
Improving Robustness of Evolving Exceptional Behaviour
in Executable Models

Nelio Cacho, Thomas Cottenier, Alessandro Garcia

Computing Department, Lancaster University, United Kingdom

{n.cacho, t.cottenier, garciaa}@lancaster.ac.uk

ABSTRACT
Executable models are increasingly being employed by
development teams to implement robust software systems.
Modern executable models offer powerful composition
mechanisms that allow developers to deliver a running system in
small increments and in a time-effective fashion. Such models act
like code by providing high-level development abstractions and,
as a consequence, it is expected that increased software robustness
is achieved. However, existing executable models have a number
of limitations on the representation of exceptional behaviour.
Similarly to exception handling in programming languages, one of
the key problems is that the modelling languages and supporting
environments do not allow the explicit specification of global
exception flows. They require that developers understand the
source of an exception, the place where it is handled, and
everything in between. As system development evolves,
exceptional control flows become less well-understood, with
negative consequences for the program maintainability and
robustness. In this paper, we claim that such problem can be
addressed by an innovative exception handling model which
provides abstractions to explicitly describe global views of
exceptional control flows. The implementation of our proposed
model extends the aspect-oriented language constructs and the
control-flow analysis of the Motorola WEAVR with the aim of
promoting enhanced robustness and program modularization.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces;

General Terms
Design, Reliability.

Keywords
Exception handling, model-driven software development, aspect-
oriented programming, modularity, exception control flow.

1. INTRODUCTION
Model-Driven Software Development (MDSD)[13,14] techniques
are increasingly used in large development environments where
different team members work on distinct executable models [14].
In order to improve software robustness, modelling languages
support different levels of abstractions targeted at specific

software development stages. They typically allow to: (i) define
and visualise the system architecture, (ii) specify the normal and
exceptional interfaces between different sets of behaviours, and
(iii) detail normal and exceptional behaviours of the system in a
platform-independent manner. During the software architecture
definition phases, the system behaviour is decomposed according
to modules that encapsulate cohesive pieces of behaviour. The
decomposition goal is to minimize the inter-module dependencies
and, therefore, improve software maintainability.
However, MDSD languages do not provide explicit abstractions
to capture the global effects of exception control flows traversing
the system architecture. Exceptional behaviour has the tendency
to leak out of the module interfaces established during the
architectural definition phases [17]. This means that the handling
of an exception raised in one module generally requires corrective
actions to be taken in a number of other modules. Hence, it is
fundamental to have the ability to explicitly declare the
dependencies between modules introduced by global exceptions.
The explicit exception flows are essential to guarantee that faults
are not introduced in evolving executable models.
Although MDSD languages, such as UML, support basic
exception handling primitives to specify exception interfaces, they
do not provide explicit abstractions to specify and reason about
exceptional control flows. They do not support modular
descriptions of modules that are the source and target of
exceptions. These descriptions are essential to ensure that minor
modifications in the implementation of a module do not break the
expected effects of global exceptional flows. In other words,
existing MDSD languages mimic the limitations of contemporary
exception handling mechanisms in programming languages [3].
In this context, the contributions of this paper are threefold. First,
we discuss the liabilities of modelling exceptional behaviour in
MDSD. Second, we propose an exception handling model which
provides platform-independent representation of exceptional
behaviour. The proposed model aims to make exceptional
behaviour more resilient in the presence of changes. Third, we
present the concretization of this model by leveraging aspect-
oriented language constructs and the control-flow analysis of the
WEAVR [6]. WEAVR supports an aspect-oriented extension to
UML 2.0. This implementation exploits existing pointcut
languages to explicitly capture the semantics of exception control
flow that spawn over multiple modules of the system.
The next section introduces some of the notations used in a
MDSD environment and discusses the impact of exceptional
behaviour on the models of the system. Section 3 introduces the
EFlow model and details how it relates to the UML. Section 4
discusses the implementation of the EFlow model in terms of
successive model transformations. Finally, Section 5 discusses
related work and Section 6 concludes this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WEH '08, November 14, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-60558-229-0 ...$5.00.

39

2. MODEL DRIVEN SOFTWARE
DEVELOPMENT
Model-Driven Software Development (MDSD) takes an iterative,
top-down approach to software engineering where different
models of the system are the central artefacts of the development.
The Model-Driven Architecture (MDA) therefore proposes a
standard architecture for MDSD based on the UML. The MDA
defines two main levels of system abstraction: the Platform
Independent Model (PIM) and the Platform Specific Model
(PSM).
The PIM is a model of the system structure and behaviour, and is
typically developed by system architects. It defines the
functionality and behaviour of a system independently of the
specific technologies that implement it. The PIM can
automatically or semi-automatically be mapped to different
Platform-specific Models (PSM) of the system. In this work, we
consider that to achieve fully automated code generation, a
translationist [14] approach is the most adequate one which is able
to support precise modelling of software behaviour.
Executable models need to be manually refined to a level of
granularity that enables tools to fully generate code for a target
platform given platform specific generation rules. The platform-
specific models and the code are fully automatically generated.
Next section details how a translationist approach can be used to
define executable models.

