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1 I n t r o d u c t i o n  

The 1970s saw the development of exception handling systems dedicated to procedural programming (Good- 
enough, 1975; Ichbiah, 1979; Liskov & Snyder, 1979; Mitchell, Maybury & Sweet, 1979). Such tools and the 
associated mechanisms were designed to enhance software reliability, reusability, readability and debugging. 
The 1980s saw the emergence of object-oriented technology which brought to programmers a new way of think- 
ing about and designing their programs, as well as some new tools to make the programs more modular and 
reusable. 

Today, object-oriented language designers and users are showing a renewed interest in exception han- 
dling. Exception handling systems have recently been, or are being, integrated into many object-oriented 
languages (C++ (Koenig & Stroustrup, 1990), CommonLisp(+CLOS) (Pitman, 1988), Eiffel (Meyer, 1988), 
Smalltalk(ParcPlace Systems, 1989) etc.). There are two main reasons for this interest. Firstly, as object- 
oriented languages become more sophisticated, the problem of coping with exceptional situations occurring at 
run-time becomes more complex and the need for appropriate tools and language mechanisms to detect, handle 
and correct errors more crucial (Purchase & Winder, 1991). Secondly, the infeasibility of achieving information 
hiding and modularity at a large scale without exception handling systems. 

The goal of the workshop, organized by the authors, was to compare existing systems developed for object- 
oriented languages and to address various issues connected with the semantics and the implementation of these 
systems. The call for participation for the workshop stated many of these issues, the main ones being: 

• The relationship between exception handling, software quality, modularity and reusability. 

• The problem of object consistency in the presence of exceptional events. 

• The level of modularity used to associate handlers with code. 

• The role of formal specifications. 

• The use of reflection. 

• The problems raised by concurrency. 

Some other issues were raised during the workshop: 

• Should the exception handling system be implemented using the host language or should the exception 
handling system be an integral primitive of the language? To paraphrase: should exception handling be 
an integral part of the language or should it be implemented on top of the language? 

• Should exception handling be separate from, or be in-line with, the main code? 
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A number of different exception handling systems were presented during the morning, followed by discussion 
in the afternoon. The presented systems were sufficiently different to form an interesting overview of various 
techniques associated with various languages. The Smalltalk exception handling system (ParcPlace Systems, 
1989) is dedicated to a dynamically typed language with strong requirements for rapid prototyping. The 
Eiffel mechanism has been designed for a strongly typed language with strong requirements for reliability and 
robustness. The system designed for BETA is also dedicated to a strongly typed language, but it is built using 
an original technique initially applied to block-structured systems. The other systems presented, those for Solve, 
P-Sather, the University of Washington distributed system and ANSA-DPL, put the emphasis on numerous 
issues connected with concurrency. 

In the first part of this paper we give an overview of these presentations. In the second part, we summarize 
the main results of the discussion. It is important to realize that many issues were not fully discussed and 
others were left unresolved. Nonetheless we feel it important to introduce these issues, as well as the more 
fully discussed ones, as it was agreed they will become more important in the future when the more immediate 
problems are resolved. To start the discussion however, we present a short state of the art summary to ensure 
that the reader appreciates the historical background of the field. 

2 E x c e p t i o n s :  T h e  S t a t e  of  the  Art  

2.1  S y s t e m s  f o r  P r o c e d u r a l  L a n g u a g e s  

The specifications of existing exception handling systems for procedural languages have all been influenced by 
Goodenough's seminal paper (Goodenough, 1975). Well known implementations include MESA (Mitchell, May- 
bury & Sweet, 1979), CLU (Liskov & Snyder, 1979) and ADA (Ichbiah, 1979). These systems have introduced 
the following ideas: 

* An exception handling system should provide infrastructure allowing programmers to establish commu- 
nication between a function or procedure which detects an exceptional condition while performing an 
operation, and those functions or procedures that are clients of this operation and wish to handle the 
error. Exceptions thus allow users to associate handlers with statements or expressions, the association 
taking effect when the statement is evaluated. Handlers are functions or procedures able to access the 
environment in which they are defined. 

• It is possible to have a stack of handlers, a handler associated with an inner statement can hide a handler 
associated with an outer one. When an exception is signaled, the execution stack is searched from 
innermost to outermost stack frame for a handler. 

• When invoked, handlers are executed in the lexical environment of their creation, they also are able to 
receive arguments from the signaller. 

• Different functionalities are offered by various systems to restore an errant system to a coherent state. 
Handlers can either: 

1. transfer control to the statement following the signalling one (resumption), or 
2. discard the context between the signaling statement and the one to which the handler is attached 

(termination), or 
3. signal a new exception. 

• An important feature for readability and information hiding is the ability to declare potential exceptional 
results in the public interface of procedures and the opportunity to trap all possible exceptions with a 
single handler. 

