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ABSTRACT 
Executable models are increasingly being employed by 
development teams to implement robust software systems. 
Modern executable models offer powerful composition 
mechanisms that allow developers to deliver a running system in 
small increments and in a time-effective fashion. Such models act 
like code by providing high-level development abstractions and, 
as a consequence, it is expected that increased software robustness 
is achieved. However, existing executable models have a number 
of limitations on the representation of exceptional behaviour. 
Similarly to exception handling in programming languages, one of 
the key problems is that the modelling languages and supporting 
environments do not allow the explicit specification of global 
exception flows. They require that developers understand the 
source of an exception, the place where it is handled, and 
everything in between. As system development evolves, 
exceptional control flows become less well-understood, with 
negative consequences for the program maintainability and 
robustness. In this paper, we claim that such problem can be 
addressed by an innovative exception handling model which 
provides abstractions to explicitly describe global views of 
exceptional control flows.  The implementation of our proposed 
model extends the aspect-oriented language constructs and the 
control-flow analysis of the Motorola WEAVR with the aim of 
promoting enhanced robustness and program modularization. 

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces;  

General Terms 
Design, Reliability. 

Keywords 
Exception handling, model-driven software development, aspect-
oriented programming, modularity, exception control flow. 

1. INTRODUCTION  
Model-Driven Software Development (MDSD)[13,14] techniques 
are increasingly used in large development environments where 
different team members work on distinct executable models [14]. 
In order to improve software robustness, modelling languages 
support different levels of abstractions targeted at specific 

software development stages. They typically allow to: (i) define 
and visualise the system architecture, (ii) specify the normal and 
exceptional interfaces between different sets of behaviours, and 
(iii) detail normal and exceptional behaviours of the system in a 
platform-independent manner. During the software architecture 
definition phases, the system behaviour is decomposed according 
to modules that encapsulate cohesive pieces of behaviour. The 
decomposition goal is to minimize the inter-module dependencies 
and, therefore, improve software maintainability.  
However, MDSD languages do not provide explicit abstractions 
to capture the global effects of exception control flows traversing 
the system architecture. Exceptional behaviour has the tendency 
to leak out of the module interfaces established during the 
architectural definition phases [17]. This means that the handling 
of an exception raised in one module generally requires corrective 
actions to be taken in a number of other modules. Hence, it is 
fundamental to have the ability to explicitly declare the 
dependencies between modules introduced by global exceptions. 
The explicit exception flows are essential to guarantee that faults 
are not introduced in evolving executable models.  
Although MDSD languages, such as UML, support basic 
exception handling primitives to specify exception interfaces, they 
do not provide explicit abstractions to specify and reason about 
exceptional control flows. They do not support modular 
descriptions of modules that are the source and target of 
exceptions. These descriptions are essential to ensure that minor 
modifications in the implementation of a module do not break the 
expected effects of global exceptional flows. In other words, 
existing MDSD languages mimic the limitations of contemporary 
exception handling mechanisms in programming languages [3].  
In this context, the contributions of this paper are threefold. First, 
we discuss the liabilities of modelling exceptional behaviour in 
MDSD. Second, we propose an exception handling model which 
provides platform-independent representation of exceptional 
behaviour. The proposed model aims to make exceptional 
behaviour more resilient in the presence of changes. Third, we 
present the concretization of this model by leveraging aspect-
oriented language constructs and the control-flow analysis of the 
WEAVR [6]. WEAVR supports an aspect-oriented extension to 
UML 2.0. This implementation exploits existing pointcut 
languages to explicitly capture the semantics of exception control 
flow that spawn over multiple modules of the system. 
The next section introduces some of the notations used in a 
MDSD environment and discusses the impact of exceptional 
behaviour on the models of the system. Section 3 introduces the 
EFlow model and details how it relates to the UML. Section 4 
discusses the implementation of the EFlow model in terms of 
successive model transformations. Finally, Section 5 discusses 
related work and Section 6 concludes this paper.  
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2. MODEL DRIVEN SOFTWARE 
DEVELOPMENT 
Model-Driven Software Development (MDSD) takes an iterative, 
top-down approach to software engineering where different 
models of the system are the central artefacts of the development. 
The Model-Driven Architecture (MDA) therefore proposes a 
standard architecture for MDSD based on the UML. The MDA 
defines two main levels of system abstraction: the Platform 
Independent Model (PIM) and the Platform Specific Model 
(PSM). 
The PIM is a model of the system structure and behaviour, and is 
typically developed by system architects. It defines the 
functionality and behaviour of a system independently of the 
specific technologies that implement it. The PIM can 
automatically or semi-automatically be mapped to different 
Platform-specific Models (PSM) of the system. In this work, we 
consider that to achieve fully automated code generation, a 
translationist [14] approach is the most adequate one which is able 
to support precise modelling of software behaviour.  
Executable models need to be manually refined to a level of 
granularity that enables tools to fully generate code for a target 
platform given platform specific generation rules. The platform-
specific models and the code are fully automatically generated. 
Next section details how a translationist approach can be used to 
define executable models. 