Figure 1. Composite-structure architecture diagram for a

Bank application

2.1 Executable Models
The translationist interpretation of the MDA emphasizes model
executability. The precise behaviour of the model is defined
imperatively by embedding actions within statechart [9]
transitions. Actions are executed during a transition from one state
to another and as the PIM specifies the complete behaviour of the
application, there is no need to manually elaborate the PSM and
the generated code. The mappings between models and code
generation can therefore include various platform-specific
optimizations. Thus the PSM and the generated code are not
appropriate for human inspection, and are hidden from the
developer. The obvious advantage of the translationist approach is
that PIM’s can be tested early in the lifecycle. This style of
modelling is also in line with agile development methods.
In order to obtain an executable model, the detailed behaviour of
components must be specified. First, the structure of a model can
be obtained by modelling the static parts of a system, representing
elements that are either conceptual or physical [2]. For instance,
Figure 1 gives a high level view of the composite-structure
diagram which describes some components of a Bank application.

Each of those components may be itself composed of multiple
active classes. Then, the observable behaviour of each active class
is specified using statechart diagrams [9]. For the sake of
illustration, Figure 2 depicts the normal behaviour of two
operations: doDeposit and clearCheck. According to the
doDeposit’s statechart, this operation initiates in the Active state.
Upon receiving a deposit invocation, this statchart invokes the
depositCheck operation of FirstFed component. Then the state is
transformed into Processing. At this state, the condition id!=null
is tested at each instant of time to identify when the return value is
available. When this occurs, the state is transformed into
Clearing, and it waits for the availability of idStmt to print the
statement and finalize the operation.

Figure 2. Representation of normal behavior using
statecharts.

Note that those statecharts represent only the states and transitions
in which all operations are successfully executed. Next section
describes some problems that are usually faced when trying to
modelling exceptional behaviour.

2.2 Modelling Exceptional Behaviour
Since the system behaviour is represented by a sequence of
transitions, a correct behaviour is provided whenever the system
implements the agreeable specification [1]. Such specification
defines the correct sequence of valid transitions to achieve one
specific goal. In contrary, misbehaviour might be provided when
at least one or more transitions deviate from the correct sequence.
The deviation from the correct transitions represents a deviation
from the normal control flow to the exceptional control flow, and
it must be treated as an exception by some special processing.
Otherwise such a violation can eventually lead the system to a
failure [1]. For instance, Figure 3 depicts some new states and
transitions introduced into clearCheck operation in order to
support exceptional behaviour.
Ideally, this behaviour should be fully supported by UML 2.0
specification. However, such a specification allows only
identifying exceptional flow of events in use case diagrams,
representing them as normal signals, and finally attaching these
signals to method’s specification [2]. However, no reference is
made on how to enforce that exceptions propagated by methods
described by means of statecharts are going to be handled. It is up

client : Client bankPbankP
receipt, statementreceipt, statement

depositCheckdepositCheck

firstFed : FirstFed
clientPclientP

depositCheckdepositCheck

receipt, statementreceipt, statement

bankPbankP

clearedcleared clearCheckclearCheck

national : National

bankPbankP

clearCheckclearCheckclearedcleared

Active

deposit(check)/
id=depositCheck(check);
deposit(check)/
id=depositCheck(check);

Processing

[id != NULL] /
idStmt = printReceipt(id);
[id != NULL] /
idStmt = printReceipt(id);

Clearing

[idStmt != NULL] /
printStatement(idStmt);
[idStmt != NULL] /
printStatement(idStmt);

Active

clearCheck(check)

ClearingCheck

[check.signature == account.signature]

ValidSignature

[check.id != stolenCheckId]

ValidCheckId

[check.amount <= account.balance] /
account.balance = account.balance - check.amount;

Client.doDeposit(Check check) National.clearCheck(Check check)

40

to the designer to reason about the exceptional control flow and
ensure that no exception is going to lead the system to a failure.
Exceptions often need to be handled in a global fashion [17,18].
Therefore, as pointed out by many authors [4,12,17,18], reasoning
about exceptional control flow is not an easy task. In executable
models, this problem can be even worse since exceptional
behaviour may be inconsistently represented throughout many
diagrams. Furthermore, such representations are based on the
implicit assumption that it is enough to specify the places where a
program raises exceptions (raising sites) and the places where it
handles them (handling sites). There is no explicit relation
between raising and handling sites.

