as concepts are
instance of the meta-class exceptionClass (a
subclass of the kernel meta-class class) and are
subclass of exceptionalEvent. Each occurrence of
an exceptional situation will be modelized by an
instance of a sub-class of exceptionalEvent, which
owns their common behavior and two basic slots
(cf. fig. 1& 3).

Object

Class Instance SubclassClass

ExceptionalEvent

handlesDefault, …methods:
signalingContext,...slots:

Class
method:new

ExceptionClass
method:signal

Fig.1: Kernel exception classes.

C. User-defined exceptions.

In the languages where the types “exception” is
defined, users have the ability to define new
exceptions by declaring identifiers to be of that
type. In our system, creating a new (kind of)
exception can be done by instanciating our specific
meta-class exceptionClass.

Here is a small example where new exceptions
have to be defined. Consider (1) the class window,
with the slots origin and length; and (2) the class
terminal, with the slot length and the method

displayWindow which signals an exception when a
window is longer than the current terminal.
Displaying a window on a screen is asked by
sending to the object representing the current
terminal the message displayWindow with the
window to be displayed passed as argument. In or-
der for the possibly raised exception to be
specifically handled, a new exception class is
created in the following way: "[exceptionClass new
name: windowLargerThanScreen]".

There is no difference between system and user-
defined exceptions, all can be created, raised and
handled exactly in the same way. New created ones
are automatically integrated into the inheritance
graph. Since the main interest of such a graph lies
so far in property inheritance, let us detail what
does it mean to define properties on exceptions and
how this can be done.

D. Properties defined on exceptions.

Two levels of knowledge about exceptional events
are of interest. The former is made of all pieces of
information, concerning a particular occurrence of
an exception, that have to be transmitted from
signaler to handlers. The latter consists in all
functional properties designed to handle them.

1. Slots.

When exceptions are identifiers, there is no simple
way to associate them knowledge. Whereas when
exceptions are classes, a slot can be designed for
each piece of information to be transmitted to
handlers.

Consider, for example, our exception
windowLargerThanScreen again, any handler for
that exception is likely to make use of the
characteristics of the window which was to be
displayed. A slot where this information can be
stored is defined on it:

[exceptionClass new
 name: windowLargerThanScreen
 slot windowToBeDisplayed type: window]

In the same way, some general purpose slots are
defined on exceptionalEvent. For example
signalingContext (cf. fig. 2 & 3) will allow each
handler to know in which stack context an
exception has been signaled.

 2. Methods .

 As stated earlier, functional knowledge is, in
classical EHSs, discarded in various handlers and
cannot be easily retrieved. This looks right for local
knowledge, as e.g. the one embodied into a handler
attached to a particular instruction (for example a
handler saying that a particular call of the divide
procedure should return 0 if divide-by-zero is
signaled).

Besides, both the most general default handlers
and the routines used within them are independent
of any execution context. Instead of defining them
as isolated pieces of code, our system allows to
represent them as methods defined on exceptions.

Here is for example the method handlesDefault
defined on exceptionalEvent, which is our system's
most general default-handler, always invoked when
a more specific handler cannot be found. Each
selector used in this method points out a method, a
default version of which being also defined on
exceptionalEvent.

body of handlesDefault on exceptionalEvent
 [self3 describeException] ; Reports the event
 [self describeContext] ; Displays its context
 [self displayPropositions] ; Displays propositions
 [self returnToTopLevel.] ;If no proposition is chosen.

A second example of functional knowledge
defined on exception classes are those methods
designed to display some interactive propositions
for handling (this idea can be found e.g. in
Zetalisp). For example, when the exception
windowLargerThanScreen is raised, the following
proposition: “Display window's visible part.” is
displayed (cf.fig.4) by the proposition method
displayVisiblePart. For each proposition, a joined
method (in our exampledoDisplayVisiblePart) is
designed to achieve actions corresponding to the
proposition.

As far as global knowledge is directly attached to
exception classes, inspecting them provides a good
idea of what can happen when they are raised. The
figure 2 shows a part of the information delivered
by the inspection of exceptionalEvent.

3"self" represents the receiver of the current message., “self
describe-exception.” means: to send the message describe-
except ion to the instance of the exception for which
handlesDefault has been called .