 
Figure 1. Composite-structure architecture diagram for a 

Bank application 
 

2.1 Executable Models  
The translationist interpretation of the MDA emphasizes model 
executability. The precise behaviour of the model is defined 
imperatively by embedding actions within statechart [9] 
transitions. Actions are executed during a transition from one state 
to another and as the PIM specifies the complete behaviour of the 
application, there is no need to manually elaborate the PSM and 
the generated code. The mappings between models and code 
generation can therefore include various platform-specific 
optimizations. Thus the PSM and the generated code are not 
appropriate for human inspection, and are hidden from the 
developer. The obvious advantage of the translationist approach is 
that PIM’s can be tested early in the lifecycle. This style of 
modelling is also in line with agile development methods. 
In order to obtain an executable model, the detailed behaviour of 
components must be specified. First, the structure of a model can 
be obtained by modelling the static parts of a system, representing 
elements that are either conceptual or physical [2]. For instance, 
Figure 1 gives a high level view of the composite-structure 
diagram which describes some components of a Bank application. 

Each of those components may be itself composed of multiple 
active classes. Then, the observable behaviour of each active class 
is specified using statechart diagrams [9]. For the sake of 
illustration, Figure 2 depicts the normal behaviour of two 
operations: doDeposit and clearCheck. According to the 
doDeposit’s statechart, this operation initiates in the Active state. 
Upon receiving a deposit invocation, this statchart invokes the 
depositCheck operation of FirstFed component. Then the state is 
transformed into Processing. At this state, the condition id!=null 
is tested at each instant of time to identify when the return value is 
available. When this occurs, the state is transformed into 
Clearing, and it waits for the availability of idStmt to print the 
statement and finalize the operation.  
 

 
 

 
 

Figure 2. Representation of normal behavior using 
statecharts. 

Note that those statecharts represent only the states and transitions 
in which all operations are successfully executed. Next section 
describes some problems that are usually faced when trying to 
modelling exceptional behaviour.   

2.2 Modelling Exceptional Behaviour 
Since the system behaviour is represented by a sequence of 
transitions, a correct behaviour is provided whenever the system 
implements the agreeable specification [1]. Such specification 
defines the correct sequence of valid transitions to achieve one 
specific goal. In contrary, misbehaviour might be provided when 
at least one or more transitions deviate from the correct sequence. 
The deviation from the correct transitions represents a deviation 
from the normal control flow to the exceptional control flow, and 
it must be treated as an exception by some special processing. 
Otherwise such a violation can eventually lead the system to a 
failure [1]. For instance, Figure 3 depicts some new states and 
transitions introduced into clearCheck operation in order to 
support exceptional behaviour.  
Ideally, this behaviour should be fully supported by UML 2.0 
specification. However, such a specification allows only 
identifying exceptional flow of events in use case diagrams, 
representing them as normal signals, and finally attaching these 
signals to method’s specification [2]. However, no reference is 
made on how to enforce that exceptions propagated by methods 
described by means of statecharts are going to be handled. It is up 
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Active

deposit(check)/ 
id=depositCheck(check);
deposit(check)/ 
id=depositCheck(check);

Processing

[id != NULL] /
idStmt = printReceipt(id);
[id != NULL] /
idStmt = printReceipt(id);

Clearing

  

[idStmt != NULL] / 
printStatement(idStmt);
[idStmt != NULL] / 
printStatement(idStmt);

  

Active

clearCheck(check)

ClearingCheck

[check.signature == account.signature]

ValidSignature

[check.id != stolenCheckId]

ValidCheckId

[check.amount <= account.balance] / 
account.balance = account.balance - check.amount;

  

Client.doDeposit(Check check) National.clearCheck(Check check) 
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to the designer to reason about the exceptional control flow and 
ensure that no exception is going to lead the system to a failure. 
Exceptions often need to be handled in a global fashion [17,18]. 
Therefore, as pointed out by many authors [4,12,17,18], reasoning 
about exceptional control flow is not an easy task. In executable 
models, this problem can be even worse since exceptional 
behaviour may be inconsistently represented throughout many 
diagrams.  Furthermore, such representations are based on the 
implicit assumption that it is enough to specify the places where a 
program raises exceptions (raising sites) and the places where it 
handles them (handling sites). There is no explicit relation 
between raising and handling sites. 