Figure 3. Complexity of exceptional behaviour

For instance, Figure 2 depicts two executable descriptions of
methods doDeposit and clearCheck. Let’s suppose that method
clearCheck evolves to the description illustrated in Figure 3. This
later description deals with three new exceptional situations and
propagates some of them to its caller. In this scenario, as there is
no relation between the exceptional behaviour of both methods,
there is no guarantee that the new exceptional situations created
by clearCheck are going to be handled by doDeposit method. This
in turn leads to the development of executable models that are less
robust and maintainable.
In addition, the decision to leave to the method level the
responsibility for the definition of exceptional behaviour tends to
affect the software evolvability. This occurs because the raising
and handling sites are spread out over the different methods of the
systems, making the exception handling behaviour tightly coupled
with the normal behaviour. The problem arises when requirements
with respect to the exception handling behaviour change, the
implementation of the system would need to be manually
modified. As the implementation of this behaviour is not localized
in a separate module, the impact of changing this requirement on
the implementation would be massive.
In summary, we have observed that current profiles for executable
models do not provide proper support for the task of
understanding and ensuring the paths the exceptions take from the
raising site to the handling site. The main consequence of this
limitation is that if a programmer changes exception-related state
transitions, the control flow in apparently unrelated parts of the

program may change in surprising ways. This creates two direct
complications. First, it becomes difficult to discover where the
exceptions raised within a given context will be handled since
there is no distinction between normal and erroneous states. It is
also difficult to trace a handled exception to the place where it
was originally raised.

3. MODEL-DRIVEN EXCEPTION
HANDLING MECHANISM
Addressing the problems described above requires finding
techniques to fulfil two requirements. First, it is required to
decompose the exceptional behaviour into separate modules that
encapsulate the different exception handling strategies. Second,
these modules need to expose well-defined interfaces that non-
ambiguously describe their behaviour.
The fulfilment of these two requirements will make it possible to
understand exception flows from an end-to-end perspective by
looking at a single part of the executable model. They are also
essential to allow executable models to evolve in a robust manner
and accommodate changes to their requirements.
In the following, Section 3.1 describes an exception handling
model that fulfils such requirements. Section 3.2 describes how
this model can be concretized by means of a model-based
composite mechanism.

3.1 EFlow: Exceptions at Executable Models
The main aim of an exception handling model is to define the
interaction between raising sites and the handling sites.
Eventually, exception handling model should provide abstractions
to enforce that no exception could inadvertently lead the system to
a failure. In this context, we introduce EFlow model, whose major
goal is to make exception flow explicit, safe, and understandable
by means of explicit exception channels and pluggable handlers.
EFlow is a more abstract definition of the EJFlow mechanism
defined elsewhere [3]. This section leverages platform-
independent language elements (statecharts [9, 10]) to describe
the concepts that underpin EFlow model.
In the following, we assume that a given statechart of a
component A is a tuple (S, Act, V, T) where S, Act, V and T are
sets of states, actions, variables and transitions, respectively. Let
ܵ ൌ N׫E where N is a finite set of valid states, E a finite set of
erroneous states, and N ת ܧ ൌ A transition of a statechart is a .׎
tuple (s, a, s’), where ݏ, ᇱݏ א ܵ are the source state and target state,
respectively. For convenience, we write ݏ

௔
՜ .Ԣ instead of (s, a, s’)ݏ

The action ܽ א can modify values or define predicate on ݐܿܣ
variables in V, perform method invocations, produce output
messages, and so forth.

3.1.1 Explicit Exception Channels
An explicit exception channel (channel, for short) is an abstract
duct through which exceptions flow from a raising site to a
handling site. More precisely, an explicit exception channel EEC
is a 4-tuple consisting of:

• Rs: a set of raising sites;
• Hs: a set of handling sites;
• Is: a set of intermediate sites;
• Ds: a set of declaration sites;

Active

clearCheck(check)clearCheck(check)

ClearingCheck

[check.signature == account.signature]

ValidSignature

[check.id != stolenCheckId][check.id != stolenCheckId]

ValidCheckId

[check.amount <= account.balance] /
account.balance = account.balance - check.amount;

[check.signature != account.signature]
 /return InvalidSignature;
[check.signature != account.signature]
 /return InvalidSignature;

InvalidSignature

[check.id == stolenCheckId]
 /return CheckStolen;
[check.id == stolenCheckId]
 /return CheckStolen;

CheckStolen

[check.amount <= account.balance][check.amount <= account.balance]
InadequateBalance

[check.amount <= firstreserve.balance] /
firstreserve.balance= firstreserve.balance - check.amount;
[check.amount <= firstreserve.balance] /
firstreserve.balance= firstreserve.balance - check.amount;

recovery()/
log();
recovery()/
log();

recovery()/
log();
recovery()/
log();

41

Figure 4. Exception control flow involving multiple methods

Raising sites (Rs) are transitions ݏ
௔
՜ ݁ where ܴܵ ൌ ሼሺݏ, ܽ, ݁ሻ: ݏ א

ܵ, ܽ א ,ݐܿܣ ݁ א ሽ . This corresponds to all transitions in theܧ
application whenever the occurrence of a leads the system to
switch to an erroneous state. A raising site is depicted in Figure 4
by the transition ܿ

௔ଶ
ሱሮ ݁1. This figure depicts part of the

architecture of a software system, comprising three components:
C1, C2, and C3. Component C3 requires services from component
C2 which, in turn, request services from component C1. These
components are defined in terms of methods, each method denotes
statecharts where circles symbolize states, and arrows express
transitions. In this context, the occurrence of transition a2
transforms the state of method B into an erroneous state E1. In
practice, this erroneous state represents a deviation from the
normal return (provided by state D) to an exceptional return
(denoted by the dashed arrow). A dashed arrow indicates that,
during the execution of B, an exception can be raised and this
exception will be signalled to C. As would be expected, each
dashed arrow also indicates that control flow is passed from one
method to the other.