2 .2  S y s t e m s  f o r  O b j e c t - O r i e n t e d  L a n g u a g e s  

Most exception handling systems developed for object-oriented languages (Dony, 1988; Knudsen, 1987; Koenig 
&~ Stroustrup, 1990; Lacourte, 1991; Purchase & Winder, 1990) except that developed for Smalltalk, inherit 
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the characteristics described above. In Smalltalk, handlers can only be associated with classes, and, when an 
exception is raised, handlers are searched in the class where the method is defined. Advantages and drawbacks 
of this approach have been discussed in (Dony, 1990). The main drawback being that  exceptions are not 
propagated to callers of the signaling method, making it difficult to ensure information hiding. Several systems 
(Dony, 1988; Purchase & Winder, 1990) combine the classical scheme and the Smalltalk association scheme. 
That  is, they allow handlers to be defined at the class level but they take the invocation history into account 
while looking for handlers after an exception occurs. 

The data  structure design of many systems (Dony, 1990; Koenig & Stroustrup, 1990; ParcPlace Systems, 
1989) has been influenced, to a greater or lesser extent, by the Flavors system (Moon & Weinreb, 1983) in which 
exceptions are classes. An instance of one of these classes is created when an exception is raised. All handlers 
for that  exception receive this instance as a single argument, it holds in its slots the information about the 
exceptional event. The CLOS exception handling system (Pitman, 1988) is a modern system, directly inspired 
by that  of Flavors. The advantages of this representation are: 

* The ability to organize exceptions into ~n inheritance hierarchy reflecting the possible sharing of structures 
and behavior. 

. The ability to trap any subset of exceptions with a single handler. 

. The ability to define handling primitives on exception classes and to invoke them via message sending to 
the instance argument, making it impossible to perform an inappropriate action for a given exception. 

• The simplification of the signaling process (as shown in (Dony, 1990)), due to the distribution of handling 
primitives on various abstract exception classes which restricts the number of signaling primitives. 

3 T h e  P r e s e n t a t i o n s  

The first part of the workshop was devoted to a number of presentations. Two of these (Deutsch and Nerson) 
were solicited by the organizers, the others were selected by the organizers from the position papers received. 
The criterion used was essentially: "Would a presentation of the attendee's position and work act as a basis 
for useful discussion." This was clearly a subjective decision by the organizers, but we could see no sensible 
alternative. We believe that  no attendee suffered, in the final analysis, from not being able to put forward their 
views and that  the selection worked to generate constructive debate. 

We offer here our (subjective) summary of the presentations in the order given at the workshop. The later 
ones are somewhat less full since many of the issues had been raised in the earlier presentations. We have 
not had the chance to circulate this to all the attendees prior to publication, thus, there may be factual errors 
(hopefully not). If there are, then we are confident they will come to light very quickly. 

3 .1  J a n  P u r c h a s e  & R u s s e l  W i n d e r -  E x c e p t i o n s  i n  S o l v e  

The Solve programming language (Roberts, Wei & Winder, 1990) is an object-oriented language designed to 
harness parallelism. It was developed as part of an ESPRIT project (1588 SPAN) to act as a framework for 
integrating heterogeneous subsystems on a parallel machine. Although the language was designed to allow 
separate object specification and implementation, it initially had no support for exceptions and was deficient in 
its support for debugging. To correct these faults, work was undertaken to introduce exceptions both to handle 
exceptional events and to integrate computation monitoring and debugging. 

In Solve, each object is an instance of a type, with a communications process responsible for receiving mes- 
sages, binding them to methods and initiating method processes; Solve supports multiple method processes for 
each object, running concurrently. Communication is achieved via a mail-drop transport mechanism supporting 
object migration. The reader is referred to the papers cited above for details, the crucial point here is that, 
despite the significant concurrency available, each object has a single process responsible for message receipt 
and, hence, for method binding; message reception and semantic interpretation is thus serialized. 

Solve now supports preconditions and postconditions associated with each method of a type. This is similar 
to and inspired by Eiffel (Meyer, 1988). Solve, however, goes further: Domain conditions and event trace 
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conditions can be associated with each type and, hence, each object in the system. Assertion inheritance is 
supported with a semantics somewhat different from that of Eiffel. Unlike many languages, exceptions are 
not raised explicitly in code; exceptions are not a general-purpose programming tool to handle asynchronous 
events but are only available to handle exceptional events. Exceptions and their handling are declared and 
assertions made regarding the event sequences, states and methods. Exceptions may or may not be a run-time 
consequence of this declaration. These features permit a very flexible specification of object behaviour, any 
violation of which is an exception. 