 
Figure 3. Complexity of exceptional behaviour 

For instance, Figure 2 depicts two executable descriptions of 
methods doDeposit and clearCheck. Let’s suppose that method 
clearCheck evolves to the description illustrated in Figure 3. This 
later description deals with three new exceptional situations and 
propagates some of them to its caller. In this scenario, as there is 
no relation between the exceptional behaviour of both methods, 
there is no guarantee that the new exceptional situations created 
by clearCheck are going to be handled by doDeposit method. This 
in turn leads to the development of executable models that are less 
robust and maintainable.   
In addition, the decision to leave to the method level the 
responsibility for the definition of exceptional behaviour tends to 
affect the software evolvability. This occurs because the raising 
and handling sites are spread out over the different methods of the 
systems, making the exception handling behaviour tightly coupled 
with the normal behaviour. The problem arises when requirements 
with respect to the exception handling behaviour change, the 
implementation of the system would need to be manually 
modified. As the implementation of this behaviour is not localized 
in a separate module, the impact of changing this requirement on 
the implementation would be massive.  
In summary, we have observed that current profiles for executable 
models do not provide proper support for the task of 
understanding and ensuring the paths the exceptions take from the 
raising site to the handling site. The main consequence of this 
limitation is that if a programmer changes exception-related state 
transitions, the control flow in apparently unrelated parts of the 

program may change in surprising ways. This creates two direct 
complications.  First, it becomes difficult to discover where the 
exceptions raised within a given context will be handled since 
there is no distinction between normal and erroneous states. It is 
also difficult to trace a handled exception to the place where it 
was originally raised.  

3. MODEL-DRIVEN EXCEPTION 
HANDLING MECHANISM 
Addressing the problems described above requires finding 
techniques to fulfil two requirements. First, it is required to 
decompose the exceptional behaviour into separate modules that 
encapsulate the different exception handling strategies. Second, 
these modules need to expose well-defined interfaces that non-
ambiguously describe their behaviour.  
The fulfilment of these two requirements will make it possible to 
understand exception flows from an end-to-end perspective by 
looking at a single part of the executable model. They are also 
essential to allow executable models to evolve in a robust manner 
and accommodate changes to their requirements.  
In the following, Section 3.1 describes an exception handling 
model that fulfils such requirements. Section 3.2 describes how 
this model can be concretized by means of a model-based 
composite mechanism. 

3.1 EFlow: Exceptions at Executable Models 
The main aim of an exception handling model is to define the 
interaction between raising sites and the handling sites.  
Eventually, exception handling model should provide abstractions 
to enforce that no exception could inadvertently lead the system to 
a failure. In this context, we introduce EFlow model, whose major 
goal is to make exception flow explicit, safe, and understandable 
by means of explicit exception channels and pluggable handlers. 
EFlow is a more abstract definition of the EJFlow mechanism 
defined elsewhere [3]. This section leverages platform-
independent language elements (statecharts [9, 10]) to describe 
the concepts that underpin EFlow model.  
In the following, we assume that a given statechart of a 
component A is a tuple (S, Act, V, T) where S, Act, V and T are 
sets of states, actions, variables and transitions, respectively. Let 
ܵ ൌ N׫E where N is a finite set of valid states, E a finite set of 
erroneous states, and N ת ܧ ൌ  A transition of a statechart is a .׎ 
tuple (s, a, s’), where ݏ, ᇱݏ א ܵ are the source state and target state, 
respectively. For convenience, we write ݏ

௔
՜  .Ԣ instead of (s, a, s’)ݏ

The action ܽ א  can modify values or define predicate on ݐܿܣ
variables in V, perform method invocations, produce output 
messages, and so forth.  

3.1.1 Explicit Exception Channels 
An explicit exception channel (channel, for short) is an abstract 
duct through which exceptions flow from a raising site to a 
handling site. More precisely, an explicit exception channel EEC 
is a 4-tuple consisting of: 
 

• Rs: a set of raising sites; 
• Hs: a set of handling sites; 
• Is: a set of intermediate sites; 
• Ds: a set of declaration sites; 

  

Active

clearCheck(check)clearCheck(check)

ClearingCheck

[check.signature == account.signature]

ValidSignature

[check.id != stolenCheckId][check.id != stolenCheckId]

ValidCheckId

[check.amount <= account.balance] / 
account.balance = account.balance - check.amount;

  

[check.signature != account.signature]
                                    /return InvalidSignature;
[check.signature != account.signature]
                                    /return InvalidSignature;