Handling sites (Hs) are transitions ݁
௔
՜ ݊, where. ܵܪ ൌ

ሼሺ݁, ܽ, ݊ሻ: ݁ א ,ܧ ܽ א ,ݐܿܣ ݊ א ܰሽ. Handling sites denote all
transitions whenever an action a takes place, and in turn switches
the system to a valid state. In Figure 4, for example, a handling
site is described by the transition ݁5

௔ଵଷ
ሱۛሮ .ݏ

As depicted in Figure 4, raising and handling sites are the two
ends of an explicit exception channel. All transitions that are
neither handling nor raising sites are considered intermediate sites
(Is). Thus, intermediate sites are transitions ݁

௔
՜ ݁Ԣ, where ݏܫ ൌ

ሼሺ݁, ܽ, ݁ᇱሻ: ݁, ݁Ԣ א ,ܧ ܽ א ሽ. Accordingly, intermediate sitesݐܿܣ

comprise all transitions through which erroneous states are
successively transformed into other erroneous states from the
raising site on its way to the handling site. For instance, in Figure
4, transitions ݁1

௔଺
ሱሮ ݁2 and ݁2

௔଻
ሱሮ ݁3 are examples of intermediate

sites.
The main purpose of defining raising, handling and intermediate
sites is to reveal the implicit exception control flow created by a
raising site. For instance, the implicit exception control flow
created by the raising site ܿ

௔ଶ
ሱሮ ݁1 can be revealed by means of the

following explicit exception channel:

1ܿ݁ܧ ൌ ሼቀܿ
௔ଶ
ሱሮ ݁1ቁ , ቀ݁5

௔ଵଷ
ሱۛሮ ቁݏ , ቀ݁1

௔଺
ሱሮ ݁2

௔଻
ሱሮ ݁3

௔଼
ሱሮ ݁4

௔ଵ଴
ሱۛሮ ݁5ቁ , ሽ׎

As described in Figure 4, the explicit exception channel Ecc1
percolates through different methods and components of a given
system. This characteristic allows (i) to define the two ends of the
explicit exception channel and (ii) to check whether all exception
control flows created by a raising site are properly handled at
handling sites. Clearly, an explicit exception channel does not
need to necessarily be limited to any modular unit boundaries.
However, it is widely believed that the definition of certain
boundaries helps to provide a clear specification and a better
understanding of exception handling behaviour [12,17].
Moreover, some modular units, such as components are well
known for being independently deployable and composable with
third party modules [20]. For these reasons, developers need to
take into account the module boundaries when defining the
explicit exception channel.
In order to define explicit exception channels which respect
module boundaries, declaration sites can be used to slice the
explicit exception channel according to each module. For
example, the explicit exception channel Eec1 can now be
described in terms of three channels:

1ܿ݁ܧ ൌ ሼቀܿ
௔ଶ
ሱሮ ݁1ቁ , ,׎ ቀ݁1

௔଺
ሱሮ ݁2ቁ , ሺ݁2ሻሽ

2ܿ݁ܧ ൌ ሼቀ݁2
௔଻
ሱሮ ݁3ቁ , ,׎ ቀ݁3

௔଼
ሱሮ ݁4ቁ , ሺ݁4ሻሽ

3ܿ݁ܧ ൌ ሼቀ݁4
௔ଵ଴
ሱۛሮ ݁5ቁ , ቀ݁5

௔ଵଷ
ሱۛሮ ቁݏ , ,׎ ሽ׎

In the first two channels (Eec1 and Eec2), the handling site is not
defined whereas the declaration site specifies the last state before
the error reaches the component boundary (e2 and e4). The
definition of a declaration site means that the channel is not able
to deal with all exception control flows and in turn other channel
should extend it beyond the module boundaries. In this context,
the third channel Eec3 extends the second by defining its raising
site with a reference to the declaration site of channel Eec2. The
utilization of declaration sites makes it possible to (i) define
explicit exception channels of entire systems from extended
definitions of individual components, and to (ii) enforce
robustness between raising and handling site since whenever a
handling site is not available, a declaration site should be provided
to make the channel valid.

3.1.2 Pluggable Handlers
The EFlow model ensures that all exceptions generated at the
raising sites are going to be handled at the handling sites. In this
context, the handling site of an explicit exception channel denotes
the set of valid states in which the exception handling model
should leave the system after the occurrence of an exception. In

42

order to generate such valid states, the EFlow model introduces
the concept of pluggable handler.
A pluggable handler is one or more corrective actions that can be
associated to arbitrary transitions. Let Ca be a provided set of
pluggable handlers. For s א ܵ, a pluggable handler is defined as
ሻݏሺܪ݃ݑ݈ܲ ൌ ቄܿܽ א ᇱݏ׌ :ܽܥ א ,ܧ ᇱݏ

೎ೌ
ሱሮݏቅ.