Assertion checking and exception handling are controlled by the binding process (dispatcher). On message 
reception the following takes place: the current object state is temporarily saved then the domain assertions, 
trace assertions and preconditions for the pending method checked. If these assertions are satisfied, the method 
is executed. The postcondition and domain assertions are then checked. If these are satisfied, the state is 
updated (by updating only the amended values) and any result returned. If at any stage an assertion fails or 
there is a exception created in any message send during the execution of the method, a named exception is 
raised. Exception handlers are associated with the possible exceptions in the implementation of the object. 
Possible actions are: 

1. Repair the state and retry. 

2. Terminate the program. 

3. Signal the message sender (raise a new, named exception in the parent), 

4. Spawn a debugging process. 

As befits the object-oriented approach, only local state repairing is permitted within handlers. 

The specification of the type of an object gives a list of the potential exceptions that may be signalled by 
an object of that type. Users of an object are expected to be able to handle the full set of exceptions, either 
to actively handle them or to pass them on to their client, with a transformation of name to make it more 
meaningful at that level of abstraction. 

Below are fragments of the specification and implementation for a generic stack. The example is explicitly 
over-asserted in order to demonstrate most of Solve's features. 

Signature  Stack(SomeType) 
SuperTypes (Object) 
InstanceOperations 

Monitor Stk 
push : (<SomeType>) -> <selfType> 

postcondition (pushFailed) 
pop : () -> <SomeType> 
top : () -> <SomeType> 

precondition (stackEmpty) 
isempty : () -> <Boolean> 
EndMonitor 

DomainConditions 
infeasibleSize 

TemporalProtocol 
nonEmptyStack 

satisfies t r  
inwhich $a 
iff Sa!send(pop) <= $a!send(push) 

End 

In the implementations of the pre- and post-conditions, primed variables refer to the after state, the unprimed 
variables to the before state. Note: The exception is signalled only if the assertion evaluates false. For brevity, 
we show only the implementation details concerning the method push. 
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Implementation Stack(SomeType) 
Includes (Object) 
InstanceSection 

Local storaEe <List(SomeType)> 

Export Const push <Method((SomeType), selfType)> := 
[ <SomeType> item [ 

storaEe<--atInsert(1, item) ; 
=> self 
] 

postcondition ( 
badAddition [ self'<--top()<--eq(item) ] 
wrongSize [ storage'<--length()<--subtract(1)<--eq(storage<--length()) ] 

) 

LinkSection 
Handles precondition::badAddition With pushError 
Handles postcondition::wrongSize With internalError 

HandlerSection 
Local Const pushError <Method((), Void)> := 
[ 

self<--dispatcher'retry(2) ; 
self<--dispatcher'toclient(pushFailed) 
] 
Local ConstinternalError <Method((), Void)> := 
[ 

self<--dispatcher'debug() 
] 

DomainSection 
infeasibleSize [ storage<--length()<--ge(O) ] 

End 

This model is based on the work reported in (Purchase & Winder, 1990) to which the reader is referred 
for further detail about the syntax and semantics of behavioural specification. We should note that,  as work 
progresses, changes in Solve syntax have had to be made for consistency reasons. A publication is forthcoming 
detailing the final syntax (Winder et al., 1991). 

The emphasis of the work is to integrate in a single mechanism all types of exception (software and hardware); 
to provide a more formal basis for specifying object behaviours; and to provide for the harnessing of parallelism. 
Consequently, this leads to easier debugging and better robustness of software. 

3.2  P e t e r  D e u t s c h  - -  E x c e p t i o n s  in S m a l l t a l k  

Peter Deutsch was invited to present an overview of the exception handling system of ParcPlace Smalltalk, 
introduced in version 2.4 of the language and slightly modified in versions 2.5 and 4. This new system replaces 
the previous Smalltalk system by introducing a stack-oriented discipline. Handlers can be associated with any 
expression, they cannot be defined at the class level, and after an exception the execution stack is searched for 
a valid handler. Handlers can resume, terminate or signal a new exception but it is also possible to specify at 
signaling time that  resumption will be impossible. 

Two classes comprise the system. The class S igna l  represents exceptional conditions. Exceptions are 
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signaled and handlers are defined by sending messages to instances of this class. An example of signaling: 

aSignal := Signal new. 
aSignal raiseWith: anArgument 

It is possible to determine at the point where a S i g n a l  is defined whether the exception will be resumable 
or not. Several primitives are defined to signal exceptions. It is an error to raise an exception that  requests 
resumption when the associated signal as been defined as not resumable. 