InvalidSignature

[check.id == stolenCheckId]
              /return CheckStolen;
[check.id == stolenCheckId]
              /return CheckStolen;

CheckStolen

[check.amount <= account.balance][check.amount <= account.balance]
InadequateBalance

[check.amount <= firstreserve.balance] /
firstreserve.balance= firstreserve.balance - check.amount;
[check.amount <= firstreserve.balance] /
firstreserve.balance= firstreserve.balance - check.amount;

recovery()/
log();
recovery()/
log();

recovery()/
log();
recovery()/
log();
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Figure 4. Exception control flow involving multiple methods 

Raising sites (Rs) are transitions ݏ
௔
՜ ݁ where ܴܵ ൌ ሼሺݏ, ܽ, ݁ሻ: ݏ א

ܵ, ܽ א ,ݐܿܣ ݁ א  ሽ . This corresponds to all transitions in theܧ
application whenever the occurrence of a leads the system to 
switch to an erroneous state. A raising site is depicted in Figure 4 
by the transition ܿ

௔ଶ
ሱሮ ݁1. This figure depicts part of the 

architecture of a software system, comprising three components: 
C1, C2, and C3. Component C3 requires services from component 
C2 which, in turn, request services from component C1. These 
components are defined in terms of methods, each method denotes 
statecharts where circles symbolize states, and arrows express 
transitions. In this context, the occurrence of transition a2 
transforms the state of method B into an erroneous state E1. In 
practice, this erroneous state represents a deviation from the 
normal return (provided by state D) to an exceptional return 
(denoted by the dashed arrow). A dashed arrow indicates that, 
during the execution of B, an exception can be raised and this 
exception will be signalled to C. As would be expected, each 
dashed arrow also indicates that control flow is passed from one 
method to the other. 

Handling sites (Hs) are transitions ݁
௔
՜ ݊, where.  ܵܪ ൌ

ሼሺ݁, ܽ, ݊ሻ: ݁ א ,ܧ ܽ א ,ݐܿܣ ݊ א ܰሽ. Handling sites denote all 
transitions whenever an action a takes place, and in turn switches 
the system to a valid state. In Figure 4, for example, a handling 
site is described by the transition  ݁5

௔ଵଷ
ሱۛሮ   .ݏ

As depicted in Figure 4, raising and handling sites are the two 
ends of an explicit exception channel. All transitions that are 
neither handling nor raising sites are considered intermediate sites 
(Is). Thus, intermediate sites are transitions ݁

௔
՜ ݁Ԣ, where ݏܫ ൌ

ሼሺ݁, ܽ, ݁ᇱሻ: ݁, ݁Ԣ א ,ܧ ܽ א  ሽ. Accordingly, intermediate sitesݐܿܣ

comprise all transitions through which erroneous states are 
successively transformed into other erroneous states from the 
raising site on its way to the handling site. For instance, in Figure 
4, transitions  ݁1

௔଺
ሱሮ ݁2 and  ݁2

௔଻
ሱሮ ݁3 are examples of intermediate 

sites. 
The main purpose of defining raising, handling and intermediate 
sites is to reveal the implicit exception control flow created by a 
raising site. For instance, the implicit exception control flow 
created by the raising site ܿ

௔ଶ
ሱሮ ݁1 can be revealed by means of the 

following explicit exception channel:  

1ܿ݁ܧ ൌ ሼቀܿ
௔ଶ
ሱሮ ݁1ቁ , ቀ݁5

௔ଵଷ
ሱۛሮ ቁݏ , ቀ݁1

௔଺
ሱሮ ݁2

௔଻
ሱሮ ݁3

௔଼
ሱሮ ݁4

௔ଵ଴
ሱۛሮ ݁5ቁ ,  ሽ׎

As described in Figure 4, the explicit exception channel Ecc1 
percolates through different methods and components of a given 
system. This characteristic allows (i) to define the two ends of the 
explicit exception channel and (ii) to check whether all exception 
control flows created by a raising site are properly handled at 
handling sites. Clearly, an explicit exception channel does not 
need to necessarily be limited to any modular unit boundaries. 
However, it is widely believed that the definition of certain 
boundaries helps to provide a clear specification and a better 
understanding of exception handling behaviour [12,17]. 
Moreover, some modular units, such as components are well 
known for being independently deployable and composable with 
third party modules [20]. For these reasons, developers need to 
take into account the module boundaries when defining the 
explicit exception channel.  
In order to define explicit exception channels which respect 
module boundaries, declaration sites can be used to slice the 
explicit exception channel according to each module. For 
example, the explicit exception channel Eec1 can now be 
described in terms of three channels:  

