Exceptional Use Cases

Aaron Shui', Sadaf Mustafiz', Jérg Kienzle!, Christophe Dony?

tSchool of Computer Science, McGill University, Montreal, Canada
2LIRMM, Université de Montpellier, Montpellier, France
aaron@rome.com,sadaf@cs.mcgill.ca,Joerg.Kienzle@mcgill.ca,dony@lirmm. fr

Abstract. Many exceptional situations arise during the execution of an
application. When developing dependable software, the first step is to
foresee these exceptional situations and document how the system should
deal with them. This paper outlines an approach that extends use case
based requirements elicitation with ideas from the exception handling
world. After defining the actors and the goals they pursue when inter-
acting with the system, our approach leads a developer to systematically
investigate all possible exceptional situations that the system may be ex-
posed to: exceptional situations arising in the environment that change
user goals and system-related exceptional situations that threaten to
fail user goals. Means are defined for detecting the occurrence of all ex-
ceptional situations, and the exceptional interaction between the actors
and the system necessary to recover from such situations is described
in handler use cases. To conclude the requirements phase, an extended
UML use case diagram summarizes the standard use cases, exceptions,
handlers and their relationships.

1 Introduction

Most main stream software development methods define a series of development
phases — requirements elicitation, analysis, architecture and design, and finally
implementation — that lead the development team to discover, specify, design
and finally implement the main functionality of a system, which dictates the
system’s behavior most of the time. However, there are also many exceptional
situations that may arise during the execution of an application. When using
a standard software development process there is no guarantee that such situ-
ations are considered during the development. Whether the system can handle
these situations or not depends highly on the imagination and experience of the
developers. As a result, the final application might not function correctly in all
possible situations.

When developing dependable systems, i.e. mission- or safety-critical systems
where a malfunction can cause significant damage, nothing should be left to
chance. Following the idea of integrating exception handling into the software
life cycle [1,2], this paper describes an extension to standard use case-based
requirements elicitation that leads the developers to consider all possible excep-
tional situations that the system under development might be exposed to. We
believe that thinking about exceptional behavior has to start at the requirements
phase, because it is up to the users of the system to decide how they expect the

system to react to exceptional situations. Only with exhaustive and detailed user
feedback is it possible to discover and then specify the complete system behav-
ior in a subsequent analysis phase, and decide on the need for employing fault
masking and fault tolerance techniques for achieving run-time reliability during
design.

The rest of the paper is structured as follows. Section 2 provides background
information on use cases and exceptions. Section 3 defines some terminology and
outlines the proposed extensions to standard UML use cases. Section 4 describes
our proposed process, and illustrates the ideas by means of an elevator control
case study. Section 5 presents related work in this area, and the last section
draws some conclusions.

2 Background

2.1 Exceptions

An exceptional situation, or short exception, describes a situation that, if encoun-
tered, requires something exceptional to be done in order to resolve it. Hence,
an exception occurrence during a program execution is a situation in which the
standard computation cannot pursue. For the program execution to continue,
an extraordinary computation is necessary [3].

A programming language or system with support for exception handling,
subsequently called an exception handling system (EHS) [4], provides features
and protocols that allow programmers to establish a communication between a
piece of code which detects an exceptional situation while performing an opera-
tion (a signaler) and the entity or context that asked for this operation. An EHS
allows users to signal exceptions and to define handlers. To signal an exception
amounts to:

identify the exceptional situation,

to interrupt the usual processing sequence,

to look for a relevant handler and

to invoke it while passing it relevant information about the exception.

b s

Handlers are defined on (or attached to, or associated with) entities, such as data
structures, or contexts for one or several exceptions. According to the language,
a context may be a program, a process, a procedure, a statement, an expression,
etc. Handlers are invoked when an exception is signaled during the execution or
the use of the associated context or nested context. To handle means to set the
system back to a coherent state, and then:

1. to transfer control to the statement following the signaling one (resumption
model [1]), or

2. to discard the context between the signaling statement and the one to which
the handler is attached (termination model [1]), or

3. to signal a new exception to the enclosing context.