The following is an example of defining a handler: 

aSignal handle: [:arg [ handler-body] do: [protected-expression] 

Instances of class signal can be linked together with a specific link named parent, this allows the trapping, 
with a single handler, of a signal and all its children. A handler is a block (a lexical closure) accepting one 
argument passed at handler invocation time. The argument will be an instance of the class Excep t ion ,  which 
represents an occurrence of an exceptional condition and holds information in its slots, for example the argument 
passed to the method r a i s e W i t h : ,  to enable execution. Handling is performed by sending messages to this 
argument. Thus, methods performing resumption, termination and so on are defined on the class Excep t ion .  

The following is an example of a handler response: 

FileDirectory class methodsFor: 'utilities' 

isDirectory: fileName 
"Answer true if the file is a directory." 

"Filename errorReporter inaccessableSignal 
handle: [:ex I ex returnWith: false] 
do: [fileName asFilename isDirectory] 

This data  structure organization, with two classes, has been compared with the Flavors system. Deutsch ad- 
mit ted that  disconnecting the signal hierarchy, composed of "parent" links, from the class inheritance hierarchy 
and putt ing handling protocols in a separate class E x c e p t i o n  leads to a less expressive system. For example, 
there is no place to store a method dedicated to the handler response for a particular signal, e.g., a redefinition 
of the method r e t u r n W i t h  providing additional handling before the call of the primitive one. The reason for 
doing so was to avoid the creation of too many new classes which are computationally expensive objects in 
Smalltalk (have global names, are managed by the environment, etc.). The system is open and there is nothing 
to prevent a user from changing the default handling behaviour of exception objects or the signal objects of 
which they are arguments. 

Experiences with using this mechanism were offered. Exceptions are used in all the parts of the implementa- 
tion of Smalltalk, e.g., for controlling the correct termination of processes, for controlling underlying operating 
systems errors (the underlying system exceptions are trapped and converted in Smalltalk exceptions), for con- 
trolling the user actions in the debugger, for ensuring the integrity of managers like the emergency evaluator 
that run externally provided code, for implementing catch-throw behavior in various places, etc. An interesting 
conclusion is that ,  according to Deutsch, allowing resumable signals was not a good idea. There are only three 
places in the system where they are used and all of them could have been avoided by defining different handlers 
and by using the "retry" instead of the "resume" option. Furthermore, resumption is expensive since it requires 
the creation of a lexical closure each time a handler is defined. 

Another major  point he made concerns "unwind protection". In systems in which both resumption and 
termination are allowed, cleanup actions cannot be defined within handlers since the handler does not know, 
when propagating an exception, whether the original method will be restarted or not. A specific primitive, 
externally disconnected from the exception handling system, allows users to specify cleanup actions to be 
executed at the end of an operation. This primitive is mainly used in Smalltalk to ensure that  external resources 
(e.g., files and semaphores) are released after execution. The problem is that  the execution stack needs to be 
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protected before any resource allocation is done, otherwise a window of vulnerability exists between allocating 
resources at the beginning of a new operation and protecting the stack, during which an exception could leave 
resources un-released. Although this window can be made very small, the problem cannot be totally overcome 
without altering Smalltalk significantly. 

The last point concerned the implementation. The first was done entirely in Smalltalk and used the Smalltalk 
ability to represent, when needed, its stack frames as first class objects, directly accessible from the language. 
However this turned out to be quite expensive since each time an exception was raised it was necessary to retry 
stack frames. In the new implementation, modifications have been made so that  frames in which handlers could 
be defined are recognized by the virtual machine. 

3 . 3  J e a n - M a r c  N e r s o n  - -  E x c e p t i o n s  i n  E i f f e l  

The Eiffel exception handling system was introduced into the language approximately three years ago. Exception 
handling was seen as essential to Eiffel since without it, a program had to terminate if a contract could not be 
satisfied. This was deemed to be unsatisfactory. The following quote from Nerson's talk introduces the Eiffel 
philosophy: 

Exceptions in Eiffel are treated not as a control structure but as a technique for dealing with 
abnormal situations when some unexpected event prevents a routine from fulfilling its specification. 
The mechanism is based on the Eiffel constructs for assertions; the fundamental  idea is "programming 
by contract", and exceptions are needed when some contract is broken. Exceptions in Eiffel are raised 
when one of the following situations is detected: 

* Violation of an assertion, when monitored. 
• Failure of a called routine. 
• Access to a non-existent object, as in x . f  where x is a void reference. 
• A hardware or operating system exception occurs, indicating some abnormal event (numerical 

overflow, user interrupt, I / O  error etc.) during the execution of the routine. 

