Exception handling in component-based systems :
a first study

Frédéric Souchon* ** Christelle Urtado*, Sylvain Vauttier*, Christophe Dony **

* LGI2P - Ecole des Mines d’Alés - Parc scientifique G. Besse - 30 035 Nimes - France - +33 4 66 38 70 00
{Frederic.Souchon, Christelle.Urtado, Sylvain.Vauttier }@site-eerie.ema.fr

** LIRMM - 161 rue Ada - 34 392 Montpellier - France - +33 4 67 41 85 33
dony@lirmm.fr

Abstract Reliability and fault-tolerance raise new issues in modern software architectures
(such as component based architectures or multi-agent systems) as they aim at integrating
separately developed software entities to build large-scale systems. In this paper, we study
existing exception handling systems associated to the various component models that can
be found in java-based platforms. This includes components having contract-based or event-
based interaction schemes and synchronous or asynchronous communication schemes. We
then focus on what we consider to be the most problematic issue: exception handling for
asynchronously communicating components. We then present four qualities we think an
EHS for a CBP should have and that we will consider as requirements for future work on
designing an EHS that fulfill them.

1 Introduction

Modern ways of building applications require new means of software engineering: it is now easier
to reuse existing pieces of software and integrate them to build complete applications. Component-
based platforms (CBPs) [24,11,15] or multi-agents systems (MAS) [4] allow to build such appli-
cations with separately developed software entities. We believe that this reuse and integration
process raises new reliability issues and that reliability becomes a more and more critical as sys-
tems get larger. In our previous work, we have studied exception handling in MASs and have
proposed an exception handling system (EHS) dedicated to MASs [19]. In this paper, we address
exception handling in CBPs and focus on what we consider to be the most problematic issue:
exception handling for contract-based, asynchronously communicating components.

The remainder of this paper is organized as follows. Section 2 presents our study of exception
handling in various existing CBPs. It introduces three categories of components and examines their
particularities regarding exception handling. Section 3 focuses on a particular category of compo-
nents (contract-based asynchronously communicating components) for which exception handling
is particularly difficult and presents what we think to be the requirements that an EHS dedicated
to such components should fulfill. Section 4 concludes and presents work in progress: how we are
transposing and adapting our previous work on exception handling in MASs to provide a fully
functional EHS for J2EE message-driven beans.

2 Exception handling in component-based platforms

Our study of exception handling is based on three kind of components that can be found in Java-
based platforms (session or entity beans, message-driven beans and JavaBeans). They are well
known, globally representative of the various kind of components available in existing operational
platforms, and their open implementation makes it possible to freely experiment.

2.1 Component categories

Components can be distinguished by (among other criteria non meaningful here) the way they
interact and communicate.

Interaction schemes: main interaction modes are “Contract-based” and “Event-based”.

— With Contract-based interactions (cf. Fig. 1a,b), components send requests to other compo-
nents (acting as service providers) and expect answers in return as specified by component
software contracts [13,12]. In this paper, we consider that requesting a service from a com-
ponent triggers the execution of the corresponding activity in the concerned component.

— With Event-based interactions, components are more loosely coupled and interact via an event
dispatcher that communicate events emitted by a component to those registered as its listeners.
(cf. Fig. 1c). In this context, the emitting component does not know which components listen
to its emitted events and does not expect any answer.

Communication schemes: components may communicate synchronously or asynchronously.

— With synchronous communications, service callers are blocked until callees reply. Only a single
execution flow is executed at a given time: there is no concurrency (Fig. 1a,c).

— With asynchronous communications, request emission is non-blocking. Thus each service re-
quest triggers this creation of a new thread to run the corresponding activity (cf. Fig. 1b).
This communication means is very flexible and suits particularly well applications in which
QoS policies have to be implemented (eg. «provide a result once a certain QoS [6,26] level has
been reached» or «providing the best result obtained before a specified delay).

Callee . y Event
Client Middleware MDB JavaBeanl A JavaBean2
Component Dispatcher

RMI m() Event

Client

Event
>

-
Standard
response

-
et
<—u return
[:l return

Shared

Object
(a) Contract—based interactions (b) Contract—based interactions (c) Event—based interactions
using synchronous communications using asynchronous communications using synchronous communications

Figure 1. Java components interaction and communication Schemes

Regarding this classification, we found three kinds of existing components:

— CS components: contract-based interactions with synchronous communications,
— CA components: contract-based interactions with asynchronous communications,
— E components: event-based interactions with synchronous communications.

