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ABSTRACT
Separation of concerns is one of the overarching goals of
exception handling in order to keep separate normal and
exceptional behaviour of a software system. In the con-
text of a software product line (SPL), this separation of
concerns is also important for designing software variabil-
ities related to different exception handling strategies, such
as the choice of different handlers depending on the set of
selected features. This paper presents a method for refac-
toring object-oriented product line architecture in order to
separate explicitly their normal and exceptional behaviour
into different software components. The new component-
based software architecture includes variation points related
to different choices of exception handlers that can be selected
during product instantiations, thus facilitating the evolution
of the exceptional behaviour. The feasibility of the proposed
approach is assessed through a SPL of mobile applications.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces; D.2.11 [Software Engi-
neering]: Software Architectures

General Terms
Design
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1. INTRODUCTION
Currently, many efforts are being made for achieving higher
levels of reuse when developing software systems. One of
the main approaches discussed in the literature for promot-
ing the reuse of software artefacts is called software prod-
uct line (SPL). A SPL is an approach that systematises the
reuse of software artefacts through the exploration of com-
monalities and variabilities among similar products [1]. One
of the main artefacts in the context of a SPL is its prod-
uct line architecture (PLA). While abstracting away from
system details, a PLA provides a global system perspective
that is key for identifying commonalities and variabilities in
terms of architectural elements and their configurations, as
well as planning strategies for software reuse. In a PLA, the
commonalities of architectural elements and their configura-
tions are reused in different products, while the variabilities
are resolved through design decisions related to the differ-
ent choices captured by the software architecture through
variation points.

According to Bass et al. [2], the software architecture defines
the structure or structures of the system, which comprise
software components, the relationships between them, and
the externally visible properties of the application, which
are usually related to its quality attributes. Since the soft-
ware architecture realises the design decisions associated to
quality attributes, such as dependability, when evolving the
strategy of error handling, it is desirable to start from the
software architecture and then apply the changes to the
source code. Moreover, in the context of SPL, it is desirable
to keep traceability between the feature model its software
architecture, in such a way that SPL evolutions can be easily
applied at the software architecture. For providing a high-
level abstraction, we adopt a component-based software ar-
chitecture, where components are deployable units of com-
position with contractually specified interfaces and explicit
context dependencies [19]. It is desirable that component-
based software architecture considers explicitly both the nor-
mal and exceptional behaviour of the system in order to
easily evolve.
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When one considers the system’s behaviour in erroneous sit-
uations, the complexity of its behaviour can be increased,
as well as the tangling between the normal behaviour and
the behaviour responsible for handling errors. Exception
handling [8] was conceived as a way to manage the com-
plexity of systems that should cope with rare situations,
such as error recovery. An exception handling mechanism
promotes an explicit textual separation between the normal
code, responsible for the application functionality and the
code responsible for its behaviour in exceptional situations.
Exception handling complements other techniques for error
recovery, such as atomic transaction [14], and aims to sup-
port the construction of programs that are more reliable,
reusable, and easy to evolve [17]. The implementation of
exception handling mechanisms by several modern object-
oriented languages, such as Java, Ada, C#, and C++, and
component models, such as CCM, EJB, Ice, and .NET, at-
test its importance to the current practice of software devel-
opment. These programming languages provide constructs
to indicate the occurrence of an error (raise or throw an ex-
ception), and means to incorporate recovery actions (handle
the exception), including error handling.

Separation of concerns is one of the overarching goals of
exception handling in order to keep separate normal and ex-
ceptional behaviour of a software system. This separation
promotes both adaptability and reuse of normal and error
handling code. Moreover, it is also desirable to consider the
exceptional behaviour from a high-level perspective, since
the error recovery strategy is a property associated to the
system’s global structure, not only to a individual compo-
nent. In the context of PLAs, the separation of concerns
between normal and exceptional behaviour is particularly
suitable for facilitating both the evolution of the PLA, and
the instantiation of different products according to the sys-
tem’s exception handling variabilities. For example, the se-
lection of an optional feature during the instantiation of a
product can interfere in the way exceptions are handled.