The notion of contract is defined by the pre- and post-conditions and by the invariants of the routine and of 
the class in which the routine is defined. The originality of the system lies in the connections between exceptions 
and the assertions controlling the contract; exceptions are raised when: 

1. A pre- or post-condition is violated. 

2. It is impossible for a routine to do anything other than propagate an exception to its caller. 

When an exception occurs during the execution of a routine, the rescue clause of the routine (if it exists) 
is executed, otherwise the routine is said to fail and the exception is propagated to the caller. Rescue clauses 
are the Eiffel version of handlers, they can be associated only with the whole routine body. They can also be 
defined at the class level. Within the rescue clause, two techniques are available to the programmer: 

1. Retry the execution of the whole routine body after some modifications to the state has been made. 
Retrying without any modification would clearly cause an infinite loop, but the compiler does not check 
for this. Retrying is achieved by explicit use of the r e t r y  keyword within the rescue clause. We must 
at this point highlight a problem with the terminology: Nerson used the word resumption to describe 
the retry operation, whereas resumption is more usually used to mean that  the handler does not discard 
the execution stack enabling execution to restart immediately after the operation that  raised the original 
exception. As we will see later, some kind of resumption (with the usual meaning) is possible in Eiffel. 

2. "Organized panic", bring all affected objects to a coherent state without using the retry option. This 
will automatically trigger an exception in the caller, which will recursively have to decide what to do in 
response to this exception, having the same two possible choices. 

Here is an example taken from Nerson's presentation. 
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quasi inverse (x: REAL): REAL is 
local 

already_tried: BOOLEAN 
do 

if not already_tried then Result := I/x else Result := 0 
end 
rescue 

already_tried := true; 
retry 
end -- quasi_inverse 

Markku Sakkinen suggested that  it would be simpler to write R e s u l t  = 1/x in the do clause and R e s u l t  : = 0 
in the rescue clause. Tha t  is, why not allow rescue clauses to end the routine by returning a result, provided 
that  the relevant assertions are re-checked after the rescue clause? Nerson responded that  the Eiffel philosophy 
was to enforce a programming style in which the semantics of the operation implemented by the routine can 
be found in its body, rescue clauses being kept as small as possible. Hence when Eiffel supports algorithmic 
redundancy, all alternatives are located in the same method body. 

The Eiffel system as described above seems simple to understand and to use, but its expressive power is quite 
limited compared to systems in which handlers receive an exception object as an argument. For those users 
wanting to write more sophisticated handlers in the rescue clause, Nerson presented the class "Exception" which 
provides a set of features to be used in rescue clauses. This library allows users to identify the current exception, 
to provide different responses for different exceptions (recall that  the rescue clause traps all exceptions), to know 
in which routine the exception occurred, etc. Unfortunately, this information is propagated and can violation 
encapsulation (see later). In order that  such features be accessible in the rescue clause of a method,  the class 
in which the method is defined has to inherit from the class Exception which some considered to be counter- 
intuitive. 

3 . 4  J e r g e n  K n u d s e n  &: O l e  M a d s e n  - -  E x c e p t i o n s  i n  t h e  M j ¢ l n e r  B E T A  S y s t e m  

J0rgen Knudsen presented the exception handling system used in the BETA language. The language has 
no formal support  for exception handling, instead a language convention, using existing syntax, is adopted. 
Exceptions are represented as BETA "virtual patterns",  a variant of the pat tern describing the construction of 
classes or individual objects. It is possible to associate handlers at the class, method, instruction and individual- 
object level. The mechanism is based on a static approach, i.e., there is no run-time search mechanism to find 
handlers. The BETA system allows termination, a variant of propagation, and resumption. The latter means 
that  handlers have to be executed on top of the stack, which in turns means that  the handler should not destroy 
any part of it. In classical systems allowing resumption, when an exception is raised, the handler is searched in 
the stack without destroying it and is invoked on top of the stack. In the BETA system, handlers are explicitly 
passed as arguments to the protected routine when the exception is raised. We focus on several aspects of this 
system which differ from classical designs. As BETA's syntax and vocabulary are somewhat idiosyncratic, we 
will try to use more common-place terms whilst discussing these issues. 

Firstly, the static approach, with no language primitives dedicated to exception handling, requires a usage 
convention of the language features. It is not clear how this affects readability of BETA code or the discipline of 
the exception handling mechanism. Handlers can be defined at the program level (programs can be divided into 
sub-programs in order to have different handlers for the same exception in different part  of the program), at 
the class level, at the object level and at the message-sending level. Defining a handler at the message-sending 
level means explicitly passing the handler as an argument of the message. In all cases, handlers are executable 
objects (called exception patterns), and are referenced by the name of an exception (e.g., Overflow). Signalling 
an exception amounts to directly calling the handler by its name, doing so will invoke the first visible exception 
pattern of that  name, that  is: the handler passed as an argument; the handler associated with the receiver of 
the current method; the handler associated with the receiver's class (or one of its super-classes); or the handler 
associated with the program (or sub-program). In this hierarchy of handlers, each one can pass control to 
the next higher-level one. BETA's designers call this propagation, but the reader should beware of the subtle 
difference between this propagation and propagation through the invocation chain (see discussion below). If 
we exclude the ability to pass handlers as arguments when calling a service, this system resembles (although 

24 



C. Dony, J Purchase, R. Winder 

it is significantly less powerful) the original Smalltalk exception handling system (see the introduction and the 
report of Deutsch's presentation). In both systems, handlers are searched in the lexically or statically visible 
part of the program (if we consider that within a method, the class of the receiver and its super-classes are 
lexically visible). 