; a slot defined on exceptionalEvent:
signalingContext ; to be stored at signaling time
; examples of methods defined on exceptionalEvent:
handlesDefault ;the most general default handler
describeException ; displays a general error message
abortProposition ; an interactive proposition
abort ; aborts the current computation.

Fig.2: Inspecting exceptionalEvent.

E. Exception hierarchies.

Beyond properties defined on exceptions, the key
idea which underlies the choice of designing
exceptions as classes are to organize them into a
static hierarchy, to group common characteristics
on abstract exceptions, to reuse and to extend them
on concrete ones via property inheritance and
overloading. For example, the exception divide-by-
zero can be implemented as a sub-concept of the
higher level exception arithmeticException.

Similarly, excep t iona lEven t is divided
(cf.fig.2&3) into fatalEvent, to which are attached
generic protocols for termination, and
proceedableEvent to which are attached those for
resumption (we chose to implement a model where
both resumption and termination are possible).
Then, from the user's viewpoint, our system is
based on three main classes: (1) error (cf.fig.3) is
the set of exceptional events for which resumption
is impossible, (2) warning is the set of exceptional
events for which the termination is impossible, (3)
finally, multiple inheritance is used to create the
class exception for which both capabilities are
allowed.

method:exit

FatalEvent

propositions:abort

Event WarningError

ExceptionalEvent

lookForHandlers, …methods:

ProceedableEvent

resumemethod:
protocolsForResumptionslot:

proposition: retryOperation

SubclassClass

Fig.3: Top of the exception hierarchy.

Reusability and extendibility are the fundamental
consequences of such an organization.

F. Inheritance.

Each new exception inherits, as soon as it is
created, from the characteristics of its ancestors in
the hierarchy. For example, the above displayed
generic method handlesDefault is part of the
protocol of any exception. All systems as well as
user-defined exceptions can be defined as
appropriate sub-classes of error and warning,
depending on whether the exception is intended to
be fatal or proceedable and has to own protocols for
termination or resumption.

G. Reusability.

Reusability is achieved as explained in section
II.2. All parts P (e.g. describeException) of a
polymorphic method (e.g. handlesDefault) can be
overridden at each level in the tree (say on
exception X), all parts non redefined being reused.
When X (or a subclass of X) is signaled, if
handlesDefault is executed then the new method P
defined on X will be executed.

We have for example redefined the method
describeExcept ion on windowLargerThanScreen
so that a new error message be reported to users.
Considering that two new interactive propositions
(No2&3) have been defined on this new exception,
here is what happen when it is raised and not
handled:

!!! W is larger than current screen. ; describeException
!!! while sending display-window ; describeContext
1 : Abort. ; displayPropositions ...
2 : Inspect or modify W
3 : Retry the display.
4 : Display only the visible part of W.

Fig.4: inheriting default handlers.

This example reveals that the propositions for
proceeding are also inherited. In order to highlight
this point, let us complete our little window
example to present a hierarchy of user-defined
exceptions with embedded propositions (cf.fig.5).

WindowLargerThanScreen

excception

sub-exception {
{

Proposition: DisplayVisiblePart,

Proposition: WrapAround

WindowDisplayException { Slot: WindowToBeDisplayed
proposition: Inspect, RetryOperation

ProceedableEvent

ExceptionalEevent {
{

methods: handlesDefault, describeException,
 displayPropositions, look-for-handlers, etc.

method: Resume
proposition: RetryOperation

Methods: DescribeException, DoWrapAround
WrongWindowOrigin

Methods: DescribeException,DoDisplayVisiblePart,

Fig.5 : A hierarchy of user-defined exceptions.

The very general abort proposition is defined on
fatalEvent (not represented). The inspect and retry
(P3) propositions, relevant for all exceptions raised
while manipulating windows, are defined on
windowDisplayException, a new abstract exception.
The slot windowToBeDisplayed, itself generally re-
levant, is also defined on it, rather than on
windowLargerThanScreen. Notice that P3 is a
specialization of the retry proposition (P) defined
on proceedableEvent. P3 hides P to provide a
similar but more specific proposition.