2.2 UML and Use Cases

The Unified Modeling Language (UML) [5] defines a notation for specifying,
constructing, visualizing, and documenting the artifacts of a software-intensive
system. UML is intentionally process-independent. However, it offers a variety
of diagrams that unify the scores of graphical modeling notations that existed
in the software development industry in the 80’s and 90’s. The diagram we are
focussing on in this work is the use case diagram.

Since their introduction in the late 80’s [6], use cases are a widely used formal-
ism for discovering and recording behavioral requirements of software systems
[7]. A use case describes, without revealing the details of the system’s internal
workings, the system’s responsibilities and its interactions with its environment
as it performs work in serving one or more requests that, if successfully com-
pleted, satisfy a goal of a particular stake-holder. The external entities in the
environment that interact with the system are called actors.

In short, use cases are stories of actors using a system to meet goals. The
standard way of achieving a goal is described in the main success scenario.
Alternatives or situations in which the goal is not achieved are usually described
in extenstons. Use cases are in general text-based, but their strength is that they
both scale up or scale down in terms of sophistication and formality, depending
on the need and context. They can be effectively used as a communication means
between technical as well as non-technical stake-holders of the software under
development.

Use cases can be described at different levels of granularity [8]. User-goal level
use cases describe how individual user goals are achieved. Optional summary
level use cases provide a general overview of how the system is used. Finally,
subfunction level use cases can be written that encapsulate subgoals of higher
level use cases.

Some development methods, for example the object-oriented, UML-based
development method Fondue [9], define a textual template that developers fill
out when elaborating a use case. Using a predefined template forces the developer
to document all important features of a use case, e.g. the primary actor (the
one that wants to achieve the goal), the level, the main success scenario and the
extensions. Fig. 1 shows an example Fondue use case.

Whereas individual use cases are text-based, the UML use case diagram
provides a concise high level view of all (or a set of) use cases of a system. It
allows the developer to graphically depict the use cases, the actors that interact
with the system, and the relationships between actors and use cases.

3 Terminology and Proposed Extensions

3.1 Goals, Exceptional Goals and Failure to Achieve Goals

Each user-level use case describes a unit of useful functionality that the system
under development provides to a particular actor. It details all interaction steps
that an actor has to perform in order to achieve his / her goal. Typical goals

are, for instance, withdrawing money from a bank account, placing an order for
a book on an online store, or using an elevator to go to a destination floor (see
Fig. 1).

Sometimes, however, exceptional situations arising in the environment, i.e.,
situations that cannot be detected by the system itself, might cause actors to
interact with a system in an exceptional way. The situations are exceptional in
the sense that they occur only rarely, and they change the goals that actors have
with the system, either temporarily or permanently. Sometimes even new actors
— exceptional actors — start interacting with the system in case of an exceptional
situation.

Very often, such situations are related to safety issues. In an elevator system,
for example, a fire outbreak in the building causes the elevator operator, an ex-
ceptional actor, to activate the fire emergency mode (see Fig. 5), in which all
elevator cabins go down to the lowest floor to prevent casualties or physical dam-
age in case the ropes break. Activating the emergency behavior is an exceptional
goal for the elevator operator, since this happens only in very rare occasions.

But even if all actors interact with the system in a normal way, system-related
exceptional situations might prevent the system from providing the desired func-
tionality to the actor. For example, insufficient funds can prevent a successful
withdrawal, an order might not be fulfillable because the book is currently out
of stock, or a motor failure might prevent a user from taking the elevator. In
such cases, the goal of the actor cannot be fulfilled.

In general, the exceptional situation triggers some exceptional interaction
steps with the environment. One of the steps is (or should be!) to inform the
actor of the impossibility to achieve the goal. Once informed, the actor can decide
how to react to the situation. The system itself might also be capable of handling
the problem, for instance by suggesting to withdraw a smaller amount of money,
or by suggesting to buy some other book, or by activating the emergency brakes
and calling the elevator operator (see Fig. 6).

3.2 Exceptions in Use Cases

It is important to discover and then document all possible exceptional situations
that can interrupt normal system interaction. Any exceptional situation that is
not identified during requirements elicitation might potentially lead to an incom-
plete system specification during analysis, and ultimately in an implementation
that lacks certain functionality, or even behaves in an unreliable way.