2.2 Examples of Java components

Java Beans [23] are E components (cf. Fig. 1c) and are conceptually similar to Microsoft Active/X.

Other examples come with J2EE:

Session and entity beans are CS components which communicate via middlewares (RMI or
CORBA). The middleware ensures packaging, transport and unpackaging of both method calls
and results exchanged between remote components.

Finally, message-driven beans (MDBs) are CA components which communicate via messaging
protocol called JMS (Java Messaging Service)[21,22]. A MDB which receives a JMS message
executes the corresponding activity in a dedicated thread: this allows MDBs to concurrently pro-
cess various activities. When a callee needs to return something to its caller, if the caller is not
a component that can receive JMS messages, they have to use a shared object (cf. Fig. 1b) as a
temporary repository. Otherwise, the callee can send a new JMS message to give the answer, thus
implying the creation of a new thread.

JMS also allows to broadcast messages to a set of components thanks to the notion of topic
(to be compared to object groups [14] which allow to gather a group of objects which can be seen
and addressed as a unique entity). In JMS, a message sent to a topic is broadcasted to all MDBs
which subscribed to the given topic but the sender is aware of neither the identity nor the number
of receivers.

Contract-based interactions Event-based execution interactions
Synchronous communications J2EE (RMI, Corba) JavaBeans, ActiveX

| Asynchrnous communications | J2EE (JMS) none identified

Figure 2. Categories of components

2.3 Exception handling

This subsection describes how exceptions can today be signaled and handled for the three com-
ponent models. Let us briefly recall that exception signaling [5], is a mechanism used to notify
undesirable situations that hamper the standard execution of a program to continue. When an
exception occurs, reliable software is able to react appropriately in order to continue its execution
or, at least, to interrupt it properly while preserving data integrity as much as possible. An ex-
ception handling system (EHS) [3,5,10,13,27] offers control structures enabling developers to
define program units (e.g. the source code of a procedure[10], a class definition [3]...) as protected
by a set of exception handlers in order to capture exceptional situations that may be signaled
in these protected regions. Each handler is defined to capture occurrences of a given exception
type. The signal of an exception provokes the interruption of what is currently being executed and
the search for an adequate handler. Handler search mechanisms are mostly based on Goodenough
proposal [5] (eg. in C++ and Java) in which exceptions are propagated through the execution
history. From a component point of view, such a mechanism would propagate exceptions signaled
by component activities to their corresponding clients which would therefore be able to handle
exceptions in the context of the failed service calls.

Exception handling for CS components (eg. session beans): their specification [20] and
our experiments on the JOnAS platform [1] show that exception handling is achieved through
standard Java control structures (¢ry/catch, throw. . .). The middleware (RMI or CORBA) enables
to transparently use server components as Java objects: the middleware abstracts distribution (cf.
section 2.2) for standard execution as well as for exception handling as components use a proxy
representation of remote components. This EHS seems to satisfy developers needs as it adopts the
behavior of standard C++/Java languages EHSs which propagate exceptions through execution
history. Thus, context-sensitive exception handling is possible as shown in figures 3 and 4a.

// A component invoking the buy method // Remote Business method implementation.
through RMI public void buy (int s) {
try { if (stock>=s) {
utx.begin(); // Starts a first transaction newtotal = newtotal + s;
tl.buy(10); //request on the bean return;
utx.commit (); //Commits the transaction }
} else
catch (LimitedStockException exc) { throw (new LimitedStockException (stock);)
int n = exc.getMessage(); }
println("Buying only" + n + "units");
tl.buy(n);

}

Figure 3. Example of method invocation with RMI

Exception handling for E components (eg. Javabeans): If an event emitted by a component
(Javabeanl) leads to the signal of an exception in another component that cannot catch it, the
exception is signaled to the event dispatcher (cf. Figure 4c). This event dispatcher can only gener-
ically handle the exception without propagating it to Javabean! (it just prints a stack trace) [23].
Thus, the exception cannot be propagated to the emitter’s context. Such isolation of components
concerning exception handling is coherent with the interaction scheme of these components: when
notifying an event E components expect no response, either normal or exceptional (cf. subsection
2.1).