A last exception in the hierarchy, named
wrongWindowOrigin, is raised when a window
comes out of the screen because its origin added to
its length is higher than the screen length. When
this situation is about to happen, all the previous
propositions are relevant and can be inherited.
Considering the screen to be circular and displaying
the right-end of the window on the left of the screen
is another solution for resumption. Subsequently,
our last exception can be created with benefit as a
subclass of windowLargerThanScreen. A method
named describeException as well as the new
proposition named wrapAround are defined on it.
When wrongWindowOrigin is raised, the following
information is reported.

!!! Window W : offset + length exceed screen length.
!!! While sending displayWindow to current-terminal.
1 : Abort
2 : Inspect or modify W
3 : Retry the display.
4 : Display the visible part of W.
5 : Wrap W around the screen.

The hierarchic organization also has consequences
on the way exceptions are signaled and handled; we
will develop these points in the following
paragraphs.

IV. Improving protocols for signaling .

Signaling an exception in our system consists in
sending it the message signal. Signaling is generic
as far as message sending makes it impossible to
signal anything but an exception. The method
signal is defined on exceptionClass (cf.fig.1).

This method first calls the method new (cf. fig. 1)
in order to create an instance of the signaled
exception. The slots of this instance can be
initialized at signaling time with, on the one hand
values given by the signaler (e.g. windowToBeDis-
played or protocolsForResumption, cf. fig. 6),
default values being used if no ones are provided,
and on the other hand, values owned by the system
(e.g. signalingContext).

Signal then sends to the created instance the
message lookForHandlers understood by all
instances of exceptions (cf.fig.3&5), which will
find and invoke a handler. LookForHandlers can be
redefined on any new exception in order to provide,
for any specific application, specific rules for
searching and invoking handlers (cf. [12]). New
EHSs can thus be experimented in a very simple
way.

Other advantages lies in signaling simplicity,
parameterisation and communication with handlers.

A. A unique signaling primitive.

Here is a piece of code in which the exception
windowLargerThanScreen is signaled and two of its
slots expl ic i t ly ass igned. The s lot
protocolsForResumption, allows signalers to
specify, at signaling time, which method's names,
among those allowing to resume the execution,
handlers will be allowed to use.

; body of “displayWindow” defined on “terminal”
….if [[w length] > [self length]]
 then [windowLargerThanScreen signal
 windowToBeDisplayed: w
 protocolsForResumption: doDisplayVisiblePart]

Fig. 6: Signaling an exception.

It is generally agreed that a signaler is responsible
for choosing between signaling either a fatal or a
continuable exception whereas the handler has to
say how the calculus will be restarted. Within
standard EHSs, a set of primitives is generally
provided to support the various signaling cases.
E.g., in Goodenough's proposal, signaling with
escape states that termination is mandatory, notify
forces resumption and signal let the handler res-
ponsible for the decision.

In our system, signal is the unique signaling
primitive. This is possible because knowing
whether the signaled exception is proceedable or
not only depends of its type and because all the
information needed to handle it will be stored in the
argument that will be transmitted to handlers.

B. Parameterization.

How to pass information from signalers to
handlers is a classical issue. In standard Ada or PL/I
, handlers cannot have parameters; global variables
have to be used to communicate. In many other
languages such as Clu, or Mesa, solutions for
associating parameters with exceptions are
provided; parameter names (and types) are declared
either in each handler heading (Clu) or while de-
claring the exception (Mesa). A handler can only be
invoked if the signaling arguments match the
parameters types. Besides, in order to allow
handlers to trap all exceptions, whatever arguments
are passed, some kind of pattern-matching star
conventions must be designed.

Our model provides a solution to parameterization
which is both simple to use and to implement. All
the handlers receive a unique argument which is the
previously described instance of the current excep-
tion. This argument is a structured object holding
all pieces of information about the exception. Here
are the pieces of information about the signaling
time created instance of the above signaled
exception that can be accessed within a handler.

; inspection of an instance of windowLargerThanScreen
type: windowLargerThanScreen
signalingContext: <an object representing a stack frame>
windowToBeDisplayed: w
protocolsForResumption: doDisplayVisiblePart ...

Fig.7: Inspection of an exception instance .