1ܿ݁ܧ ൌ ሼቀܿ
௔ଶ
ሱሮ ݁1ቁ , ,׎ ቀ݁1

௔଺
ሱሮ ݁2ቁ , ሺ݁2ሻሽ 

2ܿ݁ܧ ൌ ሼቀ݁2
௔଻
ሱሮ ݁3ቁ , ,׎ ቀ݁3

௔଼
ሱሮ ݁4ቁ , ሺ݁4ሻሽ 

3ܿ݁ܧ ൌ ሼቀ݁4
௔ଵ଴
ሱۛሮ ݁5ቁ , ቀ݁5

௔ଵଷ
ሱۛሮ ቁݏ , ,׎  ሽ׎

In the first two channels (Eec1 and Eec2), the handling site is not 
defined whereas the declaration site specifies the last state before 
the error reaches the component boundary (e2 and e4). The 
definition of a declaration site means that the channel is not able 
to deal with all exception control flows and in turn other channel 
should extend it beyond the module boundaries. In this context, 
the third channel Eec3 extends the second by defining its raising 
site with a reference to the declaration site of channel Eec2. The 
utilization of declaration sites makes it possible to (i) define 
explicit exception channels of entire systems from extended 
definitions of individual components, and to (ii) enforce 
robustness between raising and handling site since whenever a 
handling site is not available, a declaration site should be provided 
to make the channel valid. 

3.1.2 Pluggable Handlers 
The EFlow model ensures that all exceptions generated at the 
raising sites are going to be handled at the handling sites. In this 
context, the handling site of an explicit exception channel denotes 
the set of valid states in which the exception handling model 
should leave the system after the occurrence of an exception. In 
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order to generate such valid states, the EFlow model introduces 
the concept of pluggable handler. 
A pluggable handler is one or more corrective actions that can be 
associated to arbitrary transitions. Let Ca be a provided set of 
pluggable handlers. For s א ܵ, a pluggable handler is defined as  
ሻݏሺܪ݃ݑ݈ܲ ൌ ቄܿܽ א ᇱݏ׌ :ܽܥ א ,ܧ ᇱݏ

೎ೌ
ሱሮݏቅ. 

Note that pluggable handlers belong to a different set of actions 
Ca which in practice denotes the separation between error 
handling behaviour from normal behaviour. A single pluggable 
handler can be associated with either intermediary or handling 
sites. Pluggable handlers whose corrective actions lead the system 
to a valid state are attached to handling sites. In contrast, actions 
that alleviate the problem but do not switch the system to a valid 
state are associated with intermediary sites.  

3.2 Making the Model Concrete  
As described in the previous section, EFlow relies on detailed 
specification of raising sites, intermediate sites, and handling 
sites. Pluggable handlers are defined to enforce the definition of 
safe exceptional control flow between modules. The main benefit 
of such an explicit specification is that exceptional behaviour 
becomes more resilient in the presence of changes. In addition, 
both system’s design and architecture can be validated early on in 
the lifecycle.  
However, the applicability of EFlow depends on the capabilities 
of the chosen technique for concretising the proposed model. For 
instance, it may be infeasible to give exhaustive specifications of 
raising sites, intermediate sites, and handling sites for each 
exceptional control flow since the number of possible state 
transitions can be extremely large in any medium-size application. 
Additionally, the composition of pluggable handler may bring 
new problems of its own.  For instance, pluggable handler may 
incorrectly change the control flow of applications once such 
handlers tend to introduce new states and new decision actions in 
multiple state machines to handle erroneous situations.  
Given these facts, the chosen technique should be able (i) to 
describe at high level the notion of explicit exception channels, 
and (ii) support composition mechanisms that do not require 
intrusive modifications of the normal behaviour. We believe that 
Aspect-oriented [11] design mechanisms can fulfil such 
requirements. These mechanisms can be characterized by their 
ability to non-invasively introduce behavior into applications and 
their ability to quantify over the system elements where this 
behavior should be introduced. In this context, Section 3.2.1 
outlines an aspect-oriented modelling language and Section 3.2.2 
describes how such modelling language was extended to support 
the EFlow abstractions.  

3.2.1 Weaving Handlers into Models with WEAVR 
The Motorola WEAVR [6, 7] provides language constructs to 
capture aspects in UML 2.0 and perform weaving of state 

machines before code generation. WEAVR supports two distinct 
types of pointcut descriptors: action pointcuts and transition 
pointcuts. The pointcut descriptors strictly refer to actions and 
transitions declared in the statechart specification of the system. 
The notation used for both types of pointcuts is identical: a 
pointcut is always represented as a transition (s

௔
՜  from a set of (ݐ

source states (s) to a set of target states (t), triggered by an action 
(a) expression. Wildcards can be used to quantify over both the 
source and target states of the transition. The action expressions 
are used to match the signatures of transition triggers and the 
signatures of actions executed in the context of a transition.  
 