The contribution of this paper is to provide a method for
refactoring object-oriented PLAs in order to separate their
normal and exceptional behaviour into different software
components. This separation of concerns allows the spec-
ification of different exception handlers that can be selected
during the architectural configuration, thus facilitating the
evolution of the exceptional behaviour and its instantiation
into different products.

The rest of this paper is organised as follows. Section 2 pro-
vides some background information. Section 3 presents a
general method for refactoring object-oriented PLAs. Sec-
tion 4 describes the case study used to evaluate the proposed
approach. Section 5 describes how the target SPL has been
evolved in order to better evaluate our solution. Section 6
summarises the overall evaluation by comparing the original
and the refactored PLA. Section 7 describes some related
work. Finally, Section 8 provides some concluding remarks,
and future directions of research.

2. BACKGROUND
2.1 Software Product Line Architectures
Feature modelling is one of the most accepted ways to rep-
resent commonalities and variabilities at the requirements

phase. At the architecture design phase, product line archi-
tecture is an important core asset that should represent the
common and variable parts in a product line.

A Software Product Line (SPL) is an approach that sys-
tematises the reuse of software artefacts through the ex-
ploration of commonalities and variabilities among similar
products [1]. Feature model is one of the most accepted
ways to represent commonalities and variabilities at the re-
quirements phase. At the architecture design phase, Prod-
uct Line Architecture (PLA) is an important core asset that
should represent the common and variable parts in a prod-
uct line. One of the main artefacts in the contexts of a SPL
is the PLA, which explicitly represents the commonalities
and variabilities of architectural elements and their configu-
rations. The commonalities are reused in different products,
while the variabilities are resolved through design decisions
related to the choices at the PLA.

The reuse obtained with SPL facilitates the the development
of similar software systems of a given domain. This approach
allows large-scale reuse through a common set of core as-
sets in a prescribed way [7]. The development process of a
product line consists of two complementary sub-processes:
product line engineering and application engineering. Prod-
uct line engineering analyses software products with regard
to their commonalities and variabilities in order to build a
reuse infrastructure that can be used to derive new similar
products. Application engineering uses this infrastructure
to instantiate particular software products [1].

2.2 Component-based PLAs
The software architecture of a program or computing sys-
tem is the structure or structures of the system, which com-
prises software elements, the externally visible properties of
those elements (architectural components and connectors),
and the relationships among them (architectural configu-
ration) [2]. Since the software architecture represents the
structure of the software system, it is the set of significant
decisions about the organization of a software. Those deci-
sions concerns the selection of the structural elements and
their interfaces by which the system is composed, together
with their behaviour as specified in the collaborations among
those elements [15]. Moreover, since software architecture
deals with the design and implementation of the high-level
structure of the software, its decisions have a decisive im-
pact into the quality attributes of the whole system, such as
availability, reliability, and testability.

Figure 1 presents an example of an architectural configu-
ration involving two components and a connector. Archi-
tectural components (e.g., A and B) are primary computa-
tional elements or data stores of a system and are defined
through the list of operations that they provide (provided
interfaces), as well as the operations necessary for executing
their functionalities (required interfaces). Architectural con-
nectors (e.g., conn) are mediators of the communication and
coordination activities among components. That is, they
define the rules governing component interaction and spec-
ify any auxiliary implementation mechanism required. The
way that components and connectors are connected together
is defined by the architectural configuration.
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IB_Provided

<< architectural connector >>

conn

<< architectural component >>

B
<< architectural component >>

A
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provided
interface

required
interface

architectural configuration

Figure 1: Example of an architectural configuration in UML

In the context of this paper, the normal and exceptional
behaviour of the software components are explicitly sepa-
rated. This explicit separation at the implementation level
aims to reduce the coupling between the normal and ex-
ceptional behaviour, thus improving the system evolvability
and the reuse of the normal part. In the proposed approach,
interfaces may contain either operations for handling excep-
tions (exceptional interfaces), or operations for implement-
ing functionalities (normal interfaces); normal and excep-
tional interfaces can be either provided or required. In the
same way, components can provide either normal or excep-
tional interfaces, not both at the same time. In the first
case, they are considered normal components, while in the
second case they are considered exceptional components.