Use cases describe the interaction that happens between actors and the sys-
tem under development to achieve the primary actor’s goal. In Fondue, the
standard way of achieving the goal is called the main success scenario. Use cases
also offer the possibility to add extensions to the main success scenario in case
the interaction takes a different route. Certain extensions can still be considered
“normal” behavior, since they represent alternate ways of achieving the actor’s
goal.

Exceptional situations in use cases are situations that interrupt the flow of
interaction leading to the fulfillment of the actor’s goal. From now on, we’ll use

the word exception to refer to such exceptional situations!. An exception oc-
currence endangers the completion of the actor’s goal, suspending the normal
interaction temporarily or for good. We propose to give names to all exceptions
that can occur while interacting with the system under development, and to doc-
ument them in a table together with a small textual description. As mentioned
in section 3.1 we will distinguish between exceptions arising in the environment,
subsequently called actor-signaled exceptions, and exceptions internal to the sys-
tem that prevent the system from providing the requested service, subsequently
called system-detected exceptions.

3.3 Handler Use Cases

Just like it is possible to encapsulate several steps of normal interaction in a sep-
arate subfunction-level use case, an exceptional interaction that requires several
steps of handling can be described separately from the normal system behavior
in a handler use case. The major advantage of doing this is that from the very
beginning, exceptional interaction and behavior is clearly identified and sepa-
rated from the normal behavior of the system. This distinction is even more
interesting if it can be extracted at a glance from the use case diagram.

In a use case diagram, standard use cases appear as ellipses (see Fig. 10),
associated to the actors whose goals they describe. We propose to identify han-
dler use cases with a <<handler>> stereotype, which differentiates them from
the standard use cases. To allow developers to identify exceptional behavior at
a glance, handler use cases can be represented in the use case diagram with a
special symbol or using a different color. Handler use cases for actor-signaled
exceptions, i.e. handlers that describe exceptional goals, are self-contained, just
like standard use cases. Handlers that address system-detected exceptions on the
other hand may not necessarily be meaningful by themselves, but only within
the context of a normal use case. However, handlers are full-fledged use cases
in the sense that they can include sub-level handler use cases, or have them-
selves associated handlers that address exceptions that might occur during the
processing of an exception.

Separation of handlers also enables subsequent reuse of handlers. Just like a
subfunction-level use case can encapsulate a subgoal that is part of several user
goals, a handler use case can encapsulate a common way of handling exceptions
that might occur while processing different user goals. Sometimes even, different
exceptions can be handled in the same way. Associating handler use cases to
other use cases is described in section 3.4.

3.4 Linking Exception, Handlers and Use Cases

Just like in standard exception handling, where exception handlers are associated
to exception handling contexts, handler use cases apply to a base use case, in

L It is important to point out that the meaning of exception at the requirements level
is not directly related to exceptions as defined by modern programming languages.
The term exception is used at a higher level of abstraction here.

this case any standard use case or other handler use case. We suggest to depict
this association in the use case diagram by a directed relationship (dotted arrow)
linking the handler use case to its base use case.

This relationship is very similar to the standard UML < <extends>> rela-
tionship. It specifies that the behavior of the base use case may be affected by
the behavior of the handler use case in case an exception is encountered. Similar
to the explicit extension points introduced in UML 2.0, the base use case can
specify the specific steps in which the exception might occur (see Fig. 7 step 4a),
but does not need to. In the latter case, the exceptional situation can affect the
base processing at any time.

In case of an occurrence of an exceptional situation, the base behavior is put
on hold or abandoned, and the interaction specified in the handler is started.
A handler can temporarily take over the system interaction, for instance to
perform some compensation activity, and then switch back to the normal inter-
action scenario. In this case, the relationship is tagged with a <<interrupt &
continue>> stereotype. Some exceptional situations, however, cannot be han-
dled smoothly, and cause the current goal to fail. Such dependencies are tagged
with < <interrupt & fail>>. This is similar to the resumption and termination
models reviewed in section 2.1.

The < <interrupt & continue>>and < <interrupt & fail>> relationships
also differ from the < <extends> > relationship in the sense that they apply also
to all sub use cases of a base use case. In the elevator example presented in the
next section, for instance, an Emergency Override can interrupt Take Elevator,
and therefore also any of the included use cases of Take FElevator, namely Call
Elevator, Ride Elevator and Elevator Arrival.

