Distributed Exception Handling : ideas,
lessons and issues with recent exception
handling systems

Aurélien Campéas*, Christophe Dony*, Christelle Urtado**, Sylvain Vauttier**

5th October 2004

* LIRMM, 161 rue ADA, 34392 Montpellier

** LGI2P, Ecole des Mines d’Alés, site EERIE, Parc scientifique G. Besse, 30035
Nimes

Abstract

Exception handling is an important feature of the tool-set that
enables the building of fault-tolerant concurrent and distributed
programs. While transactional distributed systems have been
studied for a long time, distributed exception handling techniques
are only now evolving towards maturity, especially within asyn-
chronous multi agents or component based systems. In this paper,
we review two recent proposals for distributed exceptions han-
dling systems (DEHS), namely SaGE and Guardian, in the light
of what the Erlang programming language brings to the table :
native constructs for concurrency, distributedness and exception
handling across processes. We expand on the merits and possible
drawbacks or limits of these systems. We advocate the need to
introduce the notion of resumption, an often downplayed feature
of EHSs, to modern day DEHS, in order to address the problem
of multi agent systems facing the «real world».

Keywords : distributed exception handling, distribution,
concurrency, fault tolerance, resumption, restart, SaGE, Guardian,
Erlang.

1 Introduction

Exception handling mechanism have been a feature of programming lan-
guages for about thirty years now. The complete feature set of an excep-
tion handling system (EHS) is well known and stable (chap.1.1) in the
context of non-concurrent, non-distributed programs [3, 21, 29, 17]. Yet
within concurrent and distributed systems, it remains an active research
topic [23, 14, 25, 7, 8, 15, 16].

Distributed computing has been addressed in length, with relation to
programming languages. On one hand, distributed systems have been
built with languages without any support for it except system call level
primitives for process instantiation and message passing (like C or C++).
On the other hand, actor’s model programming language have been de-
vised to make distribution and concurrency high-level and first-class con-
cepts available to the programmer (recent examples : Erlang [1], JoCaml
[27], Oz [20]). Thus, it is no surprise that in those recent languages we
find building blocks, and even first stage implementations of distributed
EHS. We will begin to review the most mature of them, Erlang.

There seems to be a middle ground between those poles, around Java.
Java has already its own primitives to help building multi-threaded and
distributed (RMI) programs. But in Java, there is no language support
to manage exception handling across thread groups and process bound-
aries.

Thus, in this paper, we also review two proposals around this limitation
of the Java platform : the SaGE [5] and Guardian [19, 28] systems,
which specify and implement a DEHS for asynchronous component based
and multi agents [4] systems written in Java. We believe that Erlang,
SaGE and Guardian present important insights for the future makers of
a DEHS, while they expand on earlier work

As a programming language feature, an EHS is mostly orthogonal to
other language features, but can be disastrous - essentially useless, al-
beit tempting to the programmer - in the presence of low-level memory
(de)allocation primitives, like in C++, for instance. It has been shown
that an EHS pairs well with an automatic memory management sub-
system. It remains to be seen upon which assumptions it may behave
well in distributed and concurrent settings, for some properties of such
systems may. Through this study, we uncover some of them.

We will see overall that the choice of concurrency and distributed con-
structs have an impact on the structure of a distributed EHS, and that

until now experimental outcomes have promoted a fail-fast philosophy
hindering the development of a full-fledged distributed EHS. Finally, we
advocate a DEHS supporting the notion of resumption of a computation
after an exception has been handled, where «fail-fasty shows its limits.

1.1 The EHS feature set

Before we delve in DEHS, let us remember the commonly accepted fea-
tures of an EHS [6]. Firstly, EHSs have been devised in the context of
functional and imperative programming languages, which all carry the
notion of a program execution as a sequential series of jumps from func-
tion (or procedure, or method) to function ; we could say from current
continuation to next normal continuation.

An EHS introduces the notion of an exceptional set of continuations to
be executed in the presence of an exceptional situation arising during a
computation.

The act of signaling is what occurs when a program encounters an ex-
ceptional situation. It can be triggered automatically, by perusal of some
built-in exception-throwing primitive, or explicitly via some signalment
primitive. Signaling implies the building of an "exception" object car-
rying run-time information about the exceptional situation, and finding
the innermost exception handler matching its type.