Exception handling for CA components (eg. MDBs): According to JMS specification [20]
and to our experiments on the JOnAS platform, exception handling support in MDBs is limited:
an error during a JMS message send can be notified to the sender but an exception signaled
during the execution of the corresponding activity cannot be propagated to its caller. Indeed, an

. Event
Session Client Middleware MDB JavaBeanl i ven JavaBean2
Bean Dispatcher

DL»
T m
! m (redelivered)
RMI m() Event

return

Client

Event

-
]

exceptional ‘<_K_l Exception
response I:l return
Shared
Object
(a) Contract—based interactions (b) Contract—based interactions (c) Event—based interactions
using synchronous communications using asynchronous communications using synchronous communications

Figure 4. Communications in presence of exceptions

exception signaled in one the activity of a MDB without being handled locally is not propagated
to the calling context. The only mechanism provided to allow the programmer to detect these
situations is that the message that initiated the activity is redelivered (with a flag set to true)
to the MDB in which it is executed (cf. Fig. 4b). Thus, to differentiate received messages from
exception notifications, the developer has to test (for each message delivery) if the message is
redelivered or not (cf. Figure 5). From our point of view, the handling of exceptions in the CA
components we studied is too poor because:

1. Exceptions are not propagated through the execution history. It is therefore not possible to
define context-sensitive treatments in handlers. Handler can only be generic and be used, for
example, to display error messages (cf. Fig. 5). This issue will be developed in section 3.1.

2. There is no means to coordinate concurrent activities of components, and, thus, no exception
coordination. For example, when an activity which requested services signals an exception, it
should be possible to terminate the pending services it requested. This issue will be developed
in section 3.2.

3. There is no means to concert exceptions that occur concurrently. This lack makes it impossible
to correctly manage situations where multiple exception signals reveal a unique problem. It
also hampers the programmer’s capability to provide QoS policies (for example, he/she cannot
distinguish under critical from critical exceptions). This issue will be developed in section 3.3.

public void onMessage (Message message) {

// Exceptional execution

try {
// The programmer tests if the message has been redelivered
if (message.getJMSRedelivered()) {

// The programmer handles the exception without information
// about the execution context in which the exception has been signaled
System.out.println("Error while handling" + message);
return;
}
}

catch (Exception ex) { System.err.println(ex.toString());}

//Standard execution

try { ...}

catch (HandledExceptionType ex) { System.err.println(ex.toString());}
}

Figure 5. Example of exception handling in a MDB

Contract-based interactions Event-based execution interactions
Synchronous communications Typical EHS : satisfying Generic EHS: isolated components

| Asynchrnous communications | dedicated EHS : unsatisfying none identified

Figure 6. The 3 components categories

3 Requirements for exception handling in CA components

As shown in the previous section (cf. Fig 6) CA components (such as MDBs) are the most prob-
lematic when exception handling is concerned because of asynchronous calls. This section aims at
presenting the requirements concerning what we think should happen (and which extra concepts
will have to be correctly managed) in situations in which an asynchronously invoked service cannot
be fulfilled because of the occurrence of an exception.

3.1 Need for contextualization respect

When a called activity signals an exception it cannot handle, its calling activity is the best
place where to handle this exception properly: it is the only place where the objective
targeted by the corresponding service call is known and thus the best place to program what
should be done in case of a defect. We thus believe that the software contract is to be respected
in the case of exceptional responses as it is for normal ones in order to enable context-sensitive
treatments of exceptions. Unfortunately, this behavior is not always adopted for CA components
(cf. section 2.3) even if CBPs provide dedicated EHSs.

Alternative propositions[25,9] exist that do not address this problematic because of their cen-
tralized aspects. For example, [2] proposes a transposition of the supervisor model which its authors
previously proposed in the framework of MASs [8,9]: it suggests the use of an EHS using sentinel
components to detect and handle components failures. Propagating exceptions to such dedicated
entities does not provide the capability to the write context-sensitive handlers and, thus, limits
treatments in handlers to generic context-independent reactions (eg. error message display). More-
over, the centralization of the handling of exceptional events may affect QoS because it may cause
bottlenecks which can slow down the whole system and decrease its reliability [19].

3.2 Need for coordination tools

Efficiently handling exceptions in systems that use asynchronous communications implies the
definition of means to manage activities cooperation. [18,16] provides a classification of three
types of concurrency and studies their impact on exception handling:

— Disjoint concurrency appears in systems that provide no coordination of concurrent activities.
For example, there is no system level means to coordinate MDB activities when exceptions
occur (no global activity is considered for such components).

— Competitive concurrency appears in systems that provide mechanisms to avoid inconsistencies
caused by concurrent uses of system resources (generally thanks to lock-based mechanisms).
Such mechanisms exist and can optionally be used with MDBs if JTA (Java Transaction API)
or JTS (Java Transaction Service) is used to delimit distributed transactions.