Finally, the exceptions that activate the handler use case are added to the
interrupt relationship in a UML comment. The notation follows the notation that
was introduced in UML 2.0 to specify extension points for use cases. An example
of an extended use case diagram for the elevator system with all exceptions,
handler use cases and relationships is shown in Fig. 10.

4 Exception-Aware Process and Elevator Case Study

This section introduces our exception-aware requirements elicitation process and
illustrates it based on a case study, a reliable and safe elevator system. For the
sake of simplicity, there is only one elevator cabin that travels between the floors.
There are two buttons on each floor (except for the top and ground floors) to
call the lift, one for going up, one for going down. Inside the elevator cabin, there
is a series of buttons, one for each floor.

The job of the development team is to decide on the required hardware, and
to implement the elevator control software that processes the user requests and
coordinates the different hardware devices. So far, only “mandatory” elevator
hardware has been added to the system. The approaching of the cabin at a floor
is detected by a sensor. The elevator control software may ask the motor to go
up, go down or stop, and the cabin door to open or close.

Use Case: TakeElevator

Scope: Elevator Control System

Primary Actor: User

Intention: The intention of the User is to take the elevator to go to a destination
floor.

Level: User Goal

Frequency & Multiplicity: A User can only take one elevator at a time. However,
several Users may take the elevator simultaneously.

Main Success Scenario:
1. User CallsElevator.
2. User RidesElevator.

Extensions:
la. The cabin is already at the floor of the User and the door is open. User enters
elevator; use case continues at step 2.
1b. The user is already inside the elevator. Use case continues at step 2.

Fig. 1. TakeElevator Use Case

4.1 Describing Normal Interaction

To start off the requirements elicitation phase, the use cases that describe the
interaction with the system under normal conditions are elaborated. In the ele-
vator system there is initially only one primary actor, the User. A user has only
one goal with the system, namely to take the elevator to go to a destination
floor, described in the user-goal level use case TakeFElevator shown in Fig. 1.

As we can see from the main success scenario, the User first calls the ele-
vator (step 1), and then rides it to the destination floor (step 2). The potential
concurrent use of the elevator is documented in the Frequency & Multiplicity
section [10].

The CallElevator and RideFElevator use cases are shown in Fig. 2. To call the
elevator the User pushes the up or down button and waits for the elevator cabin
to arrive. To ride the elevator the User enters the cabin, selects a destination
floor, waits until the cabin arrives at the destination floor and finally exits the
elevator.

CallElevator and RideFElevator both include the FElevator Arrival use case
shown in Fig. 3. It is a subfunction level use case that describes how the system
directs the elevator to a specific floor: once the system detects that the elevator
is approaching the destination floor, it requests the motor to stop and opens the
door.

The use cases that describe the normal interaction between the user and the
elevator control system can be summarized in a standard UML use case diagram
as shown in Fig. 4.

4.2 Actor-Signaled Exceptions

The next step in our process consists in identifying exceptional situations that
arise in the environment that make actors deviate from their initial goal, or
change their goals completely. Sometimes actors change their goals spontaneously,
sometimes changes in the environment influence the behavior of actors. In any

Use Case: CallElevator
Primary Actor: User
Intention: User wants to call the elevator to the floor that he / she is currently on.
Level: Subfunction
Main Success Scenario:
1. User pushes button, indicating in which direction he / she wants to go.
2. System acknowledges request.
3. System schedules ElevatorArrival for the floor the User is currently on.
Extensions:
2a. The same request already exists. System ignores the request. Use case ends in
success.

Use Case: Ride Elevator

Primary Actor: User

Intention: The User wants to ride the elevator to a destination floor.

Level: Subfunction

Main Success Scenario:
1. User enters elevator.
2. User selects a destination floor.
3. System acknowledges request and closes the door.
4. System schedules ElevatorArrival for the destination floor.
5. User exits the elevator at destination floor.

Extensions:
la. User does not enter elevator. System times out and closes door. Use case ends
in failure.
2a. User does not select a destination floor. System times out and closes door.
System processes pending requests or awaits new requests. Use case ends in failure.
5a. User selects another destination floor. System acknowledges new request and
schedules ElevatorArrival for the new floor. Use case continues at step 5.