2.3 The COSMOS* Component Implementa-
tion Model

The COSMOS* model [13] is a generic and platform-
independent implementation model, which uses object-
oriented structures, such as interfaces, classes and packages,
to implementing component-based software architectures.
The main objectives of the COSMOS* model are: (i) to
provide traceability between the software architecture and
the source code of the application; and thus (ii) to facilitate
the evolution of its implementation.

The main advantages of COSMOS*, when compared with
other component models such as Corba Component Model
(CCM), Enterprise Java Beans, and .NET, is threefold.
First, COSMOS* explicitly represents architectural units,
such as components, connectors and configuration, thus pro-
viding traceability between the software architecture and
the respective source code. Second, as CCM, COSMOS*
implements software components with explicit required in-
terfaces, which facilitates the implementation of architec-
tural variation points related to both normal and exceptional
behaviour. Third, COSMOS* is considered a platform-
independent model, since it is based on a set of design pat-
terns. The structure defined by COSMOS* can be used as
the basis for model transformation from component-based
software architectures to detailed design of software com-
ponents. For example, the Bellatrix case tool [20] supports
model transformation from graphically specified software ar-
chitectures, to Java source code in COSMOS*.

COSMOS* defines five sub-models, which address different
aspects of component-based systems: (i) the specification
model specifies the components using UML; (ii) the imple-
mentation model explicitly separates the definition of the
provided and required interfaces of the components from the
implementation of its provided services; (iii) the connector
model specifies the link between components using connec-
tors, thus enabling two or more components to be connected

in a configuration; (iv) composite components model speci-
fies high-granularity components, which are composed by
other COSMOS* components; and (v) system model defines
a software component which can be executed straight for-
ward, thus encapsulating the necessary dependencies. Each
of these models is implemented as a set of design pattern
which can be automatically translated to source code. Due
to space constraints, COSMOS* is exemplified only in Sec-
tion 4.5, in the context of a case study of a target SPL.

3. A REFACTORING METHOD FOR
COMPONENT-BASED PLA

In our approach, the PLA is considered a first-level unit,
which guides the instantiation of different products of the
SPL. Figure 2 presents an overview of the proposed approach
for refactoring object-oriented PLAs. Activity 1 specifies the
component-based PLA, which aims to provide a high-level
view of the system structure maintaining traceability with
feature model. From its feature model and classes of the ex-
isting SPL, two artefacts are produced: a component-based
PLA, and the existing exceptions and classes related to each
architectural element. Activity 2 explicitly separates the nor-
mal and exceptional behaviour of the architectural elements.
This activity consists on the definition of explicit exceptional
components, which are capable of handling exceptions. The
objective of such separation of concerns is to group in fewer
components the exception handling that was scattered in the
code, thus facilitating its evolution and implementation of
variability. Activity 3 is the implementation of the system’s
source code. For this, a specific component implementation
model has to be selected. Each one of such activities is fur-
ther detailed in the paper, in the context of a case study
presented in Section 4.

4. CASE STUDY OF A MOBILE SPL
4.1 Target SPL: MobileMedia
In the following, in order to exemplify and evaluate our solu-
tion, we present as a case study a real software application,
called MobileMedia [10], which is a SPL for mobile applica-
tions that manipulates photo, music, and video on mobile
devices, such as mobile phones. The system uses various
technologies based on the Java ME platform, such as SMS,
WMA and MMAPI, and it is representative of how exception
handling is used to deal with errors in real software devel-
opment for two reasons. First, MobileMedia encompasses a
large number of exception handlers related to different fea-
tures of the SPL. Second, it presents heterogeneous cross-
cutting relationships involving the normal code, the handler
code, the clean-up actions, and other crosscutting concerns.

