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Abstract Asynchronous Active Objects (AAOs), primarily exemplified
by actors [1], nowadays exist in many forms (various kinds of actors,
agents and components) and are more and more used because they fit
well the dynamic and asynchronous nature of interactions in many dis-
tributed systems. They raise various new issues regarding exception han-
dling for which few operational solutions exist. More precisely, a need
exists for a generic, simple and expressive, programmer level, exception
handling system that appropriately handles the following main exception
handling issues or requirements in the context of AAQOs: encapsulation,
object autonomy, coordination of concurrent collaborative entities [2],
“caller contextualization” [3], asynchronous signaling and handler exe-
cution, resolution of concurrent exceptions [4,5], exception criticality [6]
and object reactivity.

This paper presents the specification of an evolution of the SaGE ex-
ception handling system [7], which provides solutions to those issues
in the context of systems developed with active objects using one way
asynchronous communications and interacting via the request / response
protocol. Such a context, in which synchronizations constraints are, when
needed, handled at the application level, allows for a very generic view
of what could be done regarding exception handling in all systems that
use active objects. The SaGE solution is original and provides a good
compromise between expressive-power and simplicity.

Keywords: active objects, agents, distributed components, message driven com-
ponents, exception handling, reliability, asynchronous message-based com-
munication.

1 Introduction

Active objects are “objects having their own computing resources i.e. their own
private activity’ [8], or, said differently, objects “decoupling method execution
from method invocation” [9]. Asynchronous Active Objects (AAOs) come in many



forms (actors, agents or components), with various interaction schemes (re-
quest / response or publish / subscribe [10]) and various forms of asynchronous
communication (one-way or two-ways). They are more and more used as, for
example, in multi-agents systems [11], in some distributed components archi-
tectures such as J2EE’s with Message Driven Beans, in programming languages
dedicated to grid applications (e.g. [12]) or to wireless devices on top of mobile
networks as in [13]. AAOs, particularly in these new contexts, raise numerous
issues regarding exception handling that have only been partially studied.

While the masterpieces of a generally accepted solution for exception han-
dling in sequential programs are known, this is not yet the case for concurrent sys-
tems [14], even if some agreements exist. When systems with asynchronous com-
munications are concerned, research works are still much more scattered. Initial
actor languages included basic proposals to cope with exceptions [15] in which
handlers were some dedicated actors, ancestors of today’s exception supervisors,
that had the same lacks, regarding handler contextualization (see Sect. 3.3), as
Smalltalk or Ada initial lexical-scope handlers. Asynchrony has more recently
motivated many research works in various contexts [16,17,18,19,20,21,22,23]but
they only partially address AAO needs. Actually, agent systems are the AAO
context in which exception handling proposals are the most achieved. However
the supervisor model described in [24,25] does not properly handle the con-
textualization issue. Guardian [26,27] is a general and powerful solution which
nonetheless proves to be complex to master and use. As explained in [26], “Often
exception handling in a program is the most complex |[...] part of the system [...]
and has to be either simplified or taken out of the hand of the average program-
mer” and a solution for this is to “separate global level exception handling from
the application agents”.

We have imagined an alternative solution consisting in analyzing and design-
ing a language-level exception handling system dedicated to AAOs that:

— integrates what we consider to be the major research results from studies in
sequential, concurrent or asynchronous contexts, and is expressive enough
to address standard exception handling situations,

— reflects and takes into account the way AAOs and their execution are struc-
tured?,

— is simple enough to be universally used by standard programmers.

The key requirements of the system are: to enforce encapsulation, to provide
a representation for collaborative concurrent activities [14] so that they can
be coordinated and controlled [2], to achieve caller contextualization [28,3] for
handler definition and execution, to handle concurrent exceptions with resolution
functions [4,29], to support asynchronous signaling and handler search and thus
maintain object reactivity and to cope with broadcast messages, widely used in
the request / response protocol.

% We have considered active objects in their less constrained form i.e. as autonomous
entities that provide inter and intra-object concurrency, interact via a request / re-
sponse protocol and use one-way asynchronous communications.