Fig. 2. CallElevator and RideFElevator Use Case

Use Case: ElevatorArrival
Primary Actor: N/A
Intention: System wants to move the elevator to the User’s destination floor.
Level: Subfunction
Main Success Scenario:
1. System detects elevator is approaching destination floor.
2. System requests motor to stop.
3. System opens door.

Fig. 3. ElevatorArrival Use Case

Elevator Control System

Call Elevator
xS
Take Elevator By
Tncluges,,

Fig. 4. Standard Elevator Use Case Diagram

NET

Y
Elevator
Arrival

LanddT

ser
Ride Elevator

Use Case: UserEmergency < <handler>>
Contexts & Exceptions: TakeElevator{EmergencyStop}
Primary Actor: User
Intention: User wants to stop the movement of the cabin.
Level: User Goal
Frequency & Multiplicity: Since there is only one elevator cabin, only one User
can activate the emergency at a given time.
Main Success Scenario:
1. System initiates EmergencyBrake.
2. User toggles off emergency stop button.
3. System deactivates brakes and continues processing requests.

Use Case: ReturnToGroundFloor < <handler> >

Contexts & Exceptions: TakeElevator{EmergencyOverride}

Primary Actor: Elevator Operator

Intention: Elevator Operator wants to call the elevator to the ground floor because
the elevator operation is too dangerous.

Level: User Goal

Frequency & Multiplicity: Only one ReturnToGroundFloor use case can be active
at a given time.

Main Success Scenario:
1. System clears all requests and requests motor to go down.
2. System detects that elevator is approaching the ground floor and requests motor
to stop.
3. System opens elevator door.

Fig.5. UserEmergency and ReturnToGroundFloor Handler Use Case

case, the system has to interrupt its current processing and try to fulfill the new
goal.

Exceptions arising in the environment are communicated to the system by
special actions of actors — hence their name actor-signaled exceptions. A depend-
able system must react to actor-signaled exceptions in a well-specified way. If the
handling requires exceptional interaction steps with the primary actor or other
secondary actors, then a handler use case must be defined. The handler is then
linked to the context, i.e. the use case in which th exception can occur.

Actor-signaled Exceptions in the Elevator Case Study In the elevator
case study we identified two actor-signaled exceptions. EmergencyStop is signaled
by the User actor pushing the emergency button in the elevator in case he wants
to interrupt the movement of the cabin. EmergencyOverride is signaled by an
exceptional actor, the elevator operator, using the emergency override key on the
ground floor in case of an emergency, for example a fire outbreak in the building.
In our case, both exceptions can interrupt the normal system operation at any
time, so their context is TakeFlevator.

Fig. 5 shows the handler UserEmergency that handles the exception Emer-
gencyStop. The system immediately activates the emergency brakes. Subse-
quently, the User can toggle off the emergency button to reactivate the elevator.
The system then resumes the original use case because the relation between
TakeFElevator and UserEmergency is < <interrupt & continue>>.

The EmergencyOverride exception is handled by the ReturnToGroundFloor
handler use case, also shown in Fig. 5. ReturnToGroundFloor interrupts and fails
the TakeFElevator use case.

4.3 System-Detected Exceptions

Each use case must now be examined to see if there are any system-related ex-
ceptional situations that can make the use case goal fail. Up to now we have
assumed that actors are reliable, that hardware never fails, and that communi-
cation with hardware and actors is reliable as well. However, this is an unrealistic
assumption that a safety-critical application such as the elevator control software
cannot make.

Each use case must be looked at step by step, and every interaction classi-
fied into input and output interactions. Inputs and outputs may fail, and the
consequences and ways of dealing with such a failure must be identified. If the
consequences endanger the accomplishment of the user goal, then the system
must detect the failure — hence the name system-detected exception — and ad-
dress the situation. Detection might require additional hardware or timeouts.

Once the exception is detected, ways of addressing the exception have to
be investigated. Very often, actors — especially humans — are “surprised” when
they encounter an exceptional situation, and are subsequently more likely to
make mistakes when interacting with the system. Exceptional interactions during
exception handling must therefore be as intuitive as possible, and respect the
actor’s needs. Again, all interaction steps addressing an exception have to be
recorded in handler use cases.