Exception handlers (EH) allow to define, at any arbitrary point in a pro-
gram, a new set of exceptional continuations, that adds up to, or over-
rides part of, the current set ; each exceptional continuation is usually
selected using the type of the exception object that is built at signalment
time ; an EH has typically dynamic extent and global scope!.

Most programming language since the past twenty five years, from Ada
[10] to Java [26] or Haskell [13], have had this kind of exception han-
dling capabilities, which is also referred to as the «termination» model.
Indeed, the research of handlers is done «destructively», that is the call
stack is unwound up to the handler to be selected.

The possibility to resume activity after signalment exists in the «resump-
tion» model, where the signalment is merely a function call. The ability
to resume depends on the type of the exception being signaled (an er-
ror implying termination, and a continuable error allowing resumption).

1Some systems offer statically (class) or lexically scoped handlers.

Thus, a handler may have the choice between termination (then the stack
will be unwound up to the handler) or a list of possible resuming points,
also described in the Common Lisp terminology as restarts [22]. Let us
define the notion of restart.

Restarts allow to define a set of continuations whose goal is to provide an
EH with reparation and restarting capabilities. Restarts, being closed
over some lexical environment between the signaling place and the in-
nermost last EH, can be told to modify their environment and do some
non-local jump to this environment in order to resume the computation,
if abortion is not wanted. Restarts have also dynamic extent and global
scope.

Resumption is supported in a few programming languages (like Smalltalk
[3, 2] and various Lisps). To our knowledge, only Common Lisp and its
poster child Dylan have restarts ; also Scheme may have them potentially
through the usage of first class continuations and some macrology. We
will argue in the last chapter in favor of the resumption model with
restarts in the context of distributed and concurrent programs.

1.2 TImplications of this feature set

The main assumptions under which EHS have been built are :
o functional or imperative programming languages (where the notion
of continuation makes sense),
e automatic memory management (garbage-collected languages),
e one single control flow,
e synchronous calls (or jumps) between parts of a program,
e determinism of execution and total-orderliness of any program’s

trace?.

Distribution and concurrency raise new specific and difficult issues for
fault-tolerance that have up to now remained incompletely studied.

2This one has to be taken with a grain of salt. Haskell has a simple exception
handling mechanism that works in spite of the lazy evaluation strategy ; however it
needed a pinch of cleverness to get it working.

Resumption model with restarts

Figure 1

U0

|esIxa)| 3 0]
LeIS3L 3L Loy
dwnl [eao| uon
: uopdwnsay

H1e1sa1 01 e
uswieubls

giano 4
10 2unso2
|eaxa

(MolyL) [l==]
dwnl jgaoj uoy U030

ot

AEIUED [eapa]
Buisojaus sy 0]

13jpuey 341 Jo
dwnl |eao| uon
| uopeuLLISL

9 I3|puey o3 |eD
+ JuawEURIS

Hueisal

4o JUBWYS|geIsT
J3lpuey o w1
JoJuBLYS|geIs3

1.3 Properties of distributed, concurrent systems

Distributed and concurrent systems are build from small sequential and
process-like blocks ; those blocks may be executed independently and
concurrently, as long as they don’t interact ; they may be distributed
on different places, physically speaking ; they may have to cooperate
in various ways to achieve a desired outcome : then, communication
happens through asynchronous message passing.

[24] identifies three concurrency patterns :

1. disjoint concurrency, where concurrent activities share nothing and
do not synchronize (in the manner of independent UNIX pro-
cesses),

2. competitive concurrency, where different running activities com-
pete for some shared resources (like in the case of transactional
systems),

3. cooperative concurrency, where different active entities act collec-
tively to reach a common outcome.

Sometimes it seems like the distinction between the problem of one sys-
tem’s consistency and the handling of distributed, concurrent exceptions,
is blurred. We defend the view that exception handling is a low-level
construct which ought to remain orthogonal, albeit compatible, with
transactional systems. Both are important with relation to software
reliability and fault-tolerance, but they really are independent things.
From now on, we will mainly focus on cooperative concurrency, without
after-thoughts about transactions. The questions we face are :

e how to deal with asynchronous message-passing,
e how to design signalment path and boundaries, and exception han-

dlers scope.

