
Specification of an Exception Handling System for a
Replicated Agent Environment

Christophe Dony
LIRMM, UMR 5506

CNRS and Univ. Montpellier 2
Montpellier, France

Christophe.Dony@lirmm.fr

Chouki Tibermacine
LIRMM, UMR 5506

CNRS and Univ. Montpellier 2
Montpellier, France

Chouki.Tibermacine@lirmm.fr
Christelle Urtado

LGI2P, Ecole des Mines d’Alès
Nı̂mes, France

Christelle.Urtado@ema.fr

Sylvain Vauttier
LGI2P, Ecole des Mines d’Alès

Nı̂mes, France
Sylvain.Vauttier@ema.fr

ABSTRACT
Exception handling and replication are two mechanisms that
increase software reliability. Exception handling helps pro-
grammers control situations in which the normal flow of
a program execution cannot continue. Replication handles
system failures. Exceptions handling and replication do not
apply in the same way to the same situations and thus
are two complementary mechanisms to increase software
reliability. The paper proposes a specification of an ex-
ecution history oriented exception handling system for an
agent language and middleware providing replication. This
paper proposes an original signaling algorithm adapted to
replicated agents and a rationale of how exception handling
and replication mechanisms can combine to increase pro-
grammers’ capability to achieve reliable agent-based appli-
cations.

1. INTRODUCTION
Exception handling (EH) and replication are two mecha-

nisms (algorithms and architectures) dedicated to reliability
and fault-tolerance that we wish to associate. Replication
handles failures whereas exceptions enable programmers to
dynamically handle those situations that prevent software
from running normally. An agent replication system [12, 7]
is able to replace an agent (provided he has been replicated)
that fails by one of its (active or passive) replicas. This re-
placement is as seamless as possible to software users and
does not require any additional code from programmers. A
failure is generally detected when an agent fails answering
to messages for a given amount of time, either because net-
work connections are lost or because the machine on which
the agent ran is switched off. Active replication systems
include algorithms capable of identifying the most critical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEH ’08, November 14, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-60558-229-0 ...$5.00.

agents to automatically replicate them. When replication is
active, messages sent to an agent are transmitted to all its
replicas, which process the same message in parallel. When
replication is passive, a single replica (the leader) processes
messages and periodically sends state updates to the other
replicas. Exceptions are situations in which the standard
control flow of a program execution cannot continue. An
exception is not a failure because it is a kind of answer from
the agent. It indicates that the agent is unable to continue
its task the standard way but that he is still alive. EH and
replication do not apply to the same situations and of dif-
ferent nature: replication is preventive and EH is curative.
However, both mechanisms are obviously very complemen-
tary. In the context of the Facoma

1 project that studies
the adaptive reliability of large scaled multi-agent applica-
tions, we are proposing an exception handling system (EHS)
capable of working on top of a replication system. The mo-
tivation for integrating these two mechanisms is threefold:

• The combination of replication mechanisms and EH in
general is a new and interesting challenge for software
reliability.

• EH can improve replication. Firstly, the implementa-
tion of the replication system can be made more ro-
bust by internally using exceptions. Secondly the use
of exceptions can improve replication strategies. For
example, with passive replication, the signaling of a
system exception by the leader can become a new sit-
uation for the replication system to replace the leader
by one of its replicas.

• Replication can also improve EH by providing active
copies of the computation state.

The objective of this paper is to present our study on the
first of the three above points: how an EHS can be combined
with a replication mechanism to increase the reliability of
agent-based applications. The bases of the study are our
Sage exception handling system dedicated to agents [19],
components [20] and active objects [5] and the Dimax repli-
cated agent system [7, 12] abstracted in Sect. 2.

1http://www-src.lip6.fr/homepages/facoma.officiel/

24

Our study lists and discusses issues, related to the adapta-
tion of a computation history oriented EHS on top of such
replicated agent systems (RAS). Here is a panel of the main
issues:

• How to transparently exploit replication for EH?

• What should happen when an exception is raised by an
agent that has one or more, active or passive, replicas?

• When and where should the replication system be able
to take control when an agent signals an exception?

• Which decisions can be taken within a handler defined
at the replication system level?

• How to distinguish an exception that can be inter-
preted as a failure from the point of view of the repli-
cation system and that cant thus entail the election of
a new replica, from an exception which can be inter-
preted as a correct answer for the service caller? For
example, signaling the “division-by-zero” exception is
the normal answer from the “divide” function if its
second argument is zero. In this case it is useless to
activate another replica, because it will compute the
same answer.

• Do standard resolution mechanisms used in distributed
EH to concert exceptions apply to synthesize the re-
sults computed by different replicas of the same agent?

The remainder of this paper is structured as follows. Sec-
tion 2 sets the context of this work, describing the targeted
agent model and replication system. Section 3 abstracts the
requirements for EH in a multi-agent world and provides the
agent programmer-directed Api of our X-Sage Ehs. Sec-
tion 4 describes how exception handlers are searched for in
a replicated agent system (RAS) while Sect. 5 discusses how
system-defined handlers can be defined in the replication
system to integrate exception handling to the replication
manager (RM). Section 6 concludes with a short discussion
on the benefits of our approach and open perspectives to
this work.