Note that pluggable handlers belong to a different set of actions
Ca which in practice denotes the separation between error
handling behaviour from normal behaviour. A single pluggable
handler can be associated with either intermediary or handling
sites. Pluggable handlers whose corrective actions lead the system
to a valid state are attached to handling sites. In contrast, actions
that alleviate the problem but do not switch the system to a valid
state are associated with intermediary sites.

3.2 Making the Model Concrete
As described in the previous section, EFlow relies on detailed
specification of raising sites, intermediate sites, and handling
sites. Pluggable handlers are defined to enforce the definition of
safe exceptional control flow between modules. The main benefit
of such an explicit specification is that exceptional behaviour
becomes more resilient in the presence of changes. In addition,
both system’s design and architecture can be validated early on in
the lifecycle.
However, the applicability of EFlow depends on the capabilities
of the chosen technique for concretising the proposed model. For
instance, it may be infeasible to give exhaustive specifications of
raising sites, intermediate sites, and handling sites for each
exceptional control flow since the number of possible state
transitions can be extremely large in any medium-size application.
Additionally, the composition of pluggable handler may bring
new problems of its own. For instance, pluggable handler may
incorrectly change the control flow of applications once such
handlers tend to introduce new states and new decision actions in
multiple state machines to handle erroneous situations.
Given these facts, the chosen technique should be able (i) to
describe at high level the notion of explicit exception channels,
and (ii) support composition mechanisms that do not require
intrusive modifications of the normal behaviour. We believe that
Aspect-oriented [11] design mechanisms can fulfil such
requirements. These mechanisms can be characterized by their
ability to non-invasively introduce behavior into applications and
their ability to quantify over the system elements where this
behavior should be introduced. In this context, Section 3.2.1
outlines an aspect-oriented modelling language and Section 3.2.2
describes how such modelling language was extended to support
the EFlow abstractions.

3.2.1 Weaving Handlers into Models with WEAVR
The Motorola WEAVR [6, 7] provides language constructs to
capture aspects in UML 2.0 and perform weaving of state

machines before code generation. WEAVR supports two distinct
types of pointcut descriptors: action pointcuts and transition
pointcuts. The pointcut descriptors strictly refer to actions and
transitions declared in the statechart specification of the system.
The notation used for both types of pointcuts is identical: a
pointcut is always represented as a transition (s

௔
՜ from a set of (ݐ

source states (s) to a set of target states (t), triggered by an action
(a) expression. Wildcards can be used to quantify over both the
source and target states of the transition. The action expressions
are used to match the signatures of transition triggers and the
signatures of actions executed in the context of a transition.

Figure 5. Example of aspect binding diagram, the depositFailure

pointcut and the handleException advice.
For instance, Figure 5 depicts an aspect in WEAVR which
handles the exception incomplete_check propagated by method
depositCheck(). This aspect defines one pointcut depositFailure
and one advice handleException. In WEAVR, advices are bound
to the pointcut through a dependency that is annotated with the
binds stereotype. Advices are instantiated for each joinpoint that
matches a pointcut descriptor. In Figure 5, the depositFailure
pointcut is one example of action pointcut. The depositFailure
pointcut selects remote procedures call or simple method
invocations that match the depositCheck method of FirstFed
component. The handleException advice executes depositCheck
by means of using proceed() statement, and upon returning, the
status variable is tested to determine if incomplete_check
exception was signalled. If so, the handleException advice logs
this exception and returns to the Active state.
As described above, the Motorola WEAVR allows composing
handlers with the control flow of the state machine at multiple

 <<Advice>> void
handleException()

{1/1}

status = proceed();

status == incompleteCheck

true false

log();

Active

 <<Pointcut>> void
depositFailure()

{1/1}

Active

/depositCheck(check);/depositCheck(check);

Processing

<<operation,Adv ice>>

handleException

<<operation,Pointcut>>

depositFailure<<binds>><<binds>>

Figure 6. Example of Explicit Exception Channel.

<<operation,Pointcut>>

CheckStolen

<<raisingsite>><<raisingsite>>

<<operation,ehandler>>

handleException

<<echannel>>

ClearCheckExceptionChannel

<<operation,Pointcut>>

InvalidSignature

<<raisingsite>><<raisingsite>>

<<operation,Pointcut>>

InadequateBalance

<<raisingsite>><<raisingsite>>

<<operation,Pointcut>>

depositFailure

<<handlingsite>><<handlingsite>>

National

<<within>><<within>> <<within>><<within>> <<within>><<within>>

Client

<<within>><<within>>

<<operation,Pointcut>>

DepositCheck

<<intermediatesite>><<intermediatesite>>

FirstFed

<<within>><<within>>

43

locations. However, WEAVR does not provide any mechanism to
support the enforcement of the exceptional control flow from the
raising site to the handling site (Section 3.1.1). In other words, if a
designer accidentally changes the return from incomplete_check
to incompletecheck, the control flow in handleException advice
will not be the same since this slightly different value will not be
recognized as an exception, and in turn the handler will not
properly handle this exception.
Again, even for composition mechanisms such as AO languages,
the exceptional behaviour is defined by means of the places where
a program raises exceptions and the places where it handles them.
No relation is established to enforce that changes in the raising
sites may compromise the effectiveness of handlers defined in the
handling sites. This lack of explicit dependency reveals that AO
mechanisms alone are not enough to provide safe composition of
exceptional behaviour with normal behaviour. In this context, the
next section describes a set of abstractions which were included in
WEAVR to support the concept of explicit exception channel.