Figure 3 presents a partial view of the feature model of
MobileMedia, following the notation proposed by Ferber et
al. [9]. The core features of MobileMedia are: Create/Delete
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Figure 2: Method for Refactoring Exceptional Be-
haviour

Media, Persistence (SDcard, RecordStore), Media (photo, mu-
sic or video), Label Media, and View/Play Media, as well as
the types of storage device. The multiple features are the
types of media supported: Photo, Music, and/or Video. Fi-
nally, the optional features are: send photo via SMS (SMS
for short), Copy Media, and set favourite media (Favourites).
The core features of MobileMedia are applicable to all the
mobile phone devices that are J2ME enabled. The optional
and alternative features are configurable on selected mobile
phones depending on the API support they provided. Mo-
bileMedia was developed for a family of four brands of de-
vices, namely Nokia, Motorola, Siemens, and RIM.LMNOPQLQROSLQROS TSUMVWOXQY ZM[\LQROS ]L] LQROSLS^S_Q`Q X̂abMXM LVYOc dORQM ZWQSXQefQPQXQ gSNQPLQROS dOQheaPS\LQROSgQ_Q^RijS`Q TQSXVWQ k[XOM^SP LVPXO[PQLS^RSXMW\
Figure 3: Partial feature model of the MobileMedia
SPL

The original implementation of the MobileMedia PLA fol-
lows the object-oriented paradigm. The exception handling
code for the Java implementation followed the design ap-
proach described in detail elsewhere [18]. Regarding the
PLA of the MobileMedia, it is mainly determined by the
use of the Model-View-Controller (MVC) architectural pat-
tern [4]. Each implementation class represents an architec-
tural element, but a high-level component-based represen-
tation of its software architecture is not available. Figure 4
presents a partial view of the original software architecture
with a total of 18 architectural components. The four grey
boxes encompass components that realise each of the three

roles of the MVC pattern, namely model, view, and con-
troller, and an utility layer. Figure 4 also relates the ar-
chitectural elements with the features in Figure 3. This is
done by the circles on the left top of the architectural ele-
ments. For instance, the SMS on the top of the SMS Con-
troller (Figure 4) indicates that this element contributes to
the implementation of the feature SMS in the feature model
(Figure 3). According to Skyperski’s definition of software
component [19], although the architecture presented in Fig-
ure 4 is modularised, it is considered monolithic, since the
contextual dependencies between modules are not explicitly
represented and each module can not be deployable inde-
pendently.lmnopqrstquuntvqwnuxsmu
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Figure 4: Layers of the Product Line Architecture
of the MobileMedia SPL

4.2 Case Study Description
The main goal of the case study was to evaluate the feasi-
bility of our approach, as well as the advantages of having a
component-based PLA with explicit separation of concerns
between the normal and exceptional behaviour. Such ben-
efits are evaluated on evolvability of the component-based
PLA. The execution of the case study is composed of three
steps. First, we have refactored the original PLA in order
to explicitly separate its normal and exceptional behaviour
through a component-based PLA with hierarchical decom-
position of software components. Second, we have evolved
the feature model of the both PLAs by creating a exception
handling variability, that allows the choice of a new optional
feature related to raising a sound alarm in case of error. Fi-
nally, we evaluate the impact of applying this modification
in the original PLA and the refactored PLA. Preliminary re-
sults of the benefits of the proposed approach are obtained
by comparing the two versions for analysing qualitative and
quantitative characteristics related to evolvability, specifica-
tion of exceptional variability, and separation of concerns.

4.3 Designing a Component-Based PLA
For executing the Activity 1 of Figure 2, we have rafactored
the software architecture with two goals: (i) to componentise
the PLA in order to specify architectural variation points re-
lated to exception handling, and (ii) to reduce the number
of architectural elements for improving the system under-
standability. For designing the component-based software
architecture we have followed the UML Components pro-
cess [6] with some adaptations. First, the layered architec-
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tural style, suggested by the UML Components process, was
changed by the MVC architectural style, which is adopted
by the original PLA. Second, instead of using the use case
model as input to identify components, we have used the fea-
ture model of the SPL, as defined by the process presented
in Section 3.