The paper is organized in four sections. Section 2 recalls some basic vocab-
ulary and introduces an example. Section 3 presents the rationale of our main
conceptual choices. Section 4 describes the system specification. It focuses on
the description of the asynchronous handler search policy and explains its util-
ity. Section 5 compares our proposal with related works.
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Figure 1. Execution resulting from a request to a travel agency

2 Definition, Terminology and Example

All objects in our discussion will be AAQs. The following object characteristics
define the context of this study. Objects communicate by exchanging messages
that carry information [10]. Messages are queued in the object’s message box.
Each object owns a thread dedicated to managing its message-box: its scans and
interprets the received messages to trigger corresponding actions. The program
unit executed when a recipient accepts a request carried in such a message is
called a service. Objects can own several services that can be executed concur-
rently in dedicated threads (intra-object concurrency). The request / response
interaction protocol generally comes along with a contract-based approach of
software development, which states that whenever an object accepts a request,



it must provide a response, either standard or exceptional. Our objects use one-
way communications® which means that responses to requests are not carried
back away in the same communication channel that has carried the request, but
by sending new separated messages back to callers [10]. Objects are autonomous:
they can independently decide to start any activity or to handle any received
message in whatever order. A collaborative activity is an activity that involves
several objects or several services of an object in achieving a common goal.

As an illustration, we use the canonical Travel Agency example in which a
Client can send a Broker a reservation message to request a bid for a travel.
The contacted broker then sends a bid request to several travel providers and
waits for their responses. Then, the Broker selects the best offer and requests
the Client and the selected Provider to establish a contract (cf. Fig. 1). Our
code examples use a Java-like syntax. Figure 2 thus shows examples of service
definitions: lines 11-22 define the Poll providers service and lines 24—41 the
Contact Parties one. We call complex services, services the code of which
contain other messages and atomic services the others. In the example, Get
price, that returns a Provider’s bid, is an atomic service (cf. Fig. 1) and Organize
a travel, which handles a Client’s initial request, is a complex one. Broadcast
message that contain collective requests, are frequently used in AAQO applications
and are generally delivered via entities that represent groups of objects as, for
example, roles in MadKIT or topics in J2EE MDBs. We take this kind of requests
into account and use entities that we call bgroups (for broadcast groups) to
denote such groups of objects. A bgroup possesses an (implicit) complex service
that broadcasts the requests it receives to all objects in its collection.

This simple example brings to the fore many pertinent issues: how to control
and interpret an exception asynchronously raised by one of the travel providers?
Where is the best place to interpret it? Should all providers be notified when one
of them fails? Should the broker be able to cancel all requests to travel providers
for a given reason? Where and how to associate a handler for the collaborative
activity that consists in requesting several travel providers concurrently? When
should it be invoked and in which context?

3 Rationale for the SaGE Exception Handling System

Each of the following sub-sections discusses the rationale of some of our choices.

3.1 Coordination of Concurrent Activities

As shown in our previous works [7,30], efficiently handling exceptions in con-
current systems using asynchronous communications requires cooperative con-
currency to be supported, as for other concurrent systems [2,14].This amounts
to provide a representation of collective activities and a way to define handlers

4 Two-ways asynchronous communications generally use future objects [16] which are
more restrictive because the order in which they are read imposes synchronization
constraints.
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public class Broker implements AsyncActiveObject

{

public void handle (GlobalNetworkException exc)
// handler associated to the Broker asynchronous active object

{ ...}

class PollProviders implements Service

{

public void body ()
{ ...}
public void handle (BadParameterException exc)
// handler associated to the PollProviders service
{ signal (new NoAirportInDestinationException (...); }
public void handle (NoProviderException exc)
// handler associated to the PollProviders service

{...}
}
class ContactParties implements Service
{
public void body (O
{

sendMessage (new RequestMessage (aClient,
"ContactSelectedProvider")
{
public void handle (OffLineException exc)
// handler associated to a request
{
wait (120) ;
retry();
}
B

Figure 2. Service and handler definitions in SaGE



at all places in a program where several concurrent participants are working to-
gether to the achievement of a global task. In the example, such a handler should
be defined somewhere at the level of the requesting Broker object it should be
invoked whenever one or more travel providers signal an exception, and it should
be able to access the Broker context.