— Cooperative concurrency is the kind of concurrency used by systems that provide some support
to manage collaborations between active entities. For example, when an activity terminates,
either normally or exceptionally, it must be possible to kill all non-terminated pending activities
it initiated. [17] claims that such a cooperative concurrency management requires an execution
model that enables collective activities to be explicitly represented. From our point of view,
such a representation would make it possible to associate handlers to the representants
of such collective activities. It would therefore be possible to globally manage the impact
of the failure of either a single participant or a set of them.

To summarize, CBPs should provide support for cooperative concurrency in order to enable the
coordination of components activities.

3.3 Need for exception concertation support

Once activity coordination is supported and integrates an exception handling mechanism, a means
to collect exceptions occurring concurrently among participants of a collective activity must be
provided. An activity which concurrently sends requests to a set of components and which receives
one or more exceptional responses from them:

— must not react immediately when under-critical exceptions (which do not hamper its standard
execution) are signaled,

— must be able to take into account that exceptions received concurrently may have no pertinence
individually but may be meaningful collectively (result from an unique problem or a poor QoS
level).

Based on these ideas, [7] suggests the use of a concertation mechanism: when entities which par-
ticipate to a collective activity concurrently signal exceptions to their caller, a resolution function
considers the set of signaled exceptions in order to evaluate a unique exception (a concerted ex-
ception) which reflects the global state of the collective activity. This concerted exception is
used in place of the whole set of individual exceptions signaled by requested services
to search for handlers in the collective activity.

3.4 Need for a specific exception handling policy for broadcasted requests

In section 3.2, we noticed the need to coordinate collective concurrent activities to properly handle
exceptions. In JMS (cf. section 2.2), such a quality can partially be reached by activity coordination
and must be completed by a proper handling of broadcasted requests. It must therefore be possible,
for the programmer, to associate handlers to topics. As topics are not components (they are implicit
notions hidden in the J2EE container), we propose to embody them in a dedicated component
to which programmers can associate handlers and where they can configure concertation. This
component is used to broadcast received requests to its registered components (just like topics
did) and has the additional capability to aggregate standard and exceptional responses in
an unique meaningful response transmitted to the service caller.

3.5 Synthesis

Figure 7 synthesizes what are the capabilities and the needs, in terms of exception handling, of the
three categories of components we studied in this paper. It focuses on the four qualities presented
in sections 3.1, 3.2, 3.3 and 3.4. It shows that exception handling in CS and E components is
adequate as the EHS capabilities match the qualities needed. On the contrary, the analysis of
exception handling in CA components shows that work must be done to match EHS capabilities
and programmers expectations.

_ CS components CA components E components
Quality Exist ? Needed ? Exist ? Needed ? Exist ? Needed ?
Contextualisation respect yes yes no yes no no
Coordination support yes yes partial: transactions yes no no
Exceptions concertation support no no no yes no no
Support for collective requests no no partial: forwarding yes partial: event dispatcher] no

Figure 7. Potential improvements

4 Conclusion and further work

In this paper, we studied available categories of components and their EHSs. On the one hand, we
believe that two out of three categories of components have adequate EHSs. On the other hand,
we highlighted lacks in EHSs provided with the third components category (components which
interact using a contract-based scheme and asynchronous communications).

In particular, we think that an EHS for such components must have these four qualities:

— Contextualization must be respected in order to enable the writing of context-sensitive handlers
because a service demander is the best entity to handle an exception that occurred in a
requested service.

— Coordination of components activities must be achieved by enabling their explicit representa-

tion and by defining means to control their execution.

— Programmers must be able to configure the exception propagation policy by defining resolution

functions to immediately handle exceptions that are really critical for the execution while
logging under-critical exceptions until their conjunction enables to diagnose a unique problem
represented by a concerted exception.

— The EHS must manage broadcasted requests in a pertinent way.

In previous work, we designed and implemented an EHS providing these qualities for MASs (the
SaGE EHS[19]). The study presented in this paper is our first step towards the adaptation of the
design and implementation of this work in the context of CBPs which we plan to integrate to the
JOnAS platform.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

BullSoft. Jonas. http://www.objectweb.org/jonas/current/doc/JOnASWP.html.

Chrysantos Dellarocas. Toward exception handling infrastructures for component-based software. In
Proceedings of the International Workshop on Component-based Software Engineering, 20th Interna-
tional Conference on Software Engineering (ICSE), Kyoto, Japan, April 25-26, 1998, 1998.
Christophe Dony. Exception handling and object-oriented programming : towards a synthesis. ACM
SIGPLAN Notices, 25(10):322-330, October 1990. OOPSLA ECOOP ’90 Proceedings, N. Meyrowitz
(editor).