Input Problems If omission of input from an actor can cause the goal to fail,
then, once the omission has been detected, different options of handling the
situation have to be considered. For instance, prompting the actor for the input
again after a given time has elapsed, or using default input are possible options.
Safety considerations might make it even necessary to temporarily shutdown the
system in case of missing input. Invalid input data is another example of input
problem that might cause the goal to fail. Since most of the time the actors are
aware of the importance of their input, a reliable system should also acknowledge
input from an actor, so that the actor realizes that she is making progress in
achieving her goal.

Output Problems Whenever an output triggers a critical action of an actor, then
the system must make sure that it can detect eventual communication problems
or failure of an actor to execute the requested action. For example, the elevator
control software might tell the motor to stop, but a communication failure or a
motor misbehavior might keep the motor going. Again, additional hardware, for
instance, a sensor that detects when the cabin stopped at a floor, or timeouts
might be necessary to ensure reliability.

Use Case: RedirectElevator < <handler>>
Context & Exception: ElevatorArrival{MissedFloor}
Primary Actor: N/A
Intention: System redirects the elevator to a different floor because the destination
floor is unreachable.
Level: Subfunction
Main Success Scenario:
1. System cancels request to stop at destination floor.
2. System detects elevator is approaching a floor.
3. System requests the motor to stop.
4. System detects elevator is stopped at floor.

Use Case: EmergencyBrake < <handler>>
Context & Exception: TakeElevator{MotorFailure}
Primary Actor: N/A
Intention: System wants to stop operation of elevator and secure the cabin.
Level: Subfunction
Main Success Scenario:
1. System stops motor.
2. System activates the emergency brakes.
2. System turns on the emergency display.

Fig. 6. RedirectElevator and EmergencyBrake Handler Use Case

System-Detected Exceptions in the Elevator Case Study To illustrate
the process, let us go step by step through the use case ElevatorArrival (see
Fig. 3). The first step involves the floor sensor informing the system that the
elevator is approaching a floor. A floor sensor defect might cause the elevator to
miss a destination floor. In this case, the corresponding handler RedirectElevator,
shown in Fig. 6, stops the cabin at the next floor.

In Step 2 of FElevatorArrival the system requests the motor to stop. In case
the motor malfunctions and does not stop, the emergency brakes have to be
activated immediately. This is done by the EmergencyBrake handler, also shown
in Fig. 6.

Finally, in step 3 of ElevatorArrival, the system requests the door to open.
This output can only be sent after a successful stop of the motor. For reliability
reasons, a “stop detection” mechanism, such as an additional sensor that monitors
the cabin speed, must be added to the system. Additionally the door might fail
to open in step 3. In this case, the elevator could move to a different floor and
try to open the door there. Without threatening reliability, we can also choose
to ignore the failure and continue processing the next request, and hence leave it
up to the user in the elevator to decide to either retry the floor, go to a different
floor or push the emergency button. Fig. 7 shows the updated, reliable version
of the FElevatorArrival use case.

Looking at the CallElevator and RideElevator use case, we can detect a
common problem that might prevent the goals from succeeding: the elevator
door might be stuck open, for instance because an obstacle prevents it from
closing. This case is handled by the DoorAlert handler use case. Another ex-
ceptional situation occurs when there are too many passengers in the elevator.

Use Case: ElevatorArrival
Primary Actor: N/A
Intention: System wants to move the elevator to the User’s destination floor.
Level: Subfunction
Main Success Scenario:
1. System detects elevator is approaching destination floor.
2. System requests motor to stop.
3. System detects elevator is stopped at destination floor.
4. System opens door.
Extensions:
4a. Exception{DoorStuckClosed}
System continues processing the next request (it is up to the user to select a new
destination floor or press the emergency button). Use case ends in failure.

Fig. 7. Updated FElevatorArrival Use Case

Use Case: DoorAlert < <handler>>
Primary Actor: N/A
Context & Exception: TakeElevator{DoorStuckOpen}
Intention: System wants to alert the passengers that there is an obstacle preventing
the door from closing.
Level: Subfunction
Main Success Scenario:
1. System displays “door open”.
2. System turns on the buzzer.
3. System requests the door to close.
Step 3 is repeated until the door closes.
4. System detects that the door is now closed.
5. System turns off the buzzer.
6. System clears the display.