Figure 5 presents the refactored PLA, which is composed
by three layers: an interface layer, an operation layer, and
a data layer. The PresentationDialog component represents
the union of the Presentation and Dialog layers proposed by
the UML Components process, and it is responsible for ma-
nipulating menus and user actions. The operation layer
is composed of four components: VideoOperations, which
implements functionalities for playing and managing video
files, PhotoOperations, which implements functionalities for
viewing and managing image files, AudioOperations, which
implements functionalities for playing and managing audio
files and MessagingOperations, which implements function-
alities for sending and receiving messages. Finally, the data
layer contains the services related to the management and
access of storage devices (e.g. SD cards and the internal file
system). This layer has a single component, called Media-
Manager, which is responsible for managing the media and
albums data. Since the features of Audio, Photo, Video, and
Messaging are optional features, the existence of different re-
quired interfaces into the PresentationDialog component al-
lows the specification of architectural variation points. That
is, during the architectural configuration, the dependencies
of the PresentationDialog component can be either totally or
just partially satisfied.

<< component >>

AudioOperations

<< component >>

MediaManager

IMess
OpsProv

IAudio
OpsProv

IPhoto
OpsProv

<< component >>

PresentationDialog

IMediaMgt

<< component >>

MessagingOperations
<< component >>

PhotoOperations
<< component >>

VideoOperations

IVideo
OpsProv

IPhotoOps
ReqDial

IVideoOps
ReqDial

IAudioOps
ReqDial

IMessOps
ReqDial

Interface
   Layer

Operations
     Layer

Data
Layer

Figure 5: Component-based PLA for MobileMedia

Since architectural elements should be self-contained enti-
ties, we have defined data types, which are classes with pub-
lic attributes and no operations, containing only the infor-
mation needed by other components. Instances of data types
are used to exchange information between architectural ele-
ments, thus providing information hiding of the implemen-
tation classes. Examples of data types are: AlbumDataDT
and MediaDataDT.

4.4 Creation of Exceptional Components
According to Activity 2 of Figure 2, in order to facilitate the
evolution of the exceptional behaviour, as well as the speci-
fication of variable exception handlers, our approach states

that the normal and exceptional behaviour should be explic-
itly separated. Moreover, the architectural elements of the
refactored PLA are hierarchically decomposed in terms of
its normal and exceptional parts, by grouping the handlers
defined for the PLA in exceptional components. The excep-
tion detectors, which depends on the system state, stays in
the normal component. The association between the normal
and exceptional components is realised by an internal (not
architectural) connector, as presented in Figure 6. In this
figure, the normal behaviour is realised by the Messaging-
Operations component, while the exceptional behaviour is
realised by WarningHandlers. The association between the
error detection (into MessagingOperations) and the excep-
tion handlers (into WarningHandlers) is realised by the Inter-
nalConnector. The MessagingOperationsIFTC represents an
architectural component, which is characterised by combin-
ing both normal and exceptional components. Figure 6 also
presents the connection involving architectural elements. In
this example, the MessagingOperationsIFTC and MediaMan-
ager components were connected via the MsgMediaConn ar-
chitectural connector.

IWarningHandlers

<< exceptional component >>

WarningHandlers
<< component >>

MessagingOperations

IMessOpsProv

<< internal connector >>

InternalConnector

IMessOpsReqDial

IReqHandlers

IPresentationDialogProv

<<architectural component>>

MessagingOperationsIFTC

IMediaMgt

.<< architectural connector >>

PresentationMsgConn
<< architectural connector >>

MsgPresentationConn

<< architectural component >>

 
PresentationDialogIFTC

IPresDialogReqMsg

.

.

.

<< architectural component >>

 
MediaManager

<< architectural connector >>

MsgMediaConn

IMessOps
ReqData

Figure 6: Refactored PLA with exceptional compo-
nents

4.5 Implementation of PLA
For implementing the refactored PLA (Activity 3 of Fig-
ure 2), we have chosen COSMOS* component implementa-
tion model, as presented in Section 2.3. First, the software
architecture presented in Figure 5 was graphically modelled
using the Bellatrix case tool [20]. Second, the skeleton source
code of its structure was automatically generated in Java.
Then, following the process presented in Activity 3.3 of Fig-
ure 2, the existing classes of the object-oriented version of
MobileMedia were reused and encapsulated into architec-
tural components. The criterion we have used to group
classes was their relations with the features present into the
feature model. Some classes, which were used for more than
a single feature, have been replicated into different compo-
nents.