Older proposals, such as Guide or Argus [18], helped raise the importance
of the notion of concertation amongst a set of cooperating entities. As
we will show, SaGE and Guardian have retained this notion.

2 An overview of three systems

Erlang is a high-level programming language with built-in features to
provide fault-tolerance to massively concurrent and distributed programs.
It is a complete, integrated system. It has been proven in the field [1].

On the other hand, SaGE and Guardian are independent of any lan-
guage. But it must be noted that they fill an important gap in the Java
world and their current implementations are purely Java based.

2.1 Erlang

Erlang has been built out of the need of an efficient, robust and massively
parallel programming language for the programming of world-class tele-
coms switches ; it has proven successful with relation to these objectives.

2.1.1 Language constructs

At its core, Erlang is a pure functional programming language (i.e clo-
sures and function calls are everything) with a simple EHS providing
exception signalment and handling but no restarts (i.e. no resumption).

Erlang has a notion of process, which is an independent, distributable
sequential piece of code. Erlang processes communicate through asyn-
chronous message passing : no shared state is ever allowed between
concurrent entities.

There are two types of processes : worker and supervisor processes. A
typical Erlang program is a tree of supervisor processes whose leaf nodes
are worker processes. At run time, the program is unfolded from the
root supervisor process (which can be seen as the «mainy» process) to
the leaves made of worker processes. The act of creating a new process,
and message passing between processes, are always explicit.

2.1.2 Exception handling

Whenever an exception is signaled (typically in a worker process), it
can be handled within the process, with the classical set of operators
; if it isn’t handled there, then the process automatically sends a mes-
sage carrying failure notification to its direct supervisor - the last step

in signalment - and suicides. Depending of the signaling process’s ex-
pected durability (permanent, transient or temporary), it is restarted
from scratch by its supervisor or nothing happens.

Thus, a well-written Erlang program has its functionality distributed
into a tree structured hoard of independent worker processes, such as to
limit the consequences of a process crash (an unhandled exception) to a
subtree.

It must be noted that since Erlang is not object oriented, exception
«objects» are built with tuples ; there is at least one entry carrying
type information in order to enable the selection of the correct handler
according to the type of the error.

2.1.3 Conclusions

This has proven to be a very efficient, allegedly because simple, strategy
for Erlang’s initial target, namely the software running massive telecoms
switches. However, it is not a complete transposition of the EHS feature
set.

2.2 SaGE

SaGE is a specialized DEHS, in that it first defines protocol, in other
words a fixed set of interactions between groups of concurrent and (possi-
bly) distributed blocks, and then defines a proper EHS on this protocol,
which is named "service". SaGE has been implemented for the Mad-
kit [11] multi agents system and the Jonas J2EE [12] component-based
framework.

2.2.1 Services

A service is basically modelled after method invocation in object oriented
languages ; it associates an agent, a name, a set of formal parameters
and a piece of functionality. A service is said to be provided by an agent
A, invoked by an agent B, and then executed by agent A.

There are however important differences with method invocation. In a
non-concurrent object-oriented program, there is a call chain of method
invocations ; with services, there is a tree of service invocations.

This is because :

e one agent can execute in parallel many instances of any service
(mapping to an even number of service invocations by possibly
different agents),

e one service execution which invokes another service execution (it is
then said to be a "complex" service) is not synchronously stuck to
its normal or exceptional outcome, but can err on its own and in-
deed invocate many other sub-services, for the sake of redundancy
or merely for it is profitable to exploit the distributedness of the
agents, making the worst-case execution time the maximum of the
execution of the distributed sub-services instead of the sum.

Such a protocol is said to be "semi-synchronous", that is an invoking
process is free to do whatever it pleases until some later time when it
decides to collect the answers, which it is, contractually, bound to do.
This is much like Multilisp’s "futures" [7].

It is important to note that the service protocol presents itself to the
programmer as an API which hides whenever possible the low level mes-
saging layer, and tries to match closely the semantics of object oriented-
ness in the manner of Smalltalk or Java, notwithstanding the extensions
to the exception handling capabilities.