Use Case: OverweightAlert < <handler> >
Primary Actor: N/A
Context & Exception: RideElevator{Overweight}
Intention: System wants to alert the passengers that there is too much weight in the
elevator.
Level: Subfunction
Main Success Scenario:
1. System displays “overweight”.
2. System turns on the buzzer.
3. System detects that the weight is back to normal.
4. System turns off buzzer.
5. System clears display.

Fig. 8. DoorAlert and OverweightAlert Handler Use Case

The OverweightAlert handler addresses this exception. The DoorAlert and Over-
weightAlert handlers are shown in Fig. 8.

The step-by-step analysis of the use cases must then be recursively applied to
all the handlers, because handlers may themselves be interrupted by exceptions.
In our system, the EmergencyBrake, OverweightAlert and DoorAlert handler
use cases all wait until the situation is resolved. In case the problem persists for
a certain amount of time, the elevator control system should notify an elevator

Use Case: CallElevatorOperator <<handler> >

Context & Exception: EmergencyBrake{ElevatorStoppedTooLong|, = Overweigh-
tAlert{Overweight TooLong}, DoorAlert{DoorStuckOpenTooLong}

Intention: The system wants to alert the elevator operator, so that the elevator op-
erator can come and assess the damage.

Level: Subfunction

Main Success Scenario:
1. System cancels all pending requests.
2. System displays “calling operator “.
3. System calls operator.

Fig. 9. CallElevatorOperator Handler Use Case

operator. The elevator operator can then evaluate the situation and, if necessary,
call a service person. This functionality is described in the handler use case
CallElevatorOperator shown in Fig. 9.

4.4 Requirements Elicitation Summary

In parallel to the elaboration of the individual use cases and handlers, we pro-
pose to build an extended exception-aware use case diagram providing a detailed
and precise summary of the partitioning of the system into normal and excep-
tional interactions. The diagram follows the syntax described in sections 3.3
and 3.4. User expectations of handling exceptional situations are documented in
handler use cases identified with the < <handler>> stereotype, and attached to
their respective contexts with <<interrupt & continue>> or <<interrupt &
fail>> relationships. For traceability and documentation reasons, the diagram
should also be accompanied with a table that records all discovered exceptions,
together with a small textual description of the situation, the exception context,
the associated handler, and the mechanism of detecting the situation.

The extended use case diagram for the elevator control system is shown in
Fig. 10. The aforementioned exception table for the elevator system with the
detailed descriptions of each exception is not shown here for space reasons.

5 Related Work

Main stream software development methods currently deal with exceptions only
at late design and implementation phases. However, several approaches have
been proposed that extend exception handling ideas to other parts of the software
development cycle.

De Lemos et al. [2] emphasize the separation of the treatment of requirements-
related, design-related, and implementation-related exceptions during the soft-
ware life-cycle by specifying the exceptions and their handlers in the context
where faults are identified. The description of exceptional behavior is supported
by a cooperative object-oriented approach that allows the representation of col-
laborative behavior between objects at different phases of the software develop-
ment.

ElevatorQperator ser

Exception: =
{EmergencyOverride}

<<\merrupt & fai>

<<handler>>
----------------------------- User

<<interrupt & continue>>
Emergency
Exception: Exception:
%, Dy (DoorSluckOpen} {MotorFailure}
"z/\

|
<cincludes> | - - » \y«mc\ude»

’7’07,, N
<<handler>>
Ride Elevator DoorAlert

A
A Ty Excepti
I s%, <~ (Overweighty
1

o
o,
7
o%
N

<<handler>>
ReturnTo
GroundFloor

Take Elevator

.
vc*‘*f

A
~ ey g faifss,

<<handler>>
Emergency
Brake

= Exception:
{EIevalorSloppedTooLong) \
Exception: G
{OverweightTooLong} /’7’6,.,1/ <<interrupt & fail>> |

’a/A ~<

—
Exception:

{DoorStuckOpenTooLong}

| <<include>>

S

<<handler>>
CallElevator
Operator

<<handler>>
Overweight
Alert

<<handler>>
Redirect
Elevator

Elevator
Arrival

<<interrupt &
continue>>

<<interrupt & faib>>

Fig. 10. Reliable Elevator Use Case Diagram

Rubira et al. [11] present an approach that incorporates exceptional behavior
in the development of component-based software by extending the Catalysis
software development method. The requirements phase of Catalysis is also based
on use cases, and the extension augments them with exception handling ideas.