Figure 7 illustrates the internal structure of the Messagin-
gOperations component, which implements the messaging
functionality. As defined by COSMOS*, its specification
package (messagingoperations.spec) contains its provided
(spec.prov) and required (spec.req) interfaces, as well as
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the respective data types (spec.dataTypes) and exceptions
(spec.dataTypes.excep). The IMessOpsProv interface con-
tains the operations provided by the MessagingOperations
component. The provided and required interfaces, as well
as data types and exceptions, are represented as part of the
software component, which makes it a self-contained and
deployable element.

IMessOpsProv

messagingoperations

impl

Manager

ComponentFactory

IMessagingOpsProvFacade

ReusedClasses...

<< instanciate >>

.

<< use >>

.

MessagingController

<< use >>.
<< instanciate >>

.

<< use >> .

spec

req

IMessOps
ReqData

excep

IReqHandlers

IMessOps
ReqDial

prov

IMessOps
Prov

IManager

dataTypes

excep

Exceptions
AlbumDataDT

MediaDataDT

.

<< use >> .

.

.

.

...

IMessOpsReqDial

IReqHandlers

IMessOpsReqData

<< component >>

MessagingOperations

Figure 7: Internal structure of the MessagingOperations
component based on COSMOS*

Regarding the required interfaces, the interfaces IMessOp-
sReqDial and IMessOpsReqData contain the required opera-
tions related respectively to the PresentationDialog and Me-
diaManager components. The IPresReqHandlers declares the
exception handlers which are executed by the implemen-
tation classes of the MesagingOperations component. This
interface is the link between the normal and exceptional be-
haviour, and is also responsible for providing an explicit sep-
aration of concerns between them, as we have presented in
Section 4.4. This separation facilitates the specification of
variabilities related to the choice of different versions of ex-
ception handlers, that is, the choice of different exceptional
components.

In the package presentationdialog.impl, we have reused
the object-oriented implementation of MobileMedia classes
responsible for the user interface functionality (Reused-
Classes). The façade class IPresDialogProvFacade imple-
ments the provided interface IPresDialogProv in order to ab-
stract away from the real internal controllers that actually
realises it. Since the reused classes implement the func-
tionality of the component, the IPresDialogProvFacade only
propagates the requests received through the component’s
provided interface to the reused controllers.

Since each architectural component is a deployable entity
of the application, the main program needs to implement
the binding between the required and provided interfaces
to create an executable configuration. For this, it is neces-
sary to use the management operations defined by the COS-
MOS* model (IManager interface). Figure 8 exemplifies the
assembling between the component MessagingOperations,
which depends on its IMessOpsReqData required interface,
and the component MediaManager, which provides the IMe-

diaMgt interface. This communication is intermediated
by the MsgMediaConn connector: MessagingOperations →

MsgMediaConn → MediaManager. The same principle is
applied to any assembly between two components. Lines 2
and 3 of Figure 8 present the instantiation of the COSMOS*

components, using the factory method design pattern [12],
while Line 4 presents the instantiation of the connector class.
Finally, Line 6 shows the association between a required
interface of the MessagingOperations and the object that
provides it.

1 . . .
2 msgoperations . spec . prov . IManager msgOps =

msgoperations . impl . ComponentFactory .
c r e a t e In s tanc e ( ) ;

3 mediamanager . spec . prov . IManager mediaMgr =
mediamanager . impl . ComponentFactory .
c r e a t e In s tanc e ( ) ;

4 msgoperations . spec . req . IMessOpsReqData mmConn =
new MsgMediaConn( ) ;

5

6 msgOps . s e tRequ i r ed In t e r f a c e ( ”IMessOpsReqData” ,
mmConn) ;

7 . . .

Figure 8: Example of binding between architectural
elements in COSMOS*

5. EVOLVING THE TARGET SPL
After refactoring the PLA, we have evolved the feature
model of the SPL, presented in Figure 3, in order to eval-
uate the benefits of the proposed approach related to the
evolvability of the exceptional behaviour and the choice of
different exception handlers according to different product
instantiations. The evolution of the feature model has been
conducted by adding a new optional feature, called Alarm,
which impacts the system exceptional behaviour. Depend-
ing on the selection of this feature, all handlers can either
present a single message (as they did originally) or present
a message followed by an alarm beep.