The BETA system's exception handling mechanism has several advantages, e.g., no addition to the language 
has to be made to support it. However, since handlers are statically bound to a context, on occasion the 
programmer has to manually check whether a handler name has a further binding in a subpattern. Also, when 
a caller does not pass a handler as argument when invoking a service, the exception will be handled locally by 
the handler defined on the receiver or on its class and will never be resignalled to the caller. It is debatable 
whether this restricts reusability (see the discussion). It does mean that blind propagation, as defined in the 
glossary, is impossible. That is, it is impossible to go down in the invocation chain to find a handler which is 
aware of the semantics of the initial call that finally led to the exception and which is able to handle it with 
more specificity than the general statically defined handlers could. 

3 .5 H e i n z  S c h m i d t  - -  E x c e p t i o n  in  p S a t h e r  

Sather is a (sequential) language derived from Eiffel. pSather is an extension that introduces parallelism and 
exception handling. Deferred assignment (futures), low level synchronization primitives and multiple threads, 
synchronized by monitor objects, are the language constructs used to control concurrency. Like Solve, the excep- 
tion handling system is designed to enhance robustness and debuggability. Hardware and software exceptions 
are treated identically and handling may be by termination or resumption. Exceptions are raised explicitly 
using a catch-throw mechanism which, like that of C--b+, uses the type of the argument thrown as a search 
criterion for the handler. The mechanism is defined in the language using a series of low level primitives, the 
default system being inherited from abstract classes, pSather emphasizes the physical separation of normal and 
exception handling code. 

One major issue addressed by pSather is what action to take in the case of a terminating thread. Since 
all thread manipulation is done via monitor objects, they alone "see" all the concurrent threads. If one of 
these threads terminates propagating an exception, the monitor breaks. Thereafter, any thread touching it is 
terminated by an exception and termination of the monitor object handles the error. Although exceptions are 
not first class objects in pSather (whereas they are in MultiLisp), the solution to the threads problem employed 
a similar solution to Deutsch's implementation of the MultiLisp style futures in Smalltalk. 

3 .6  A s h u t o s h  T i w a r y  & H e n r y  L e v y -  E x c e p t i o n s  in  t h e  U n i v e r s i t y  o f  W a s h i n g -  
t o n  D i s t r i b u t e d  S y s t e m  

Tiwary introduced their problem as being the development of an exception handling mechanism for distributed 
systems that retains all the semantics of classical sequential exception handling systems. Since such systems 
involve subsystems implemented in different languages running concurrently, the requirement is for a policy 
rather than an implementation. He claimed that exception handling issues are orthogonal to language issues, 
that a given exception handling policy and architecture can be implemented in any language. Issues of stack 
unwinding appear to present some of the biggest problems. Tiwary argued against restricting the scope of 
handler to the thread in which it was raised or requiring parent and child processes to synchronize for the 
exception delivery. He maintained that exceptions should be allowed to travel asynchronously across thread 
and processor boundaries. 

Tiwary explicitly avoided issues of implementation, emphasizing the design issues such as where to hold the 
exception handler environment, how to deal with synchronous versus asynchronous events and handlers etc. 
He identified the difficulty with exception handling in parallel as finding the context of error; it is frequently 
not preserved at a process fork. Insisting on synchronization to deliver exceptions is not a "natural" answer. 
Problems also arise if the parent of the handler is killed before exception can be raised - -  giving rise to non- 
determinism due to "orphaned" handlers. Tiwary proposed a handler forwarding mechanism to overcome this, 
forcing all processes to leave a forwarding address for exceptions before they die. Language-wise, a toolkit 
approach was proposed using objects to represent exceptions and signals, not dissimilar to that presented by 
Deutsch earlier. 
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3.7  A n d r e w  W a t s o n  - -  E x c e p t i o n s  in  A N S A  D P L  

Watson's presentation also concerned distributed systems. ANSA is a distributed architecture with an au- 
tonomous object-based (no classes) programming model. DPL is a statically typed language, its blocks a r e  

instruction sequences which successfully result in one anonymous termination (normal case) or fail with one 
of a set of named terminations (exceptions). It uses these terminations to provide a dynamically scoped re- 
sult mechanism, not dissimilar to the catch/throw mechanism in Lisp. DPL terminations can be used as an 
exception signaling mechanism and to provide multiple result signatures for operations. 