Figure 7. Raising site defined in terms of a transition pointcut

Figure 8. Handling site defined in terms of a transition pointcut

3.2.2 Exception Handling Modelling Language

To support the definition of explicit exception channels, WEAVR
was extended in two directions: an UML profile and an
enforcement mechanism. First, we define a UML profile as an
extension of the UML standard language with specific elements to
support the definition of explicit exception channels. Such new
notational elements include two new types of entities, echannel
and ehandler.
An explicit exception channel is visually represented as a class
that is annotated by the echannel stereotype. The profile also
defines three new dependency stereotypes raisingsite,

handlingsite, and intermediatesites which are used to determine
the raising sites, handling sites and intermediate sites of explicit
exception channels, respectively.
 An operation annotated with ehandler stereotype is an
implementation of a pluggable handler. This operation
encapsulates the exception handling behaviour that is executed
when a certain point in an explicit exception channel is reached.
An ehandler operation is bound to the handling site of an explicit
exception channel.
For instance, Figure 6 depicts an explicit exception channel
ClearCheckExceptionChannel that represents one of the
exceptional control flows described in Figure 3 and 4. This
channel is bound to five pointcuts through dependencies that are
annotated with the raisingsite, intermediatesite and handlingsite
stereotypes.
The pointcuts annotated with raisingsite represent the source of
the channel, i.e. the exceptional situations that originate the
channel. For instance, Figure 7 describes that an instance of
ClearCheckExceptionChannel will be created whenever the check
signature is not valid.
The ClearCheckExceptionChannel channel is further constrained
by the DepositCheck intermediary site. The channel only captures
the CheckStolen, InadequateBalance and InvalidSignature
exceptions that flow through the DepositCheck method in the
FirstFed class.
The handleException ehandler handles exceptions flowing from
the raisingsite locations, through the intermediatesite locations, at
the locations defined by the handlingsite pointcuts. Specifically,
the handleException ehandler is activated when such exceptions
reach a transition from state Active to state Processing, along
which the depositCheck method is called, within class Client, as
illustrated in Figure 8.

In addition to model the exception control flow, our approach
checks whether all exceptions defined by means of raising sites
are handled by a pluggable handler at a raising site. In particular,
if CheckStolen, InadequateBalance or InvalidSignature exceptions
are not in the control flow of the depositFailure pointcut, then
they will not be handled by the handleException ehandler. The
semantics of explicit exception channels enforce that such case
are detected by the model checker, through control flow analysis.

4. MODEL TRANSFORMATION
In order to generate executable code, models based on EFlow
abstractions go through three transformation processes. First, the
EFlow model is transformed into a set of WEAVR aspects.
Second, these aspects are composed with the base model through
WEAVR model transformations. Finally, the woven models are
used to generate platform-specific executables.

 <<Pointcut>> void CheckStolen() {1/1}

* ' * '
[check.signature != account.signature][check.signature != account.signature]

 <<Pointcut>> void depositFailure() {1/1}

Active
/depositCheck('...');/depositCheck('...');

Processing

Figure 9. Explicit exception channel translated into WEAVR aspect model

<<operation,Pointcut>>

CheckStolen National
<<operation,Pointcut>>

InadequateBalance

<<operation,Pointcut>>

DepositCheck

FirstFed
<<within>><<within>>

<<cflow>><<cflow>>

<<operation,Pointcut>>

depositFailure

Client
<<within>><<within>>

<<hasincflow>><<hasincflow>> <<hasincflow>><<hasincflow>>

<<operation,Adv ice>>

handleException
<<binds>><<binds>>

<<hasincflow>><<hasincflow>>

<<within>><<within>><<operation,Pointcut>>

InvalidSignature
<<operation,Adv ice>>

RaiseException
<<binds>><<binds>>

<<binds>><<binds>> <<binds>><<binds>>

44

4.1. First Transformation: Translation of EFlow
model to WEAVR Aspect Model
EFlow provides explicit abstractions to capture exceptional
control flows. These abstractions capture control flow
relationships between locations in the models. The semantics of
the EFlow abstractions can be translated into regular WEAVR
aspects, which explicitly declare these control flow relationships.
This is achieved by introducing join point composition operators:
between the pointcuts defined in the EFlow model: cflow,
isincflow and hasincflow.