The change of the feature model was propagated to both
original and the refactored PLAs and the source codes.
A new component has been added called AlarmOperations,
which is responsible to receive the requests for raising an
alarm and propagate it to the infrastructure of the mobile
device. In the case of the target SPL, the mobile device
is represented by the standard API of Java Micro Edition.
Besides adding a new component, the architectural config-
uration has been also modified. The elements which have
exceptional components may request services to the Alarm-
Operations component.

New exceptional components have been added in the refac-
tored PLA for implementing the exception handlers with
alarm. Moreover, external architectural connectors has
been defined for the new exceptional components. Figure 9
presents the new internal structure of the MessagingOper-
ations architectural component. Notice that in this case,
the selection of the Alarm feature is associated with VP-EH
variation point, which consists on choosing either Warning-
Handlers or WarningAlertHandlers.

Regarding the original PLA, a total of nine classes had to
be modified in a total of 39 different places, since all the
“catch” blocks which originally provided an error message
had to be changed. In this case, the variability of the excep-
tional behaviour has been implemented through conditional
compilation using the #if and #endif directives.
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Figure 9: Architectural variation point of exception
handlers

6. DISCUSSION AND EVALUATION
The claim being made in this paper is that the system com-
ponentisation brings a better separation of concerns between
the normal and exceptional behaviour and allows the spec-
ification of architectural variabilities related to the use of
different exception handlers. Moreover, the traceability be-
tween the software architecture and the feature model facili-
tates the evolution of the normal and exceptional behaviour.
Our discussion is separated into two parts: exception han-
dling evaluation, presented in Section 6.1, and component-
based PLA evaluation, presented in Section 6.2.

6.1 Exception Handling Evaluation
As discussed in Section 5, in order to assess the evolvability
of the exceptional behaviour using the proposed solution,
we have added an optional feature which impacts the ex-
ceptional behaviour. In order to verify the benefits of our
approach, we have compared the number of modifications
related to exception handling made for evolving the origi-
nal PLA with the number of modifications for evolving the
refactored PLA. To apply this evolution on the original PLA
we had to modify 39 “catch” blocks in nine classes in order
to implement the new handler, while in the refactored PLA
we have just added two new exceptional components, which
were implemented as single classes. This happened because,
in the original PLA, the classes that were changed also im-
plements the normal behaviour of the system, while in the
refactored PLA the normal components were not affected by
the change.

Moreover, the instantiation of products with different excep-
tion handlers can also be facilitated by the implementation
of exception handling variability at the architectural level.
In the original PLA the exception handler varibility is im-
plemented using directives of conditional compilation, which
are spread throughout the normal components, while in the
refactored PLA the selection of a feature just implies on the
selection of the architectural elements that implement that
feature.

For assessing the overhead of our approach, we have mea-
sured the memory usage related to the exceptional be-
haviour. As presented in Section 4.4, internal connectors
have been created to link the normal behaviour to the ex-
ception handlers. Moreover, since the software components
presented in our solution are self-contained, it was necessary
to define exception classes in each component. In the refac-

tored PLA, we measured a total of 5.4 extra KB of ‘.class’
files, compared to the original PLA, which corresponds to a
growth of 18% on the size of the exceptional behaviour.

6.2 Component-Based PLA Evaluation
The modelling and understanding of the refactored PLA was
made easier because the building blocks of its architecture
were considered in a high-level abstraction. This higher ab-
straction has reduced the number of architectural elements
in 67%. As presented in Section 4.1, the original PLA had
a total of 18 classes (as architectural elements), against 6
components in the refactored PLA.

Besides the simplified view of the system’s structure, the
adoption of a systematic process for identifying architectural
components from the feature model has provided an impor-
tant categorisation of components according to the features
they refer to. In such a way, this case study has also shown
that the component-based modularisation of the SPL allows
an architecture-centred perspective of the development, thus
facilitating the instantiation of products based on exception
handling variability of the PLA. In other words, once the
features have been selected, it is possible to know how to
instantiate the PLA through its variation points.