2.2.2 Exception handling

On a call-tree degenerated into a chain (or stack), the EHS behaves quite
like in a monolithic Java program. First, there is a new type of excep-
tion : SageFExzception. Then, for each service, one can associate a set of
handlers with any set of subtypes of SageException. The exception han-
dler is quite limited in its capability for it cannot re-enter the service for
which it handles an exception ; however this is bound to implementation
issues, that could be alleviated without too much heroism. It is declared
and bound to a service and a set of exceptions through a handle (...)
{...} block. Finally, there is a special signaling primitive (signal ()).

In the general case, there is an important piece of functionality available
that does not belong to the EHS of non concurrent systems. We have
said that one service can issue many sub-service invocations for the sake
of redundancy ; when doing this, one does not want to have our service
execution killed because just one (or a few amongst many) redundant
sub-service execution failed and signaled an exception ; instead it is

practical to craft a special function that filters the exceptions and can
decide not to handle or propagate upwards, that is to merely do nothing
special and go on with the computation. This function is named the
"concertation” function, after V. Issarny’s work [9].

2.2.3 Limits and conclusion

There are limits to SaGE, by definition : we can model a problem with
SaGE as long as it fits well into the notion of service. That is, it works
well for any problem for which a functional decomposition comes in hand-
ily like, for instance, information retrieval systems.

Indeed, SaGE tries hard to put the least possible amount of ordering
constraints on the execution of services, in order to benefit as much as
possible of concurrency of the executions. The only constraint is that a
service execution starts before any of its direct and indirect sub-services,
and terminates only after all of them have terminated. Thus, when ser-
vice execution side-effects an agent’s mental state or the outer world,
then suddenly every kind of interlocking and race conditions raise its
head ; at this point, the programmer has to cope with the ordering and
serialisation of access to the shared entities through low level constructs
like locks and mutexes, which are hard to get right and may have scal-
ability issues, or alternatively he could rely on a (costly but reliable)
transactional system.

While restricted in various ways, SaGE is nevertheless an efficient and
expressive framework that provides a simple DEHS on top of an oo-like
interaction model.

2.3 Guardian

While SaGE defines a DEHS upon a set of well defined interactions,
Guardian strives to be a complete DEHS, in the sense that it can work
with any protocol for which an exception handling strategy can make
sense. This mighty goal seems to be attained with Guardian, but at a
price ; we will see how and why soon.

2.3.1 Components and primitives

A multi-agent system extended with Guardian has two main new com-
ponents : a special agent named "leader", and sets of agents engaged

in a collective activity, whose members are said to be "participants". It
adds to the participants a set of primitives to manage the exception han-
dling whose scope is the collective activity. Exception handling at the
level of a set of participants is said to be global ; accordingly, Guardian
introduces a "GlobalException" sub hierarchy to the built-in exception
taxonomy, like with SaGE and its "SageException".

Those primitives mimic the Java EHS model, with one addition : meth-
ods to enable and disable local contexts. Contexts are a generalisation
of the lexical context, from the viewpoint of exception handling of the
monolithic EHSs ; in those, it is easy to think about the places where
signaling and handling happen : all EHSs provide syntax to help the pro-
grammer map an exception handler or a signaling instruction to their
contexts. Guardian contexts represent phases of the program, those
phases being now decoupled from the block structure of the program-
ming language. Moreover, Guardian, being built on Java, cannot benefit
from any syntactic sugar ; therefore it has to make context management
available to the programmer through the "{enable|disable}Context" pair
of primitives.

So, when writing an application exploiting the capabilities of Guardian,
one has to think about the specification of the participants, which are
bound to use the Guardian primitives to stack up contexts, to install
exception handlers on those contexts and to signal global exceptions ;
and about the leader, which computes the set of exceptions to be handled
in the participants in response to a set of concurrent global exceptions.

According to the authors, the gist of exception handling is the choice
of the «semantically correct» global exception to be signaled by a par-
ticipant, so as to allow the leader to compute a meaningful concerted
exception set in return. Off course, the choice depends heavily on the
type of the collective activity.

It helps remind us that whatever the EHS we are in, the two most
important questions an exception handler can ask an exception object
are : who are you and where do you come from ?