3.2 Encapsulation

A well-known consequence of the introduction of exception handling primitives
in a language is that it gives programmers constructs to break encapsulation
[31]. If it seems unavoidable to pass arguments from signalers to handlers, it is
possible to act on another concern with encapsulation which occurs each time
handlers are executed in a context where the data they need is not accessible.
This can globally be the case in object languages with all kinds of supervisor-
based models for exception handling [15,32,24] or, more marginally, in procedural
languages with handlers associated to shared data, as initially suggested by [33].

Supervisors are objects dedicated to exception handling, which can be con-
sidered themselves as handlers or to which handlers are attached. The actor
proposal for exception handling [15] is based on that idea. The issue with this
approach is that supervisors are not encapsulated within the objects that experi-
ence the failure and therefore cannot access their internal state without breaking
encapsulation. Our solution to prevent this, experimented in [3,7] is to define and
encapsulate handlers within the object or activity they control.

3.3 Contextualization

“Contextualization” refers to two connected issues: the scope of handlers and the
context in which they are executed. The scope of a handler determines the way
and the order in which they are searched for. It directly impacts the signaling
algorithm. The way handlers are defined and executed determines their context.
Two main approaches can globally be distinguished. In the static approach, han-
dlers have a lexical scope and are executed in an environment that lexically
contains the signaling one. Its main advantages are its simplicity and the fact
that it requires no additional language construct. Conversely, its main drawback
is that it fails to achieve fault tolerant encapsulations [3]. In the dynamic ap-
proach, handlers have a dynamic scope: the portion of the program they control
is execution dependent .

“Caller contextualization” is a variant of the latter approach in which handlers
have a dynamic scope and are executed in the lexical context of the caller of
the faulty routine where they are defined. A simple example of the interest of
caller contextualization is the DivideByZero exception. It is easy to verify that,
whatever the reason DivideByZero has been raised, only the caller of the divide
operation can give a semantically founded interpretation of the reason why the
divisor equals zero and can take an appropriate decision, in its context. This
policy has been globally accepted as the best one for achieving fault-tolerant
encapsulations in contract-based request / response interactions in all sequential



languages (from PL/I, Clu, Mesa, Lisp, Flavors, Clos, C++, ANSI Smalltalk, to
Java).

As far as AAOs are concerned, a choice has to be made among various al-
ternatives. Original actor languages proposed dynamic scope handlers. It was
proposed in [15] to associate an exceptional continuation actor to each message
sending. However, such an actor is unable to access the calling context and there-
fore to give context-dependent answers to exceptions. The exception handling
systems based on supervisors [24] and those that do not propagate exceptions
outside of the thread in which they are signaled (as J2EE MDBs) suffer from the
same lack. Some languages propose both static and dynamic scope handlers to
respectively achieve fault tolerance and exception handling. It is the case of Beta
[34] and Smalltalk in its original blue book version®. They propose two kinds of
exceptions and two means to signal them. The issue for a programmer with such
a system is to know which kind of exceptions to signal.

In fact, caller contextualization is equally well adapted to both sequential
and concurrent contexts. It has been made available to AAO systems by recent
research proposals [7,27]. It has to be noted that applying it to its whole extent
excludes solutions in which an exception in a participant of a collaborative task is
signaled to its brother participants. In our example, this means that an exception
in a single Travel provider would be signaled to all the other providers working
on the same request. Although of effective potential interest [35], we reject this
solution because of its intrinsic complexity for programmers. In our example,
it could lead to very complex and intricate situations as soon as several travel
providers signal exceptions concurrently.

3.4 Resolution, Criticality

Entities that represent a set of collaborating objects are a natural place where
to enable programmers to specify policies to deal with the multiple exceptions
they may concurrently signal. Some resolution mechanism to “concert” or “re-
solve” such exceptions have been proposed in [4,17,36]. A resolution function is a
user defined function that can be attached to entities that represent collaborative
activities (complex services or bgroups). It is invoked to concert the set of excep-
tions that have been signaled to the entity in which it is defined. It receives the
exception object as an argument. Its role is to analyze the situation, to block
and monitor under-critical exceptions [6] or to let pass through critical (con-
certed) ones. A concerted exception globally reflects the incorrect behavior of
the collective activity. In the example, when a Provider-Bgroup sends n requests
to n providers, a resolution function attached to the bgroup can determine that
the failure of one of them is not critical for the collective activity and simply
has to be monitored and that the failure of 90 percent of them should entail
the signaling of a concerted one. In an asynchronous communication world, we

® In the original Smalltalk, lexical scope handlers are standard methods and dynamic
scope handlers are lexical closures passed as arguments (e.g.: aCollection find:
anObject ifAbsent: [...]).



propose to improve these ideas by calling the resolution function (1) as soon as
an exception is signaled in a thread of a collective activity and (2) each time an
exception is signaled, without waiting for the termination of all the services that
constitute the collective activity. The signaling algorithm will be responsible for
achieving these requirements.