  

 
Figure 5. Example of aspect binding diagram, the depositFailure 

pointcut and the handleException advice. 
For instance, Figure 5 depicts an aspect in WEAVR which 
handles the exception incomplete_check propagated by method 
depositCheck(). This aspect defines one pointcut depositFailure 
and one advice handleException. In WEAVR, advices are bound 
to the pointcut through a dependency that is annotated with the 
binds stereotype. Advices are instantiated for each joinpoint that 
matches a pointcut descriptor. In Figure 5, the depositFailure 
pointcut is one example of action pointcut. The depositFailure 
pointcut selects remote procedures call or simple method 
invocations that match the depositCheck method of FirstFed 
component. The handleException advice executes depositCheck 
by means of using proceed() statement, and upon returning, the 
status variable is tested to determine if incomplete_check 
exception was signalled. If so, the handleException advice logs 
this exception and returns to the Active state. 
As described above, the Motorola WEAVR allows composing 
handlers with the control flow of the state machine at multiple 

 <<Advice>> void 
handleException()

{1/1}

  

status = proceed();

status == incompleteCheck

true false

log();

Active   

 <<Pointcut>> void 
depositFailure()

{1/1}

Active

*/depositCheck(check);*/depositCheck(check);

Processing

<<operation,Adv ice>>

handleException
 

<<operation,Pointcut>>

depositFailure<<binds>><<binds>>

 
Figure 6. Example of Explicit Exception Channel. 

<<operation,Pointcut>>

CheckStolen

<<raisingsite>><<raisingsite>>

<<operation,ehandler>>

handleException

<<echannel>>

ClearCheckExceptionChannel

<<operation,Pointcut>>

InvalidSignature

<<raisingsite>><<raisingsite>>

<<operation,Pointcut>>

InadequateBalance

<<raisingsite>><<raisingsite>>

<<operation,Pointcut>>

depositFailure

<<handlingsite>><<handlingsite>>

  

 

National

<<within>><<within>> <<within>><<within>> <<within>><<within>>

 

Client

<<within>><<within>>

<<operation,Pointcut>>

DepositCheck

<<intermediatesite>><<intermediatesite>>

 

FirstFed

<<within>><<within>>
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locations. However, WEAVR does not provide any mechanism to 
support the enforcement of the exceptional control flow from the 
raising site to the handling site (Section 3.1.1). In other words, if a 
designer accidentally changes the return from incomplete_check 
to incompletecheck, the control flow in handleException advice 
will not be the same since this slightly different value will not be 
recognized as an exception, and in turn the handler will not 
properly handle this exception.  
Again, even for composition mechanisms such as AO languages, 
the exceptional behaviour is defined by means of the places where 
a program raises exceptions and the places where it handles them. 
No relation is established to enforce that changes in the raising 
sites may compromise the effectiveness of handlers defined in the 
handling sites. This lack of explicit dependency reveals that AO 
mechanisms alone are not enough to provide safe composition of 
exceptional behaviour with normal behaviour. In this context, the 
next section describes a set of abstractions which were included in 
WEAVR to support the concept of explicit exception channel.   
 

 
Figure 7. Raising site defined in terms of a transition pointcut 

 
Figure 8. Handling site defined in terms of a transition pointcut 

 

3.2.2 Exception Handling Modelling Language 
 
To support the definition of explicit exception channels, WEAVR 
was extended in two directions: an UML profile and an 
enforcement mechanism. First, we define a UML profile as an 
extension of the UML standard language with specific elements to 
support the definition of explicit exception channels. Such new 
notational elements include two new types of entities, echannel 
and ehandler.  
An explicit exception channel is visually represented as a class 
that is annotated by the echannel stereotype. The profile also 
defines three new dependency stereotypes raisingsite, 