Exceptions are used as a natural programming technique for handling asynchrony; errors become part of 
the technique and style of programming. Resumption is not an acceptable option for exception handling in this 
system mainly because of the heterogeneous and distributed nature of the applications. Further, all actions 
regarding exceptions appear to be handled as synchronous events to fit in with the transaction-based model for 
all activity in an application. 

The system does not use stack searching or other such mechanisms to associate handlers with exceptions. 
Rather the handler is a hidden parameter in a function call. This is reminiscent of the BETA system. A type 
error results if an object has terminations its clients cannot handle (except communication failure, which, given 
its ubiquitous presence in distributed environments, all objects can handle). Note that analogies can be drawn 
between terminations and continuations (as in functional languages), and between exceptions and closures being 
passed around. 

4 T h e  D i s c u s s i o n  

The discussion session was relatively anarchic. The main reason for this was not so much lack of control by 
the chair, rather that we were trying to find out what the crucial questions were as well as answering them as 
opposed to investigating solutions to particular, well known questions. What we have attempted to do in this 
report is factor out various thoughts and comments related to a number of specific questions identified by the 
workshop. 

4.1 Does exception handling violate encapsulation and what are its connections 
with reusability? 

Serge Lacourte explained that if a programmer pops data from a stack object and gets for example an eraptyList 
exception, this can reveal too much about the underlying implementation of the stack. That is, it can vio- 
late encapsulation. Also, information about how the exception was caused and where exactly it came from, 
which is often passed to the handler (see the instance variable o r i g i n a t o r  in (ParcPlace Systems, 1989) or 
s igna l ingContex t  in (Dony, 1990)) violate encapsulation when passed up the invocation chain. 

The group agreed that each method or class should have the exceptions it can signal defined in its signature 
and that these exceptions should be of the same conceptual level as the service performed by the method. 
Encapsulation need not be violated if, at each stage of propagation, the propagating object alters the name of 
the exception (and its details) to reflect the increased level of abstraction at that stage. Conversely, exceptions 
that are not at the same conceptual level as the service offered should not be propagated outside of the method. 
This last case has been called blind propagation because it generally happens when a method does not trap 
the exceptions raised by the inner method call it performs. However, Knudsen and Schmidt pointed out that 
for some general purpose exceptions like "failure", or in all cases in which a method does not know exactly 
which operations it will call, blind propagation was unavoidable and useful. This situation can always happen 
wherever there is genericity in dynamically-typed languages or indeed whenever there are generic types. It can 
also be a problem in the presence of any higher-order programming capability (methods or blocks passed as 
arguments). 

With respect to reusability, it has been said that not to propagate exceptional results of a conceptual level 
equal to that of the operation breaks reusability, since callers of operations generally have better solutions for 
handling than general default handlers or static handlers that are unaware of the computation history. 
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4.2 W h a t  Parts  of Except ion  Handl ing  must  be I m p l e m e n t e d  in the  Language 
and W h a t  Parts  as Language Primit ives?  

This question caused a distinct dichotomy in the group between those who felt that  an exception handling 
system should be implementable on top of a language and those that  felt that  exception handling should be 
embodied in primitives of the language. 

One argument against exception handling being defined in terms of language objects (instead of primitives) 
is that  constructs like unwind protection cannot be made atomic since exception objects can always interrupt it. 
Deutsch countered that  this was just  an argument for better atomicity constructs. Winder asked, in a system 
defining exception handling mechanisms using language objects and classes, how does one combine code using 
different exception handling policies? 

There seemed to be little on which to base a reasoned decision and in the end, it was felt that  either route 
was possible (as long as some technique for creating atomicity existed) and it was really a question of language 
and exception interpretation philosophy. 

4.3 Separation of Main Code and Except ion  Handlers  

The separation of the code dealing with exceptional situations from the standard code of an application seems 
to be an appealing problem for many people. Separation is not a clear issue. 

On the one hand it can aid code readability by extracting main code from detailed and perhaps complex 
exception detecting and handling code. It can also enhance reusability if the handlers associated to expressions 
in a method are separated from the method code. The handling part  of the method can be then redefined in a 
subclass without the necessity of modifying the method itself which would simply be inherited. 

On the other hand, this separation can hinder readability by making exception code difficult to find or refer 
to. It can also make programs difficult to understand in the cases where the semantics of exception handling is 
very dependent on the positioning of the statements within the main code (for an example of this problem, see 
(Lacourte, 1991) in which some ways to achieve such a separation are provided). In practice, we have noticed 
that separation was already achieved in existing languages whenever it was possible i.e., when the handlers are 
general enough to be disconnected from specific code. Examples of this include default handlers, class handlers, 
rescue clauses and the specifications of exceptional behavior, as proposed in (Purchase & Winder, 1990). 