C. Cooperation for resumption.

Resumption raises another issue: it needs a
communication between the signaler and the
handler. Although the handler is responsible for
saying what to do, it may happen that the operations
allowing to restart the computation must be per-
formed by the signaler in its environment. In such a
case, the signaler might want to predict which kind
of resumption have been implemented. Not all
systems allowing resumption have taken such issues
into account; PL/I, Mesa or Goodenough's proposal
did not, execution simply restart at the expression
following the signaling one. [19] allows users to
states, in procedure headings, the type of results that
may be returned by handlers. Iso Lisp proposal [18]
provides powerful control structures allowing
signalers to write named pieces of programs to be
executed in the signaling environment after
resumption, these names can be used within
handlers to entail resumption.

Our solution is to define on proceedableEvent a
slot named protocolsForResumption, allowing
signalers to specify, at signaling time, which
method's names, among those allowing to resume
from the current exception and needing the
collaboration of the signaler, can be used in this
particular case (cf. fig. 6 & 7).

D. Signaling multiple exceptions.

Signaling multiple exceptions is useful either to
avoid the creation of a specific class or to report
very general situations. Within our system,
signaling multiple exceptions can be done by
sending the message signal to exceptions that are
nodes in the class hierarchy. Here is an example
where a handler achieves information hiding by
trapping a low level exception and by re-signaling a
semantically higher level one.

{body of a method
 {when: overflow (e) do: [arithmeticException signal]}}

Let us now see, while describing protocols for
handling, how multiple exceptions can be trapped
too.

V. Improving protocols for handling

Handlers are responsible for saying what to do
after the occurrence of an exceptional situation. Our
default handlers are defined on exceptions classes,
they are grouped together, are inherited and can be
reused (cf. §III.G). Other handlers are associated to
expressions. All handlers have a unique parameter
bound to the instance of the current exception and
through which signaling arguments are conveyed.
Let us now see how to handle multiple exceptions
and to write handlers in a generic way.

A. Handling multiple exceptions.

All handlers are aware of the exception hierarchy,
defining a handler for an exception amounts to
defining a handler for all exceptions that are
subclasses of it. In order to determine whether a
handler is to be invoked, the system simply tests
whether the exception it references is an upper type
of the signaled exception. Thus, any (may be
unexpected) exception which is a subclass of the
exception for which the handler has been designed,
can be caught by defining a sole handler. For
example, any handlers for windowDisplayException
catches just as well windowLargerThanScreen or
wrongWindowOrigin.
Notice that the current exception can be signaled
again, even though being handled in a multiple way,
by writing: “when: windowDisplayException (e)
do:[[e type] signal]”

B. Handling in a generic way.

In Goodenough's proposal, programmers cannot
define handlers without knowing whether they will
trap a fatal or a proceedable exception.

In Mesa, various signaling primitive are provided
but handlers can be defined independently of how
the exception is signaled. The system then has to
check that the actions undertaken within handlers
are compatible with the signaling primitive that has
been used.

In our system, the set of actions that can be
performed by handlers only depends on the signaled
exception. They depend on the one hand of its
position in the hierarchy and on the other hand of
the con ten t o f i t s s lo ts (e .g .
protocolsForResumption). Any method allowing
users to put the system back into a coherent state
have to be invoked within handlers via message
sending to the handler argument. Inheritance and
message sending rules make these invocations
generic.

Genericity first means that implementors do not
have to perform tests to ensure that operations not
compatible with the signaled exception will not be
invoked. Resumption (resp. termination) is achieved
by sending the message resume,, (resp. exit). As the
corresponding method resume is defined on
proceedableEvent, sending the message to an object
which is not an element of proceedableEvent will
automatically fail.

Genericity also means that operations relevant to
the current exception will automatically be selected
for each handling action. When the message
handlesDefault is sent to the handler argument, the
most specific method (according to the argument
class) of that name will be invoked, even though the
handler does not know which exception has been
trapped (multiple exceptions). Thus if
windowLargerThanScreen is trapped by a handler
for windowDisplayException, all methods specific
to the trapped exception will anyway be invoked.