4 Specification of SaGE

Our specification classically comes in four steps indicating: to which program
units to attach exception handlers, how to signal exceptions, what can be written
within handlers to put the system back into a coherent state and in which order
handlers are searched for.

4.1 Data Structures for Coordination and Contextualization

Coordination and contextualization require that some dedicated internal data
structures be defined. Caller contextualization first requires that a doubly-linked
tree of service execution contexts be monitored. In such a tree, a node represents
a complex service execution context and a leaf the one of an atomic service.
Callee to caller links are used to look for handlers. Caller to callee are used,
for example, to kill the sub-services of a terminating complex service. Figure
1 shows the execution context tree that results from the services executed in
the travel agency example. Complex services execution contexts are also used to
collect and monitor the results of the execution of their sub-services, either they
be standard results or exceptions.

4.2 Defining Handlers

The standard Fipa request / response interaction pattern is divided in four main
steps:

— Request and acknowledgment: a sender object sends a request to a re-
ceiver object®, which can be an individual object or a bgroup.

— Acceptation: the receiver indicates whether he accepts the request or not.
Acceptation is a commitment to provide a response, either normal or excep-
tional.

— Execution: the receiver executes a service.

— Response: the service execution is finished and the receiver either sends
back a normal response or signals an exception.

5 The complete protocol includes an acknowledgment step to check that the message
has not been lost. For the sake of simplicity, we will always consider here that sent
requests arrive to their destination and that it is the transport layer (middleware)
responsibility to guarantee this.



These steps highlight the role of four key entities in this interaction pattern: the
request, the service, the active object, the bgroup. They are the four program
units to which exception handlers could be attached:

— Handlers attached to requests allow, for example, to specify two different
reactions to the occurrences of two exceptions raised by two invocations of
the same service. Figure 2 (lines 29-38) shows how a handler can be attached
to a specific request.

— Handlers attached to services allow to treat exceptions that are raised,
directly or indirectly, by their execution. If the service is complex, the handler
has to be able to deal with concurrent exceptions, to compose with partial
results or to ignore partial failures. Figure 2 (lines 16-22) shows an example
in which two handlers are attached to a service.

— Handlers attached to bgroups amount to attach them to their implicit ser-
vice (see Sect. 2).

— Finally, handlers attached to objects (see Fig. 2, lines 5-7) are those han-
dlers common to all services, designed, for example, to maintain in an uni-
form way the coherence of the object private data.

These capabilities are powerful enough to encompass most cases and simple
enough to be easy to learn and use. Other systems are either more complex or less
expressive but the comparison requires that the signaling algorithm be presented.
All handlers have a dynamic scope. Resolution functions will be considered later.

4.3 Signaling

Signaling is done by the means of a classical signal primitive (cf. Fig. 3). Signaling
is possible anywhere in the code and of course within handlers.

signal (new SaGEException("select\_error",getownerQueue()));

Figure 3. The signal primitive

4.4 Defining Handlers.

Exception handlers are classically [37] defined by the set of exception types they
should catch and by their body (as illustrated by Fig. 2, lines 32-37, for example):

— A handler can simply restore whatever should be, to put back data into a
coherent state, and can return a value that becomes the value of the ex-
pression the handler is associated to. In case of a message sending expression
(standard or broadcast), the value returned by the handler is the value of the
expression. In case of a handler attached to a service, the value becomes the
value of the service execution. In case of a handler attached to an object, the
value becomes the value of the service execution that raised the exception.



— A handler can also classically signal a new exception (generally of a higher
conceptual level) or re-signal the original one. This behavior is illustrated
on Fig. 2 line 18. Of course, handlers cannot protect themselves against the
exceptions they signal.