Our approach is different from the above for several reasons. Firstly, we help
the requirements engineers to discover exceptions and handlers by providing a de-
tailed process that they can follow. Without a process, the only way a developer
can discover exceptions is based on her imagination and experience. Secondly,
our process increases reliability even more by helping the developers detect the
need for adding “feedback” and “acknowledgement” interaction steps with actors
to make sure that there were no communication problems. Additionally, the pro-
cess recommends adding of hardware to monitor request execution of secondary
actors when necessary. Finally, our handler use cases are stand-alone, and can
therefore be associated with multiple exceptions and multiple contexts.

6 Conclusion

We believe that when developing reliable systems, exceptional situations that
the system might be exposed to have to be discovered and addressed at the
requirements elicitation phase. Exceptional situations are less common and hence
the behavior of the system in such situations is less obvious. Also, users are more
likely to make mistakes when exposed to exceptional situations.

In this paper we propose an approach that extends use case based require-
ments elicitation with ideas from the exception handling world. We define a
process that leads a developer to systematically investigate all possible excep-
tional situations that the system may be exposed to, and to determine how the

users of the system expect the system to react in such situations. The discov-
ery of all exceptional situations and detailed user feedback at an early stage is
essential, saves development cost, and ultimately results in a more dependable
system.

We also show how to extend UML use case diagrams to separate normal
and exceptional behavior. This allows developers to model the handling of each
exceptional situation in a separate use case, and to graphically show the depen-
dencies among standard and handler use cases.

Based on our exception-aware use cases, a specification that considers all
exceptional situations and user expectations can be elaborated during a subse-
quent analysis phase. This specification can then be used to decide on the need
for employing fault masking and fault tolerance techniques when designing the
software architecture and during detailed design.

For more information on our exception-aware process, and for details on
how we extended the UML 2.0 metamodel to incorporate our extensions, the
interested reader is referred to [12].

References

1. Goodenough, J.B.: Exception handling: Issues and a proposed notation. Commu-
nications of the ACM 18 (1975) 683 — 696

2. de Lemos, R., Romanovsky, A.: Exception handling in the software lifecycle. In-
ternational Journal of Computer Systems Science and Engineering 16 (2001) 167
- 181

3. Knudsen, J.L.: Better exception-handling in block-structured systems. IEEE Soft-
ware 4 (1987) 40 — 49

4. Dony, C.: Exception handling and object-oriented programming: Towards a syn-
thesis. In Meyrowitz, N., ed.: 4th European Conference on Object—Oriented Pro-
gramming (ECOOP ’90). ACM SIGPLAN Notices, (ACM Press)

5. Object Management Group: Unified Modeling Language: Superstructure. (2004)

6. Jacobson, I.: Object-oriented development in an industrial environment. In: Con-
ference proceedings on Object-oriented programming systems, languages and ap-
plications, ACM Press (1987) 183 — 191

7. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. 2nd edn. Prentice Hall (2002)

8. Cockburn, A.: Writing Effective Use Cases. Addison—Wesley (2000)

9. Sendall, S., Strohmeier, A.: Uml-based fusion analysis. In: UML’99, Fort Collins,
CO, USA, October 28-30, 1999. Number 1723 in Lecture Notes in Computer Sci-
ence, Springer Verlag (1999) 278-291

10. Kienzle, J., Sendall, S.: Addressing concurrency in object-oriented software devel-
opment. Technical Report SOCS-TR-2004.8, McGill University, Montreal, Canada
(2004)

11. Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Fliho, F.C.: Exception handling
in the development of dependable component-based systems. Software — Practice
& Experience 35 (2004) 195 — 236

12. Shui, A.: Exceptional use cases - Master Thesis, School of Computer Science,
McGill* University (2005)