handlingsite, and intermediatesites which are used to determine 
the raising sites, handling sites and intermediate sites of explicit 
exception channels, respectively.  
 An operation annotated with ehandler stereotype is an 
implementation of a pluggable handler. This operation 
encapsulates the exception handling behaviour that is executed 
when a certain point in an explicit exception channel is reached. 
An ehandler operation is bound to the handling site of an explicit 
exception channel. 
For instance, Figure 6 depicts an explicit exception channel 
ClearCheckExceptionChannel that represents one of the 
exceptional control flows described in Figure 3 and 4. This 
channel is bound to five pointcuts through dependencies that are 
annotated with the raisingsite, intermediatesite and handlingsite 
stereotypes.  
The pointcuts annotated with raisingsite represent the source of 
the channel, i.e. the exceptional situations that originate the 
channel. For instance, Figure 7 describes that an instance of 
ClearCheckExceptionChannel will be created whenever the check 
signature is not valid. 
The ClearCheckExceptionChannel channel is further constrained 
by the DepositCheck intermediary site. The channel only captures 
the CheckStolen, InadequateBalance and InvalidSignature 
exceptions that flow through the DepositCheck method in the 
FirstFed class. 
The handleException ehandler handles exceptions flowing from 
the raisingsite locations, through the intermediatesite locations, at 
the locations defined by the handlingsite pointcuts. Specifically, 
the handleException ehandler is activated when such exceptions 
reach a transition from state Active to state Processing, along 
which the depositCheck method is called, within class Client, as 
illustrated in Figure 8. 

In addition to model the exception control flow, our approach 
checks whether all exceptions defined by means of raising sites 
are handled by a pluggable handler at a raising site. In particular, 
if CheckStolen, InadequateBalance or InvalidSignature exceptions 
are not in the control flow of the depositFailure pointcut, then 
they will not be handled by the handleException ehandler. The 
semantics of explicit exception channels enforce that such case 
are detected by the model checker, through control flow analysis. 

4. MODEL TRANSFORMATION  
In order to generate executable code, models based on EFlow 
abstractions go through three transformation processes. First, the 
EFlow model is transformed into a set of WEAVR aspects. 
Second, these aspects are composed with the base model through 
WEAVR model transformations. Finally, the woven models are 
used to generate platform-specific executables.  

 <<Pointcut>> void CheckStolen() {1/1}

* ' * '
[check.signature != account.signature][check.signature != account.signature]

 <<Pointcut>> void depositFailure() {1/1}

Active
*/depositCheck('...');*/depositCheck('...');

Processing

Figure 9. Explicit exception channel translated into WEAVR aspect model 
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<<operation,Pointcut>>
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FirstFed
<<within>><<within>>

<<cflow>><<cflow>>

<<operation,Pointcut>>
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Client
<<within>><<within>>

<<hasincflow>><<hasincflow>> <<hasincflow>><<hasincflow>>

<<operation,Adv ice>>

handleException
<<binds>><<binds>>

<<hasincflow>><<hasincflow>>

  

<<within>><<within>><<operation,Pointcut>>

InvalidSignature
<<operation,Adv ice>>

RaiseException
<<binds>><<binds>>

<<binds>><<binds>> <<binds>><<binds>>
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4.1. First Transformation: Translation of EFlow 
model to WEAVR Aspect Model 
EFlow provides explicit abstractions to capture exceptional 
control flows. These abstractions capture control flow 
relationships between locations in the models. The semantics of 
the EFlow abstractions can be translated into regular WEAVR 
aspects, which explicitly declare these control flow relationships. 
This is achieved by introducing join point composition operators: 
between the pointcuts defined in the EFlow model: cflow, 
isincflow and hasincflow. 
 

 
Figure 10. Aspect responsible for checking echannel semantics. 
 
cflow is a standard aspect-oriented programming construct. The 
following pointcut matches all calls to method c (see Figure 4) 
that occur in the control flow of a call to method b. 

    pointcut foobar : call(* *.c(…)) && cflow(call(* *.b(…)) 

cflow is a dynamic operator. In the general case, it can not be 
determined at compile time whether a call to b occurs in the 
control flow of a call to method c.  
As a consequence, we extended WEAVR with a static 
approximation to cflow called isincflow. isincflow would match all 
calls to method c for which it can be statically determined that the 
call occurs in the control flow of a call to method b through static 
control flow analysis. However, exceptional control flow is the 
opposite of normal control flow. Hence, we introduce the 
hasincflow operator, which captures the opposite semantics of 
isincflow. call(* *.c(…)) && hasincflow(call(* *.b(…)) matches 
all calls to  method c that may have a call to b in their control 
flow. 
Given these join point composition operators, the EFlow model of 
Figure 6 can be translated into the WEAVR aspect model of Figure 
9. The RaiseException advice throws an exception at the locations 
defined by the raisingsite pointcuts, within class National, when 
they are in the control flow of the DepositCheck intermediate site 
pointcut. The handleException advice corresponds to the 
ehandler. It introduces error handling code at the locations 
defined by the handling site pointcuts that may have one of the 
raising site pointcuts in their static control flow. 
Finally, the EFlow checking semantics are implemented by the 
aspect of Figure 10. An exception not handled warning is declared 
at weaving time whenever one of the raising sites is not in the 
static control flow of the HandleExceptionPointcut, which 
captures the error handling code introduced by the 
handleException ehandler. 