— A handler can finally retry the execution of the program unit it is attached
to. To retry [38,39] amounts to entirely re-execute the program unit it is
attached to, generally after having modified the local environment, but in
the same historical context. This possibility is illustrated on Fig. 2, lines
32-37. In case of handlers attached to objects, retrying means re-executing
the service that signaled the exception.

4.5 Handler Search.

Let S,, be the service in which an exception F is raised i.e. that contains the
signaling point (the “call-site”). When F is raised, the execution of S, is sus-
pended (cf. Algo. 1) and the handler search is done using the thread of S,,. If S,
is complex, it continues to monitor responses and other exceptions coming from
its sub-services, the execution of which is not interrupted yet. If a concurrent
sub-service signals another exception E5 during handler search for FE, it will be
either ignored or considered later if no handler is executed for E. It may happen
that no handler be executed for £ when a resolution function considers that F
is not critical.

Algorithm 1 The signal primitive

Require: Exception exc // raised exception object
Service sce «— service in which the signal primitive is called
if sce’s state is "suspended" // exc is signaled during a handler execution then

if the handler that is being executed is attached to a request then
ezecute LocalSearch (exc, sce)
else
call CallerSearch (exc, calling-service)
terminate sce
end if
else
// exc is signaled from outside a handler
sce ’s state < "suspended"
ezecute LocalSearch (exc, sce)
end if

Then, a handler for E is searched for locally:

— first, in the list of handlers associated to S, ,
— then, in the list of handlers associated to the owner object of S,,.



If a suitable handler H is found there, it is executed and its execution termi-
nates the execution of S,,. Along with the execution of H all pending sub-services
of S, if any, are terminated. The caller service of S,, (and all of its other sub-

services) remain unaffected and normally pursue their execution concurrently
with H’s.

Algorithm 2 Handler Search - LocalSearch (Exception exc, Service sce)

Require: Exception exc of type T, Service sce // raised exception object and current
service
if a handler Hr exists attached to sce then
execute Hr
else
if a handler Hr exists attached to the AAO to which sce belongs then
execute Hr
else
if a calling service exists then
call CallerSearch (exc, calling-service)
else
ezecute default handler // top-level has been reached
end if
end if
end if
terminate sce // terminates the service and (if it is a complex one) recursively all its
sub-services

If no handler is found locally, the search process proceeds in the calling
context (service S,_1), in order to guarantee caller contextualization (cf. Sect.
3.3). First S,,—1 is suspended and the search for a handler initiated. The search
in S,,_1 is done concurrently with the termination of .S,,. This original capability
guarantees that all activities that have become useless because of a failure are
terminated as soon as possible. This preserves system resource. The process
carries on as follows:

— first, it searches the list of handlers associated to the request which initiated
S,. There, the resolution function associated to S,,_1 is executed. If it lets
the exception pass through, the search process continues. If not, the search
process stops and no handler will be executed (cf. Sect. 4.6).

— then, it searches the list of handlers associated to S,,_1

— finally, it searches the list of handlers associated to the owner of S, _1.

If no handler is found, the same three steps are repeated once again into
the caller’s caller context (S,—2). This process iterates until either an adequate
handler is found and executed or the root of the service tree is reached. In the
latter case, a default top-level handler is executed.

Algorithm 1 describes the signaling of an exception. Algorithms 2 and 3 de-
scribe the local and the caller’s context part of the handler search process. To



Algorithm 3 Handler Search - CallerSearch (Exception exc, Service sce)

Require: Exception exc of type T, Service sce // raised exception object and current
service
if a handler Hr exists attached to the request sent by sce then
evecute Hr
else
log exc into sce’s exception log
ezecute sce’s resolution function”
if the resolution function returns a concerted exception then
sce ’s state < "suspended"
ezecute LocalSearch (exc, sce)
end if
end if

ease the writing of these algorithms, let us note Hy an exception handler de-
fined to treat exceptions of type T. Let us also define two primitives to call
sub-procedures: ezecute, to denote a sequential call and call, to denote an asyn-
chronous concurrent call. When a procedure is called through the ezecute prim-
itive, it executes in the same thread as its caller. When a procedure is called
through the call primitive, it executes in a thread different from its caller’s. The
remaining instructions in its caller’s context are then executed concurrently with
the called procedure.