Figure 10. Aspect responsible for checking echannel semantics.

cflow is a standard aspect-oriented programming construct. The
following pointcut matches all calls to method c (see Figure 4)
that occur in the control flow of a call to method b.

 pointcut foobar : call(* *.c(…)) && cflow(call(* *.b(…))

cflow is a dynamic operator. In the general case, it can not be
determined at compile time whether a call to b occurs in the
control flow of a call to method c.
As a consequence, we extended WEAVR with a static
approximation to cflow called isincflow. isincflow would match all
calls to method c for which it can be statically determined that the
call occurs in the control flow of a call to method b through static
control flow analysis. However, exceptional control flow is the
opposite of normal control flow. Hence, we introduce the
hasincflow operator, which captures the opposite semantics of
isincflow. call(* *.c(…)) && hasincflow(call(* *.b(…)) matches
all calls to method c that may have a call to b in their control
flow.
Given these join point composition operators, the EFlow model of
Figure 6 can be translated into the WEAVR aspect model of Figure
9. The RaiseException advice throws an exception at the locations
defined by the raisingsite pointcuts, within class National, when
they are in the control flow of the DepositCheck intermediate site
pointcut. The handleException advice corresponds to the
ehandler. It introduces error handling code at the locations
defined by the handling site pointcuts that may have one of the
raising site pointcuts in their static control flow.
Finally, the EFlow checking semantics are implemented by the
aspect of Figure 10. An exception not handled warning is declared
at weaving time whenever one of the raising sites is not in the
static control flow of the HandleExceptionPointcut, which
captures the error handling code introduced by the
handleException ehandler.

4.2. Second Transformation: Weaving of Aspects
After translation from EFlow models to WEAVR aspects, the
aspects are integrated with the base model through the WEAVR
model transformations. These transformations take as input the
base model and the aspect definitions and generate a new model
of the application. The WEAVR engine performs reachability,
data flow and control flow analysis over the state machines of the
model and introduces the behaviour defined by the aspect advice
at the locations specified by the pointcuts, according to their
control flow dependencies. The generated model is UML 2.0
compliant model that captures the semantics of the base entities
and the aspects.

4.3. Third Transformation: Code Generation
Finally, the woven model is translated into a platform-specific
executables according to a set of platform transformation rules.
These rules map a generic exception handling mechanism used at
the model level to the specific throw/try/catch constructs used in
the target programming language. For example, if the target
platform runs C code, exception handling mechanisms would be
mapped to the C setjmp/longjmp primitives. Hence, the
characterization of exception handling behaviour at the
modelling-level facilitates the control flow analysis because we
can abstract from the details and specificities of the target
language used.

5. RELATED WORK
There are a number of approaches that try to systematically
integrate exceptional behaviour into early phases of software
development process. Shui et al. [19] proposes an approach to
reveal the presence of exceptional behaviour by means of the
definition of exceptional use cases. This approach guides
developers to describe possible exceptional situations that may
affect system reliability and safety. Subsequently, Mustafiz et al.
[15] proposes a model-driven approach whose main goal is to
assess system reliability and safety. In order to obtain such
quality attributes, exceptional use cases are mapped to a statechart
extension which added a probability attribute for each transition.
Reliability and safety are then obtained by calculating the product
of all transition probabilities that lead from one source state to a
target one. These two works are complementary to our own since
they provide a link between use case description and statechart
specification.
Recent work by Castor et al. [5], in the Aereal framework,
leverages existing languages and tools to support the description
and analysis of exception control flow in software architectures.
That work is similar to ours in its focus, but it differs on the way
exception control flows are represented and on the goal of
verification. While we provide a precise and light-weight
specification of control flow at statechart level, and a high level
representation at architecture level, the Aereal framework requires
the exhaustive definition of complicated formalisms to represent
flows only between two interconnected architectural elements.
Moreover, besides the properties verified by Aereal (e.g., the
existence of uncaught exceptions and useless handlers), we also
support the enforcement of exception control flow during software
evolution.
Some authors have proposed model-driven approaches [8,16] that
support the definition of exception handling behaviour throughout

<<operation,Pointcut>>

HandleExceptionPointcut

<<operation,Pointcut>>

InvalidSignature
<<operation,Pointcut>>

InadequateBalance
<<operation,Pointcut>>

CheckStolen

<<'!isincflow'>><<'!isincflow'>> <<'!isincflow'>><<'!isincflow'>><<'!isincflow'>><<'!isincflow'>>

<<operation,Adv ice>>

ExceptionNotHandledWarning

<<binds>><<binds>> <<binds>><<binds>> <<binds>><<binds>>

45

different perspectives. Entwisle et al. [8] proposes a model driven
management framework that supports the definitions of strategies
and policies across different tiers of an application. Pintér and
Majzik [16] define a modelling pattern to support the definition of
exception handling behaviour into statecharts. Unlike the EFlow
approach, these works are not based on executable models. They
rely on model transformation rules to automatically map the
exceptional behaviour from the PIM to a PSM skeleton. Once the
code generator converts the structural model to the target
language, the normal behaviour code is added manually to the
code skeleton. The problem with these approaches is that after
generating the PSM skeleton, the developer is free to evolve the
code as he/she desires to. Hence, these approaches do not provide
any enforcement to guarantee the reliable evolution of the
exceptional behaviour after deployment.