4.2. Second Transformation: Weaving of Aspects 
After translation from EFlow models to WEAVR aspects, the 
aspects are integrated with the base model through the WEAVR 
model transformations. These transformations take as input the 
base model and the aspect definitions and generate a new model 
of the application. The WEAVR engine performs reachability, 
data flow and control flow analysis over the state machines of the 
model and introduces the behaviour defined by the aspect advice 
at the locations specified by the pointcuts, according to their 
control flow dependencies. The generated model is UML 2.0 
compliant model that captures the semantics of the base entities 
and the aspects.  

4.3. Third Transformation: Code Generation 
Finally, the woven model is translated into a platform-specific 
executables according to a set of platform transformation rules. 
These rules map a generic exception handling mechanism used at 
the model level to the specific throw/try/catch constructs used in 
the target programming language. For example, if the target 
platform runs C code, exception handling mechanisms would be 
mapped to the C setjmp/longjmp primitives. Hence, the 
characterization of exception handling behaviour at the 
modelling-level facilitates the control flow analysis because we 
can abstract from the details and specificities of the target 
language used. 
 

5. RELATED WORK  
There are a number of approaches that try to systematically 
integrate exceptional behaviour into early phases of software 
development process. Shui et al. [19] proposes an approach to 
reveal the presence of exceptional behaviour by means of the 
definition of exceptional use cases. This approach guides 
developers to describe possible exceptional situations that may 
affect system reliability and safety. Subsequently, Mustafiz et al. 
[15] proposes a model-driven approach whose main goal is to 
assess system reliability and safety.  In order to obtain such 
quality attributes, exceptional use cases are mapped to a statechart 
extension which added a probability attribute for each transition. 
Reliability and safety are then obtained by calculating the product 
of all transition probabilities that lead from one source state to a 
target one. These two works are complementary to our own since 
they provide a link between use case description and statechart 
specification. 
Recent work by Castor et al. [5], in the Aereal framework, 
leverages existing languages and tools to support the description 
and analysis of exception control flow in software architectures. 
That work is similar to ours in its focus, but it differs on the way 
exception control flows are represented and on the goal of 
verification. While we provide a precise and light-weight 
specification of control flow at statechart level, and a high level 
representation at architecture level, the Aereal framework requires 
the exhaustive definition of complicated formalisms to represent 
flows only between two interconnected architectural elements. 
Moreover, besides the properties verified by Aereal (e.g., the 
existence of uncaught exceptions and useless handlers), we also 
support the enforcement of exception control flow during software 
evolution. 
Some authors have proposed model-driven approaches [8,16] that 
support the definition of exception handling behaviour throughout 

<<operation,Pointcut>>

HandleExceptionPointcut

<<operation,Pointcut>>

InvalidSignature
<<operation,Pointcut>>

InadequateBalance
<<operation,Pointcut>>

CheckStolen

<<'!isincflow'>><<'!isincflow'>> <<'!isincflow'>><<'!isincflow'>><<'!isincflow'>><<'!isincflow'>>

<<operation,Adv ice>>

ExceptionNotHandledWarning

<<binds>><<binds>> <<binds>><<binds>> <<binds>><<binds>>
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different perspectives.  Entwisle et al. [8] proposes a model driven 
management framework that supports the definitions of strategies 
and policies across different tiers of an application. Pintér and 
Majzik [16] define a modelling pattern to support the definition of 
exception handling behaviour into statecharts. Unlike the EFlow 
approach, these works are not based on executable models. They 
rely on model transformation rules to automatically map the 
exceptional behaviour from the PIM to a PSM skeleton. Once the 
code generator converts the structural model to the target 
language, the normal behaviour code is added manually to the 
code skeleton. The problem with these approaches is that after 
generating the PSM skeleton, the developer is free to evolve the 
code as he/she desires to. Hence, these approaches do not provide 
any enforcement to guarantee the reliable evolution of the 
exceptional behaviour after deployment.  
 

6. CONCLUDING REMARKS  
This paper has presented an exception handling model whose 
main purpose is to make exceptional behaviour more resilient in 
the presence of changes. We leverage the WEAVR specification-
level pointcuts to promote improved separation between normal 
and error handling code, while keeping track of exception control 
flows. We have implemented the most part of proposed model, 
with small syntactic additions to WEAVR. Our ongoing work 
encompasses the extension of the proposed model to support the 
notion of coordinated atomic actions. 
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