4.6 Concerted Exception Support

SaGE provides an exception resolution support (cf. Sect. 3.4) that is integrated
to the handler search. It enables resolution functions to be defined at places
where concurrent activities are launched and have to be co-ordinated i.e. at
the complex service level. There is no need for a resolution function either at
the request level, because requests are atomic, or at the AAQ level because
all semantically sound activities of objects, that need to be co-ordinated, are
accessible via services. Bgroups own resolution functions that are attached to
the implicit complex service they execute. The bgroup acts first as a request
broadcaster and then as a response collector in order to send back a single
(composite) response to the client AAO. The default behavior of the resolution
function associated to a bgroup service is, once all recipients have replied, to
aggregate all the exceptions that occured into a concerted one. Of course, a
programmer can define his own exception resolution function as in the example
of Fig. 4.

In our model, a resolution function is executed each time an exception handler
is searched for in the caller’s context (cf. Algorithm 3). Whatever is done in the
function, three cases are finally possible:

" This is also valid in the case of a Bgroup because the resolution function is in fine
attached to the (default) broadcasting service.



public SaGEException concert (Vector subServicesInfo)

{
int failed = 0;

// count the number of exceptions raised in subservices and
// the number of subservices that are still running
for (int i=0; j<subServicesInfo.size(); i++)
{
if ((ServiceInfo) (subServicesInfo.elementAt(i)).getRaisedException()
'= null)
failed++;

// if more than 30% failed, there are too many bad providers
if (failed > (0.3*subServicesInfo.size()))
return new SaGEException("too_many_bad_providers",getAddress());

// computing still running - no critical situation
return null;

Figure 4. Java-like code of an exception resolution function associated to the Provider
Bgroup

— the exception is critical for the service. The resolution function returns the
exception object and the handler search process carries on.

— the resolution function evaluates that the exception is under-critical and that
nothing more should be done yet. The exception is logged, the resolution
function returns null and the handler search process stops. The collective
activity is not affected. The only service that is terminated is the defective
sub-service.

— the resolution function evaluates that the exception is under-critical but that
there is a need to signal something, for example because too many under-
critical exceptions have been logged. The resolution function returns a special
exception that reflects the situation and the handler search carries on.

Such a use of resolution for concerted exception differs from the original one
[40,29] in that it is adapted to a context in which there are no synchronization
points. A mechanism to calculate the time when the resolution function should
be executed has been proposed in [6]. Our solution consists in tightly integrating
the execution of the resolution function to our handler search mechanism. Our
resolution function is executed each time the handler search process goes back
from a context to its caller. At each step, it can stop the process or let it continue
(with either the original exception or a new, concerted one). This characteristic
makes our system more reactive, because our resolution function evaluates the
situation each time an exception is signaled.



5 Related Works

Concurrent programming systems fall into three main categories when exception
handling is considered. These categories correspond to the kind of concurrency
that is supported [14]. This directly determines how AAOs can interact, and, as
part of their interactions, how exceptions can be signaled between them.

5.1 Isolated Concurrency

Isolated concurrency is provided by standard programming languages such as
Java. Its goal is to allow several AAOs (threads) to execute concurrently in a
shared context (the address space of a virtual machine) as if each of them was
the only existing AAQ. To achieve this, the system enforces that the activity of
an AAO does not interfere with another one. For example, locks are managed on
shared resources in order to transparently serialize concurrent accesses to them.
In the same way, no standard means is provided to send information from a
thread to another. When an exception is raised in an AAQ, it is signaled along its
own execution stack (in its separated execution thread). When the exception is
not caught and reaches the top level of the execution stack, the AAO is destroyed
by the system (the thread is discarded by the thread manager). The other AAOs
are not warned of the failure in order to maintain their isolation.

5.2 Cooperative Concurrency and Exception Handling

Isolated concurrency is only suitable when strictly parallel computations are
to be managed,for example when handling requests from different clients. But
when a set of entities are intended to participate together to the achievement
of a global activity, means to handle their cooperation are then required. More
specifically, in such forms of cooperative concurrency, there is a crucial need to
manage how the individual failure of an AAO impacts the global activity and,
as a consequence, should impact the activity of other entities.