6. CONCLUDING REMARKS
This paper has presented an exception handling model whose
main purpose is to make exceptional behaviour more resilient in
the presence of changes. We leverage the WEAVR specification-
level pointcuts to promote improved separation between normal
and error handling code, while keeping track of exception control
flows. We have implemented the most part of proposed model,
with small syntactic additions to WEAVR. Our ongoing work
encompasses the extension of the proposed model to support the
notion of coordinated atomic actions.

7. REFERENCES

[1] Anderson, T. and Lee, P. A. Fault Tolerance: Principles and
Practice. Prentice-Hall, 1981.
[2] Booch, G., Rumbaugh, J., and Jacobson, I. Unified Modeling
Language User Guide, the (2nd Edition) (Addison-Wesley Object
Technology Series). Addison-Wesley Professional.
[3] Cacho, N., Filho, F. C., Garcia, A., and Figueiredo, E. 2008.
EJFlow: Taming Exceptional Control Flows in Aspect-Oriented
Programming. In Proceedings of the 7th International Conference
on Aspect-Oriented Software Development (Brussels, Belgium,
March 31 - April 04, 2008). AOSD '08. ACM, New York, NY,
72-83.
[4] Cargill, T. Exception Handling: A False Sense of Security.
C++ Report, vol. 6, no. 9,pp. 21-24, Nov.-Dec. 1994.
[5] Castor Filho, F., Brito, P. H. S., and Rubira, C. M. F.
Specification of exception Flow in software architectures. Journal
of Systems and Software, 79(10):1397.

 [6] Cottenier, T., van den Berg, A., Elrad, T. Joinpoint Inference
from Behavioral Specification to Implementation, In Proceedings
of the 21st European Conference on Object-Oriented
Programming (ECOOP’07), Berlin, Germany, LNCS 4609,
Springer-Verlag, July 2007.

 [7] Cottenier, T., van den Berg, A., Elrad, T. The Motorola
WEAVR: Model Weaving in a Large Industrial Context, In
Proceedings of the Industry Track at the 6th International
Conference on Aspect-Oriented Software Development
(AOSD’07). March 2007.

[8] Entwisle, S., Schmidt, H., Peake, I., and Kendall, E. 2006. A
Model Driven Exception Management Framework for Developing
Reliable Software Systems. In Proceedings of the 10th IEEE
international Enterprise Distributed Object Computing
Conference (October 16 - 20, 2006). EDOC. IEEE Computer
Society, Washington, DC, 307-318.
[9] Harel, D. 1987. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program. 8, 3 (Jun. 1987), 231-274.
[10] Hong, H. S., Kim, Y. G., Cha S. D., Bae D.-H. and Ural, H. A
Test Sequence Selection Method for Statecharts. STVR,
10(4):203--227, 2000.
[11] Kiczales, G. et al. Aspect-oriented programming. In
Proceedings of ECOOP’97, pages 220–242, 1997.
[12] Malayeri, D. and Aldrich, J. Practical Exception
Specifications. Advanced Topics in Exception Handling
Techniques, LNCS, 2006.
[13] Mellor, S. J., Kendall, S., Uhl, A., and Weise, D. 2004 MDA
Distilled. Addison Wesley Longman Publishing Co., Inc.
[14] Mellor, S. J. and Balcer, M. 2002 Executable Uml: a
Foundation for Model-Driven Architectures. Addison-Wesley
Longman Publishing Co., Inc.
[15] Mustafiz, S. Sun, X. Kienzle, J. and Vangheluwe, H. 2006.
Model-Driven Assessment of Use Cases for Dependable Systems.
In 9th International Conference on Model Driven Engineering
Languages and Systems -- MoDELS 2006, Genova, Italy, Oct. 1--
6, 2006, no. 4199 in Lecture Notes in Computer Science, pp. 558 -
- 573, Springer Verlag.

 [16] Pintér, G. and Majzik, I. Modeling and Analysis of Exception
Handling by Using UML Statecharts. FIDJI 2004. 58-67.
[17] Robillard, M. P. and Murphy, G. C. Designing robust Java
programs with exceptions. In Proceedings of the 8th ACM
SIGSOFT international Symposium on Foundations of Software
Engineering: Twenty-First Century Applications. ACM Press,
New York, 2000, 2-10.
[18] Robillard, M. P. and Murphy, G. C. Static analysis to support
the evolution of exception structure in object-oriented systems.
ACM Trans. Softw. Eng. Methodol. 12, 2 (Apr. 2003), 191-221.
[19] Shui, A., Mustafiz, S., Kienzle, J., Dony, C. Exceptional use
cases. In Briand, L.C., Williams, C., eds.: MoDELS. Volume
3713 of Lecture Notes in Computer Science., Springer (2005)
568–583

 [20]Szyperski, C. 2002 Component Software: Beyond Object-
Oriented Programming. 2nd. Addison-Wesley Longman
Publishing Co., Inc.

46