2.3.2 The signalment process

Signaling is a two phases mechanism, after a first global exception is
signaled :

1. the leader is alerted, tells every other participant to suspend any
work and wait synchronously for instructions, and then it collects
all pending global exceptions,

2. when all the participants are ready, the leader computes a set of
concerted exceptions to be raised in the participants in response
to the set of global exception it has received, then it sends the
computed exceptions back to the participants, which can then enter
their handler and go on with their (concurrent) activities.

We should note that the leader is akin to the concertation function from
SaGE : concertation is the central mechanism in Guardian whereas it is
an auxiliary mechanism in SaGE.

2.3.3 Limits and conclusion

Guardian has been built to address many, if not all, of the situations
a DEHS has to cope with. For instance, coordinated atomic actions,
conversations, even some level of transaction processing can be built
using the Guardian framework.

But it does not scale well : the need to freeze all participants’ activity
whenever a global exception is signaled makes it not usable when the
participant set becomes big or if some participants have to perform some
uninterruptible, high-priority or real-time service. Moreover, the system
would be sensible to crashes or unavailability of the leader ; uniqueness
of the leader seems like a weak point.

Furthermore, one important problem remains the complexity of the sys-
tem, for it is quite hard to figure out how to use it properly.

Those points relate to the fact that Guardian is more than a DEHS

framework and seems to encourage the programmer to build transactional-
like systems using exception handling capabilities, since those come with

automatic agent synchronisation for free. In fact, there is probably a

wrong coupling between EHS semantics and execution serialisation :

both should probably not come in the same package, and under the

same name.

3 Delving further : the case for resumption
with restarts

3.1 Qualities and possible shortcomings of the three
systems

Both SaGE and Guardian define a scope for the definition of handlers and
a signalment process. SaGE has an efficient and scalable DEHS system,
but it is restricted to the service protocol, which may not be suitable to
any agent situation (for instance, conversations or transactions are not
easily modelled in terms of services). Guardian offers building blocks to
help building a general purpose DEHS, but fails to address all distributed
problems, due to the centralised and synchronised handling of global
exceptions.

Also, both focus on providing an EHS in its simplest terms : there are
no provisions made for repairing and resuming some, or all of the entities
engaged in a collective activity.

Finally, the Erlang programming language has excellent capabilities with
relation to fault tolerance, based on an extremely simple DEHS. Erlang
does not try to do any concertation when an exception propagates from
one process up to its supervisor : the process, and possibly a whole group
of processes involved in a coordinated operation, will be restarted anew.

All three systems lack the ability to resume an activity around the sig-
naling point. While there are many reasons for not wanting to use an
EHS with resumption, even in the context of monolithic programs, we
have yet to see a good one to dismiss it as unworthy. We want to close
this paper in making the case for resumption using restarts in a DEHS.

Even if not heavily used within programs, restarts offer surprising op-
portunities and unmatched ease for those that need to build a program’s
test suit ; in other words, it can help a lot, even if indirectly, in the
debugging phase. It is just one example, albeit an important one. One
could collect many other use cases that exhibit the usefulness of restarts
in monolithic programs. However we are not going to do this, for it
would be going backwards. We want to show there exists a world in
which DEHS plus restarts are a good thing.

3.2 Entropy and the EHS

A terminating DEHS can only help dealing with hard, uncorrectable
errors. In practice, there are a lot of non-error conditions that are to
be dealt with, or possibly just ignored. The more a system is open to
«real world» entities, the more it has to deal with those conditions :
transient network failures, laptop batteries going low, one’s cup of tea
getting cold, in other world the manifestations of entropy. Most of the
time, those conditions can be safely ignored by some program. And in
this case, we need a way to say «I don’t care» in no more words.

Sometimes, these conditions have to be taken seriously : someone ought
to plug in this network cable again, so that we can go on with our current
work set. We need a way to be notified that something is going wrong,
yet ask for a reparation and just resume work afterwards.

Very often, smallish conditions will grow, if unhandled, into proper er-
rors. That is because there is a link between the two ; after all, a low
batteries notification shortly precedes a power outage, if nothing is done
in time.