Monitors. A first technique is to provide specific entities which role is to moni-
tor other entities and to implement how errors are to be handled when the global
context of the monitored entities is considered. Java proposes that a thread can
belong to a ThreadGroup. When an exception is raised and uncaught in a thread
T , it is then signaled to the thread group to which T belongs. A unique han-
dler, that catches all the signaled exceptions, can be associated with the thread
group. This allows basic actions to be carried out, such as to kill threads that are
still running in the thread group, in order to terminate the whole activity of the
group. Some SMAs provide such a mechanism in the form of supervisor agents.
Supervisors are agents that monitors other agents in the system and to which
exceptions are signaled.They are used, for example, to react to the death of an
agent (killed by an uncaught exception) and warn other agents that it cannot
be reached any more. In Erlang [22], supervisor processes can be tied to other



ones to be informed of their termination. In Oz [20], asynchronous exception re-
lated to distribution are handled thanks to dedicated monitors. Monitors enable
a good separation of concerns, because they keep behaviors dealing with errors
well separated from behaviors dealing with normal activities. However, they raise
encapsulation and contextualization issues. When used for AAQOs, monitors can
only perform external, platform-level, generic actions such as to suspend, restart
or destroy an AAQO. Monitors are finally somehow restricted to the handling of
generic exceptions because they have no access (unless breaking encapsulation)
to objects’ internal state and, generally, to any contextual information about the
cause of the exception. This drastically limits the applicability of monitors when
specific errors, regarding the specific coordinated activity of a set of entities, are
to be handled.

CA Actions. A common solution, in systems that tackle this contextualization
issue, is that collective activities of coordinated concurrent entities must become
explicit, in order to structure the global execution contexts and provide a support
to handle exceptions. A CA Action [14] allows the representation of a collective
activity to which different entities, called participants, contribute concurrently.
Different variants of this concept, along with different EHSs, have been proposed.
In [41], a CA Action is defined as a sort of contract that ties together all the
participant entities. As a part of the contract, these participants must provide
support for the handling of a common set of exceptions. When an exception
is raised by one of the participants, it is signaled to the others. This way, all
the participants to a CA Action suspend their individual activity (and thus
suspend the execution of the whole global activity). The system then enforces a
synchronization point between all the participants. When multiple, concurrent
exceptions are signaled, this policy ensures that a same set of exceptions is finally
signaled to each participant. Each participant resolves this exception set thanks
to an exception resolution tree provided by the CA Action (and thus common
to all the participants): this entails that each participant finally handles the
same resolved exception. However, the handlers that are eventually triggered are
specific to each participant and are cohesive parts of their behavior. This model
addresses the contextualization issue stressed above. Exceptions pertaining to a
global activity are handled by having its participants contribute collectively to
their treatment, as a result of the coordinated execution of their own handlers.
One concern with such a model is the cost of the coordination between the
participants. Indeed, it implies the exchange of numerous messages in order
to inform the other participants of exceptions and of execution suspensions.
Moreover, it entails a strong coupling between the participants as it requires a
common set of exception types and a common exception resolution tree to be
used. This model is therefore not perfectly suited for highly distributed and open
systems.

Guardians. Among other things, various improvements have been introduced
to the above model in [26,42,27]. A CA Action is monitored by a special par-



ticipant, called a “guardian”. Participants signal to the guardian exceptions that
are global to the CA Action. The guardian then suspends the execution of all
the participants, while collecting concurrent exceptions. The set of exceptions
collected by the guardian is then resolved thanks to a first set of rules that de-
termines what unique global exception is to be handled. Next, a second set of
rules is used to transform the global exception into the specific exceptions that
will finally be signaled to each participant. This way, only one participant, the
guardian, needs to track the exceptions and the status of other participants.
Moreover, the cooperation of the participants, when handling global exceptions,
is defined by the set of rules of the guardian. Rules are tailored to adapt to
the specific behavior of each participant, so that no predefined requirement is
to be imposed to the participants. Providing a complex and powerful solution,
Guardian is especially relevant to deal with exceptions related to shared envi-
ronments where all participants can effectively cooperate to restore a consistent
state. This kind of exceptions encompasses system-level exceptions that warn
of the faulty state of some shared resource (disk, memory, network, ...). SaGE
provides a simpler solution when handling exceptions related to collaborating
pairs of objects such as clients and servers.