Regarding the effort of implementation, we have noticed
that the adoption of the COSMOS* model has facilitated
the reuse of existing classes for implementing the architec-
tural components. This internal reuse was achieved by using
the Façade design pattern for implementing the component’s
provided interfaces. Each provided interface is realised by
an intermediate class (Façade) which propagate the calls to
the reused controllers. When reusing controllers, the en-
tity classes referred by them are also automatically reused.
Ignoring the data types and interfaces, which contain respec-
tively attributes and method’s signatures, approximately
78% of the classes used for implementing the architectural
components have been reused either straightforward, or with
minimal changes.

Regarding the memory usage of the mobile device, the imple-
mentation of the refactored PLA have presented an overhead
of 173% in size: approximately 156 KB of ‘.class’ files of the
original PLA implementation, against 426 KB of the refac-
tored PLA implementation using COSMOS*. This over-
head is a consequence of extra interfaces, data types and
explicit connectors of the COSMOS* model. At runtime
the overhead is not significant, since the refactored PLA im-
plementation used approximately 1.5% of extra RAM mem-
ory, when assessed with the memory monitor tool of the
Sun Microsystems Wireless Tool-Kit (WTK). This happens
because all components of the refactored PLA implement a
specific feature, which is not entangled with another compo-
nent, hence as they are not used at the same time, the Java
Virtual Machine can instantiate each one when necessary.

7. RELATED WORK
Managing exceptions is a well-known way of structuring
crosscuting concerns for improving the software reuse and
reduce the coupling between modules. In previous work [3,
11], we have proposed a development method for specifying
the exceptional behaviour of component-based software sys-
tems. In that work, the separation of concerns between the
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normal and exceptional behaviour was achieved since the
beginning of the development process, and remained at the
source code using the COSMOS* model. The present paper
focuses on the evolution of existing software product lines,
and allows the specification of exceptional variabilities.

Other contributions have proposed aspect-oriented solutions
for explicitly separating the exception handlers of object-
oriented systems. Lippert and Lopes [16] have employed
re-engineering on an OO Framework, called JWAM. The
authors have refactored JWAM’s exception handling code
to verify if the use of Aspects brings any benefits. They
found that, when applied to a reusable infrastructure that
implements general exception handling policies (as in the
case of JWAM), the modularisation of exceptions brought
advantages in reuse and a decreased number of LOC. Besides
allowing the reuse of general exception handlers, our work
also aims to allow the specification of variabilities related to
exception handling in SPL’s and to improve the traceability
between the software architecture and the feature model.

Recent work by Cacho et al. [5] proposes a novel excep-
tion model that allows explicit representation of exception
control flows and handlers. This work is different from
ours, since we focus on an architecture-centred solution for
component-based software systems. The work by Cacho et
al. focuses in a lower level of abstraction, related to the de-
tailed design and implementation of software systems. The
approach proposed in our paper starts with the architec-
tural design, thus allowing the specification of exceptional
variabilities in earlier phases of the software development.

8. CONCLUSIONS AND FUTURE WORK
This paper presents a method for refactoring object-oriented
PLAs in order to separate explicitly their normal and excep-
tional behaviour using different software components. This
separation of concerns allows the specification of different
exception handlers that can be selected during the architec-
tural configuration, thus facilitating the evolution of the ex-
ceptional behaviour and its instantiation into different prod-
ucts. The feasibility of the proposed approach was assessed
using a SPL of mobile applications, which showed that it is
possible to separate explicitly the normal and exceptional
behaviour of a system, and to specify architectural varia-
tion points related to the exceptional behaviour. For imple-
menting the case study, we have used the COSMOS* com-
ponent implementation model, which maintains traceability
between the component-based product-line architecture and
its source code.

A limitation of the proposed solution concerns its evalua-
tion when refactoring critical SPLs. Furthermore, we in-
tend to overcome a limitation of our solution regarding
the explicit representation of exception variability at the
implementation-level. For this, one possibility is the use
of aspect-oriented programming to define variable internal
connectors realising the binding between the normal compo-
nent and the exception handlers used by it.
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