So we have to correct the small glitches in order to prevent the bigger
breakages. This is even more needed in distributed and concurrent sys-
tems facing the real world, that is, a lot of unexpected albeit not yet
deadly events.

3.3 No «fail early, fail often» philosophy ?

The designers of Erlang had the good taste to provide an explanation
for the lack of resumption in the language ; an explanation, that is
not arguments such as «resumption is too hard to implement in our
language», «users don’t want it» or even worse «our users do not and
wille not ever need it, by decree of the marketing departments.

They had to devise a simple but expressive language (thus functional),
with strong grips on massive concurrency and distributedness (hence the
notion of processes as part of the language, not out of what an operat-
ing system can offer) and advanced serviceability and reliability features
(thus, amongst many other features, a simple, terminal exception han-
dling system). They had to built software that run continuously for years
without interruption, and allowing incremental live upgrades.

The «fail-fast» strategy embodied by Erlang has its roots in the early
work on high-reliability systems (such as Tandems systems), where the
following properties were spotted :

e the less complicated the code, the less bugs there is,

e there are really two kinds of bugs : «Bohr bugs» which show up
deterministically, and «Heisenbugsy, that occur under a set of sta-
tistically unreproducible conditions,

e deterministic bugs can be caught early and hammered down, but
heisenbugs will remain uncovered for undetermined extents of time,

e process pairing is a very efficient solution to catch the heisenbugs
it is likely that out of two process doing the same work, an
heisenbug will raise its head only in one of them !

We could go on like this but we have enough material to get to our point
: in Erlang, resumption is deemed too complicated (it complicates code
path indeed) to solve even transient or minor problem ; in the context
of hundred of thousands of concurrently running processes, it is wise to
keep it simple, stupid, and be just brutal : when a process or a group
of process is in fault, we had better «rebooty it, in the hope that it will
work. And it just works.

But it works in the context of telecoms switches, which exposes the real
world to the software in a (we believe) limited and controlled manner.
The cost of rebooting a subtree of the running application may be, in
those circumstances, lower than the cost of more complicated, also pos-
sibly buggy since less tested, code paths.

We argue, with no more tools than common sense, that it cannot apply to
all the distributed, concurrent systems we may have to build : whenever
a robot, in a factory, experiences an exceptional and locally unsolvable
situation, we don’t think that destroying the robot and replacing it is a
good way to handle the problem. We need a more subtle solution, that
is some yet-to-come full-blown DEHS.

3.4 Conclusion

Restarts are a useful construct that prevent, where needed, a lot of ad-
hockery. We need them in the future DEHS. Are those going to be the

same as in Common Lisp ? We don’t know yet. A system supporting
them has to be built first, and then experiments have to be carried out.
We are far from it. We doubt however that something can be done
with programming languages that lack support for them, like Java. The
Java world will forever and sorely miss them. It would be however an
interesting experiment to bring them to Erlang, or to extend Common
Lisp with primitives to deal, d la Erlang, with issues of concurrency and
distributedness.

References

[1]

2]

3]

[4]

[5]

6]

[7]

ARMSTRONG, J. Making Reliable Distributed Systems in the pres-
ence of Software Errors. PhD thesis, 2003.

Dony, C. Exception handling and object-oriented programming :
towards a synthesis. ACM SIGPLAN Notices 25, 10 (Oct. 1990),
322-330. OOPSLA/ECOOP ’90 Proceedings, N. Meyrowitz (edi-
tor).

Dony, C. A fully object-oriented exception handling system : Ra-
tionale and smalltalk implementation. In Advances in Exception
Handling Technigques (2001), A. Romanovsky, C. Dony, J. L. Knud-
sen, and A. Tripathi, Eds., LNCS (Lecture Notes in Computer Sci-
ence) 2022, Springer-Verlag.

FERBER, J. Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence. Addison-Wesley Pub Co; 1st edition (Febru-
ary 25, 1999).

FREDERIC SOUCHON, SYLVAIN VAUTTIER, C. U. C. D. Fiabilité
des applications multi-agents : le systéme de gestion d’exception
sage.

GOODENOUGH, J. B. Exception handling: Issues and a proposed
notation. Communications of the ACM 18, 12 (Dec. 1975), 683-696.