In conclusion, most workshop attendees thought separation was a good idea, so long as the exception control 
flow was not especially interwoven with the main code. Physical separation is fine as long as it does not imply 
scope separation. 

4.4 At W h a t  Level of  Modular i ty  Should One be Able  to Assoc iate  Handlers  wi th  
Code 

By far the most common association mechanism, in modern languages, is to associate handlers with expressions. 
Such a handler will trap the exception signalled by the execution of the protected instruction. 

To associate handlers with classes is less common and raises several issues. In Smalltalk, the role of a class 
handler defined on a class A is to trap all exceptions for which the invocation of the signaling primitive is lexically 
included in a method defined on A or on A's subclasses. With such handler search semantics, exceptions are not 
propagated along the invocation chain, which leads to many problems of reusability. An alternative strategy 
(Dony, 1990) is to allow a class handler defined on class A to trap all exceptions signaled by the invocation 
of the method defined on A and on A's subclasses, at the location of the signaling primitive's invocation. For 
example, if M is defined on A and calls a method M I defined on class B which raises an exception, then the 
class-handler on A will be invoked if not hidden by a class-handler on B. 

Several questions were asked about class handlers. The first, by Watson, concerned what to put  in them. 
The answer was that  we were lacking the experience of using them but, what can be said is that  class handlers 
are the perfect place to store behavior about exceptions that  are relevant wherever the exception is raised in the 
class. For example, when considering the class stack, ensuring no exception except "underflow" or "overflow" 
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should ever be propagated outside a method of that  class. The second question, from Snyder, was: are class 
handlers simply a shorthand? They can be seen as a very powerful shorthand when considering that  a class 
handler defined on a class A could be replaced by the association of the same handler with the body of all the 
methods defined on the A sub-hierarchy. They are, in fact, more than a shorthand because the class handler 
will automatically be applicable for any new method defined in the A sub-hierarchy. This gives the implementer 
a way of controlling reusability. This immediately raised the question: why does Eiffel not support  inheritance 
of handlers? Nerson asserted that  it would be too complex especially in the presence of multiple inheritance 
and that  in Eiffel rescue clauses were part  of the implementation of classes and should not be inherited. 

Handlers associated with classes and methods were thought to be justified, but Dony challenged whether 
handlers associated with individual instances of classes (as in BETA) could create problems. However, this is 
a problem not directly connected with exception handling but with the semantics of object-oriented languages: 
should classes own the whole structure and behavior of their instances or simply a part  of it? This was clearly 
a question out of the scope of this workshop. 

Glossary 
A c t i v a t i o n :  invocation results in the activation of the invoked procedure. 

A s s o c i a t i o n  o f  a h a n d l e r  t o  an  i n s t r u c t i o n ( s )  fo r  an  e x c e p t i o n :  states that  the handler will be executed 
if the execution of the instruction(s) signals the exception. 

Ca l le r :  The method which has invoked the current method. 

E x c e p t i o n :  Apart  from the debate about what is an exception from a philosophical point of view, we could, 
from an operational point of view in programming languages, define an exception as an abnormal event 
occurring at run-time and making it impossible to execute the next instruction in the program. 

H a n d l e r :  the exceptional continuation. 

Invocation: textual part  of a procedure denoting the call to an operation. 

To  S igna l  (o r  Ra i s e )  an  e x c e p t i o n :  to interrupt the usual sequence of operations, then to search and to 
invoke an exceptional continuation. "An activation may signal an exception, the invocation that  caused 
the activation raises that  exception" (Liskov & Snyder, 1979). 

S igna l l e r :  the method activation that  signals the exception. 

S ing le  l eve l  s i gna l ing  m e c h a n i s m :  this definition and the following one only apply if, when an exception is 
raised, the invocation chain is dynamically searched for a handler. It denotes that  a handler has to be 
defined by the caller of the current method activation. 

M u l t i - l e v e l  s i gna l ing  m e c h a n i s m :  the handler does not have to be defined by the direct caller of the current 
method activation. 

E x c e p t i o n  p r o p a g a t i o n :  usually has two meanings: 

1. denotes the multi-level traversal of the stack during handler search (the term of "blind propagation" 
has been used during the workshop), 

2. denotes the ability to re-signal the trapped exception within a handler. 

R e s u m p t i o n :  after handler execution, the errant method restarts at the instruction that  follows the signaling 
one. The handler may be able to pass a value to be returned as the value of the signaling method. 

T e r m i n a t i o n :  after handler execution, the errant method restarts at the instruction that  follows the association 
point. If not done during handler search, the part of the stack located between the signaling point and 
the handling point is discarded. The retry variant of termination causes the re-execution of the protected 
expressions after the stack has been discarded. 
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