Jacques Ferber. Les systemes multi-agents, vers une intelligence artificielle distribuée. InterEditions,
1995.

John B. Goodenough. Exception handling: Issues and a proposed notation. Communications of the
ACM, 18(12):683-696, December 1975.

Jun He, Matti A. Hiltunen, Mohan Rajagopalan, and Richard D. Schlichting. Providing qos cus-
tomization in distributed object systems. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), Lecture Notes in Computer Science 2218, 2001.
Valerie Issarny. Concurrent exception handling. In A. Romanovsky, C. Dony, J. L. Knudsen, and
A. Tripathi, editors, Advances in Ezception Handling Techniques, LNCS (Lecture Notes in Computer
Science) 2022. Springer-Verlag, 2001.

Mark Klein and Chrysanthos Dellarocas. Exception handling in agent systems. In Oren Etzioni,
Jorg P. Miiller, and Jeffrey M. Bradshaw, editors, Proceedings of the Third Annual Conference on
Autonomous Agents (AGENTS-99), pages 62-68, New York, May 1-5 1999. ACM Press.

Mark Klein and Chrysanthos Dellarocas. Using domain-independent exception handling services to
enable robust open multi-agent systems: The case of agent death. Journal for Autonomous Agents
and Multi-Agent Systems, 7(1/2), 2003.

A. R. Koenig and B. Stroustrup. Exception handling for C++. In Proceedings “C++ at Work”
Conference, pages 322-330, November 1989.

David H. Lorenz and Predrag Petkovic. Design-time assembly of runtime containment components.
In Institute of Electrical and Electronics Engineers, editors, Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 84°00), 2000.

B. Meyer. Applying ’design by contract’. IEEE Computer, October 1992.

Bertrand Meyer. Disciplined exceptions. Technical report tr-ei-22/ex, Interactive Software Engineer-
ing, Goleta, CA, 1988.

M. Patino-Martinez, R. Jimenez-Peris, and S. Arevalo. Exception Handling in Transactional Object
Groups. In Advances in Fzception Handling, LNCS-2022, pages 165-180. Springer, 2001.

F. Peschanski. Comet: A reflective middleware architecture for adaptive component-based distributed
systems, http://ads.computer.org/dsonline/0107 /features/pes0107.htm, 2001.

A. Romanovsky, C. Dony, J. L. Knudsen, and A.Tripathi. Advances in Exception Handling Techniques.
LNCS (Lecture Notes in Computer Science) 2022. Springer-Verlag, 2001.

Alexander Romanovsky. Exception handling in component-based system development. In Proceedings
of 25th Annual International Computer Software and Applications Conference (COMPSAC’01), 2001.
Alexander B. Romanovsky and Jorg Kienzle. Action-oriented exception handling in cooperative and
competitive concurrent object-oriented systems. In Advances in Ezception Handling Techniques, pages
147-164, 2000.

F. Souchon, C. Dony, C. Urtado, and S. Vauttier. A proposition for exception handling in multi-agent
systems. In SELMAS’03 proceedings, 2003.

20.

21.

22.

23.

24.

25.

26.

27.

Sun Microsystems, = Mountain = View, Calif. Enterprise JavaBeans (EJB).
http://java.sun.com/products/ejb/.

Sun Microsystems, Mountain View, Calif. Java 2 Platform, FEnterprise FEdition (J2EE).
http://java.sun.com/j2ee.

Sun Microsystems, Mountain View, Calif. Java 2 Platform, Standard Edition (J2SE).
http://java.sun.com/j2Se.

Sun Microsystems, Mountain View, Calif. JavaSoft JavaBeans API Specification, 1.01 edition, July
1997. http://javasoft.com/beans/docs/spec.htm.

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

Anand Tripathi and Robert Miller. Exception handling in agent oriented systems. In A. Romanovsky,
C. Dony, J. L. Knudsen, and A. Tripathi, editors, Advances in Ezception Handling Techniques, LNCS
(Lecture Notes in Computer Science) 2022. Springer-Verlag, 2000.

N. Wang, D. Schmidt, K. Parameswaran, and M. Kircher. Towards a reflective middleware framework
for qos-enabled corba component model applications, ieee distributed systems online special issue on
reflective middleware, 2001.

Daniel L. Weinreb. Signalling and handling conditions. Technical report, Symbolics, Inc., Cambridge,
MA, January 1983.