HALSTEAD, R., AND LoA1zA, J. Exception handling in multilisp.
In 1985 Int’l. Conf. on Parallel Processing (Aug. 1985), pp. 822—
830.

[8] IcHISUGI, Y., AND YONEZAWA, A. Exception handling and real-
time features in an object oriented concurrent language. In Concur-
rency: Theory, Language and Architecture (1991), Springer-Verlag,
Ed., pp- 92-109.

[9] IssarNY, V. Concurrent exception handling. In Advances in Ez-
ception Handling Technigques (2001).

[10] J. IcuBIiAH, J.G.P. BARNES, J. H. B. K.-B. O. R. B. W. Ra-
tionale for the design of the ada programming language. In ACM
Sigplan Notices (1979), vol. 14(6B).

[11] JAcQUEs FERBER, O. G. Madkit: Organizing heterogeneity with
groups in a platform for multiple multi-agent systems.

[12] Java open application server (JOnAS)
4.1 : a J2EE platform, June 2004.
http://www.objectweb.org/jonas/current /doc/JOnASWP.html.

[13] JonEs, S. P. Tackling the awkward squad : monadic input/output,
concurrency, exceptions and foreign-language calls in haskell.

[14] J.P. BANATRE, V. I. Exception handling in communicating se-
quential processes. In TechnicalRreport 660, IRISA, INRIA Rennes
(1992).

[15] KLEIN, M., AND DELLAROCAS, C. Exception handling in agent
systems. In Proceedings of the Third Annual Conference on Au-
tonomous Agents (AGENTS-99) (New York, May 1-5 1999), O. Et-
zioni, J. P. Miiller, and J. M. Bradshaw, Eds., ACM Press, pp. 62—
68.

[16] KNUDSEN, J. L. Fault tolerance and exception handling in beta.
In Advances in Exception Handling Techniques (2001), A. Ro-
manovsky, C. Dony, J. L. Knudsen, and A. Tripathi, Eds., LNCS
(Lecture Notes in Computer Science) 2022, Springer-Verlag.

[17] KoENIG, A. R., AND STROUSTRUP, B. Exception handling for
C++. In Proceedings «C++ at Worky Conference (nov 1989).

[18] Liskov, B. Distributed programming in argus. In Communications
of the ACM, vol. 81, n°3 (1988), pp. 300-312.

[19] MILLER, R. The Guardian Model for Exception Handling in Dis-
tributed Systems. PhD thesis, 2003.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

PETER VAN ROy, S. H. Mozart, a programming system for agents
applications.

Prrman, K. Exceptional situations in lisp. In EUROPAL’90
(1990).

PirMAN, K. Condition handling in the lisp language family. In
Advances in Ezception Handling Techniques (2001).

RoMANOVSKY, A., DONY, C., KNUDSEN, J. L., AND A.TRIPATHI.
Advances in Ezxception Handling Technigues. LNCS (Lecture Notes
in Computer Science) 2022. Springer-Verlag, 2001.

RoMANOVSKY, A. B., AND KIENZLE, J. Action-oriented exception
handling in cooperative and competitive concurrent object-oriented
systems. In Advances in Ezxception Handling Techniques (2001),
pp. 147-164.

SoucHON, F., Urtapo, C., VAUTTIER, S., AND Dony, C. Ex-
ception handling in component-based systems: a first study. In
Exception Handling in Object Oriented Systems: towards Emerging
Application Areas and New Programming Paradigms Workshop (at
ECOOP’08 international conference) proceedings (2003), pp. 84-91.

SUN MICROSYSTEMS. Java 2 Platform, Standard Edition (J2SE).
Mountain View, Calif., June 2004. http://java.sun.com/j2se.

SYLvVAIN CONCHON, F. L. F. Jocaml : mobile agents for objective
caml.

TRIPATHI, A., AND MILLER, R. Exception handling in agent-
oriented systems. In Advances in Exception Handling Techniques
(2001), A. Romanovsky, C. Dony, J. L. Knudsen, and A. Tripathi,
Eds., LNCS (Lecture Notes in Computer Science) 2022, Springer-
Verlag.

WEINREB, D. L. Signalling and handling conditions. Technical
report, Symbolics, Inc., Cambridge, MA, Jan. 1983.