VI. Conclusion

In this paper, we have explained how giving
exceptions the status of abstract data types
hierarchically organized and to occurrences of
exceptional events the status of instances of those
types, fits well to implement a user-friendly,
powerful, extendible and reusable exception
handling system. We have described a specification
of such a system using an OOL. Several classical
exception handling requirements have been easily
implemented and new functionalities have been
proposed, among which the most important is
perhaps the ability for users to reuse and customize
the existing system in order to provide specific
exception handling in application programs.

The system has been implemented in the Lore [2]
object-oriented language and in Smalltalk, the
Smalltalk version is public-domain. See [6] for a
detailed description of the implementation. Here is
an example of how to associate a handler to an
instruction in our Smalltalk implementation:

[currentTerminal displayWindow: w]
 when: wrongWindowOrigin
 do: [:e | e wrapAround]

Acknowledgement
I would like to thank Michel Bidoit for its

comments and suggestions.

References
[1] A.Borgida : Exceptions in Object-Oriented

Languages. ACM Sigplan Notices, Vol. 21, No. 10,
pp. 107-119, October 1986.

[2] Y.Caseau, C.Benoit,, C.Pherivong: Knowledge
Representation and Communication Mechanism in
Lore. Proc. of ECAI'86, Brighton, July 1986.

[3] F.Christian : Exception Handling and Software Fault-
t Tolerance, IEEE Trans. on Computers, Vol. C-31,
No. 6, pp. 531-540, June 1982.

[4] P.Cointe: Metaclasses are first classes, the Objvlisp
model. Procs. of OOPSLA'87, Orlando, Sigplan
Notices, Vol. 22, No 12, pp. 156-167, October 1987.

[5] O.Dahl, B.Myhrhaug, K.Nygaard: SIMULA-67
Common Base Language. SIMULA Information, S-
22 Norwegian Computing Center, Oslo, Norway,
October 1970.

[6] C.Dony: Langages à objets et génie logiciel,
applications à la gestion des exceptions et à
l'environnement de mise au point. Thèse de
l'université Paris VI, Mars 1989.

[7] C.Dony: Exception handling & Object-Oriented
Programming: Towards a Synthesis. Joint
conference Ecoop-OOPSLA'90. Ottawa, Oct. 1990.

[8] A. Goldberg, D. Robson: SMALLTALK 80, the
language and its implementation. Addison Wesley
1983.

[9] J.B.Goodenough : Exception Handling: Issues and a
Proposed Notation. Communication of the ACM,
Vol. 18, No. 12, pp. 683-696, December 1975.

[10] E. Horowitz: Fundamentals of Programming
Languages. Springer Verlag, Berlin-Heidelberg,
New York, 1984.

[11] J.Ichbiah & al : Preliminary ADA Reference
Manual. Rationale for the Design of the ADA
Programming Language. Sigplan Notices Vol. 14,
No. 6, June 1979.

[12] R.Levin : Program structures for exceptional
condition handling. Ph.D. dissertation, Dept. Comp.
Sci., Carnegie-Mellon University Pittsburg, June
1977.

[13] B.Liskov, A.Snyder : Exception Handling in CLU.
IEEE Trans. on Software Engineering, Vol. SE-5,
No. 6, pp. 546-558, Nov 1979.

[14] B.Meyer: Object-oriented software construction.
Prentice-Hall, 1988.

[15] J.G.Mitchell, W.Maybury, R.Sweet: MESA
Language Manual. Xerox Research Center, Palo
Alto, California, Mars 1977.

[16] D. Moon, D. Weinreb : Signalling and Handling
Conditions, LISP Machine Manual, MIT AI Lab.,
Cambridge, Massachussets, 1983.

[17] B.A.Nixon : A Taxis Compiler. Tech. Report 33,
Comp. Sci. Dept., Univ. of Toronto, April 83.

[18] K.Pitman: Error/Condition Handling. Contribution
to WG16. Revision 18.Propositions pour ISO-LISP.
AFNOR, ISO/IEC JTC1/SC 22/WG 16N15, April
1988.

[19] S.Yemini, D.M.Berry : A Modular Verifiable
Exception-Handling Mechanism. ACM Trans. on
Progr. Languages and Systems, Vol. 7, No. 2, pp.
213-243, April 1985