5.3 Collaborative Concurrency and Exception Handling

Models discussed in the previous section indeed share the idea that when an
exception occurs in the context of a collective activity, handlers are sought and
executed in all its participants. Besides, in situations in which couples of entities
collaborate together, for example when a server informs its client that it has
failed to achieve some requested service, signaled exceptions are to be handled
in the context of the caller. Exceptions are therefore much more efficiently han-
dled as responses sent by the server than as broadcasted information. To deal
with such responses, many systems for asynchronous programming use “future”
objects [16,43,20]. Futures are response holders that are immediately returned
to client entities when they asynchronously request a service to a server AAQO.
When a client needs to use the value of a response, it tries to access the value of
the corresponding future. If no value is yet bound, the client AAQO can perform
a blocking wait. When an exception is bound to a future instead of a standard
value, it is signaled to a client when the future is read. The client then usu-
ally handles it with some classical built-in try-catch like constructs. The main
advantages of such a solution are its simplicity and its ability to be seamlessly
integrated to existing programming languages. Its drawback is that it does not
cope with complex situations. For example, when requests are sent concurrently
to different servers, it is difficult to foresee the best order in which futures should
be read in order not to wait for an unbound response while others are yet avail-
able and could be treated. This is one of the reasons why we think that reactive
AAO models are more interesting for exception handling. With futures, excep-
tions cannot be treated as soon as possible and can sometimes be simply lost
when some futures are not read. In a reactive system, like the one in which we
have specified our system, exceptions are signaled asynchronously by sending



messages and can therefore be treated as soon as they occur. The implementa-
tion of SaGE in a future-based context has not been done yet but the resulting
system would be more limited than today’s one.

Erlang [22] has a sophisticated EHS to deal with exceptions within concurrent
processes and also proposes an asynchronous message sending based solution to
signal process termination exceptions from one process to another. In Erlang,
messages that contain exceptions cannot be distinguished from others and, as a
consequence, the handling of asynchronous exceptions can only be ad hoc. On
the contrary, SaGE carry exceptions with messages that, when received, trigger
a full-fledged EHS. Finally, to cope with concurrent exceptions, [44] also sug-
gests the introduction of future groups in order to gather the exception of a set
of futures and apply a resolution function to them. But this solution requires
the writing of a lot of code to explicitly deal with future groups. With SaGEg,
the support for exception resolution is directly integrated in the EHS. Provided
that corresponding resolution functions are defined, concurrent exception man-
agement does not require any extra programming.

6 Conclusion and Future Work

In this paper, we have proposed a specification of an exception handling system
adapted to asynchronous active objects. We have especially focused on service-
oriented systems and on the request / response interaction scheme. Our system
aims at combining simplicity, usability at the language level by standard pro-
grammers, integration and adaptation of known key-solutions for sequential and
concurrent exception handling and full integration of active objects. Our solu-
tion conforms to all the key requirements identified in Sect. 1: encapsulation and
reactivity enforcement, ability to write context-dependent handlers, ability to
coordinate and control group of active objects collaborating to a common task,
ability to configure the exception propagation policy by defining exception res-
olution functions, ability to immediately handle exceptions that are critical or
to only log under-critical ones until their conjunction enables a diagnosis to be
established. We propose dynamic scope handlers associated to requests, services
and objects. Resolution functions can be defined at the service level, which is the
place where collaborative tasks can be coordinated. They come together with a
signaling primitive, a handler search algorithm and a handler invocation mech-
anism that take into account the execution history and, when possible, work
asynchronously to improve object reactivity. So this model is especially suited
for applications that need few synchronization and a high level of concurrency
and reactivity.

We implemented and successfully experimented this model both with MadkiT,
to handle exceptions in multi-agents systems, and with the open-source Jonas
J2EE implementation, to provide a fault-tolerant support to the execution of
asynchronous message driven beans (MDBs). We think the set of design choices
that make SaGE a good compromise between expressive-power and simplicity can
be adapted to various kinds of active objects, to various forms of asynchronous



communications (e.g. future-based) and to different interaction protocols (e.g.
publish /subscribe). We also think it is general enough to be used as a base level
for the implementation of systems offering higher-level control structures for
fault tolerance, such as conversations [45] or transactional systems [46,47].These
all are future works objectives as is the introduction of the resumption model of
exception handling in our system. Indeed, we do think that the restart construct
and protocol introduced in the Flavor system [37,48] are of primary importance
in a dynamic world of interacting objects.
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