2. CONTEXTOFTHESTUDY:OVERVIEW
OFAREPLICATEDMULTI-AGENTSYS-
TEM

The context of this work is the programming of reac-
tive, collaborating agents that are deployed over a middle-
ware which handles agent replication. The concepts exposed
in this section are derived from the Dimax software that
combines the Dima multi-agent system [7] and the Darx

fault-tolerant middleware [12]. Initial names and principles
are generalized here and adapted to the agent interaction
scheme we studied in our previous work [5], namely peer-to-
peer service exchanges.

2.1 The agent model
An agent is a computation entity that executes in its own

thread. This provides the agent with the properties of be-
ing active and autonomous. The behavior of a reactive agent
consists of two parts: a control behavior which defines how
the agent makes decisions to act, depending on its inter-
nal state and the state of its environment; several elemen-
tary behaviors that represent the actions the agent knows

how to do. Figure 1 shows an abstract of the BasicCom-
municatingAgent class, the base class in our context, used
to implement reactive agents. The control behavior of the
agent is defined by the live method. It implements a loop
that is executed while the agent is alive. Each iteration of
this control loop calls the step method. This method im-
plements the decision mechanism that enables the agent to
choose, step by step, the action it executes. A control be-
havior represents the existence of the agent and is executed
in a separate thread, provided by the execution platform as
an instance of the AgentEngine class. This enables agents to
execute on top of different platforms, which can adapt their
specific execution model to the management of an agent as
an AgentEngine subclass. The other behaviors of the agents
are represented as methods of the agent class. Some of these
behaviors are executed upon the reception of a request from
another agent. These behaviors are called services. Agents
interact by exchanging asynchronous messages. Each agent
holds a message box and a communication interface respec-
tively to send and receive messages (cf. the MessageBox and
CommunicationComponent classes on Fig. 1). The commu-
nication interface is provided by the execution platform and
is responsible for the delivery of the messages. As described
above for the AgentEngine subclass, specific asynchronous
messaging mechanisms can be adapted to the agent model
as a CommunicationComponent subclass. Each agent bears
a unique identifier used as a logical reference, to designate
messages senders or recipients. The execution platform uses
name directories to convert these abstract agent identifiers
to effective references, in order to deliver the messages to
the agents. A specific semantics is associated to messages
in order to set up a request / response interaction protocol
between agents. This protocol describes peer-to-peer col-
laborations in which a client agent asks a server agent for
a service via a request message. Conforming to a contract-
based approach of software, whenever a server agent accepts
a request, it commits to send back a result, either standard
or exceptional, to the client agent via a response message.
Response messages are correlated with request messages.
When no response is received for a period of time defined
by the client agent, a timeout exception is signaled. As an
illustration (cf. Fig. 2), we use the canonical Travel Agency
example in which a Client can send to a Broker a reservation
message in order to request a bid for a travel. The contacted
broker sends in turn a bid request to several travel providers
and collects their responses. Then, the Broker selects the
best offer and requests the Client and the selected Provider
to contract.

2.2 The Replication System
Agents are executed on a middleware which provides a

fault-tolerant execution context thanks to a replication mech-
anism [12]. The execution context consists of a set of dis-
tributed replication servers which manage the execution of
tasks (ReplicatedTask class of Fig. 1). Every task belongs to
a replication group (ReplicationGroup class) that identifies
the set of tasks which are replicas of a same logical task.
Thus, all the tasks within a replication group have the same
behavior (they actually are instances of the same task class).
Moreover, the middleware maintains the replication group
consistent so that all the tasks are in the same state after
each computation. In the same replication group, all the
tasks are not exact replicas. While they have the same be-

25

Figure 1: Excerpt from the agent model

Figure 2: Execution resulting from a request to a
travel agency

havior, these tasks could have different environments (they
could run on machines of different kinds, with their own re-
sources). Logical tasks are identified by logical names that
are used to send them messages. The replication middle-
ware is in charge of the location and delivery of messages
to the corresponding replicas. More precisely, messages are
delivered first to the leader of the corresponding replication
group. The leader is a replica which has the specific role to
control the replication group. For this purpose, it holds an
RM which monitors the messages sent to or by the replicas
in the replication group. The replication manager maintains
status information about the replicas and executes group
management operations (creation, destruction of replicas,
etc.). The RM distinguishes two kinds of replicas. Active
replicas effectively execute treatments. The leader is neces-
sarily an active replica. The leader forwards the messages
sent to the task to the other active replicas so that they do
the same computation and reach the same new state. Pas-

sive replicas only perform state updates. When the leader
completes the computation, its new state is serialized and
sent to all the passive replicas. After their update, the pas-
sive replicas are in the same state as the leader (and suppos-
edly as other active replicas). Conversely, all messages sent
by replicas are filtered by the replication middleware. Only
messages sent by the leader are actually delivered to other
tasks. This makes replication transparent to other tasks.
Whatever the number of replicas of a task is, a unique mes-
sage is sent to invoke a computation and a unique message
is received as a response. The number and type of replicas
is determined by the replication policy, regarding the criti-
cality of the task and the availability of resources (memory,
Cpu). In case of failures, new replicas can be dynamically
created in order to maintain the redundancy required to
provide an expected level of fault-tolerance. The type of
replica (active, passive) can be changed to adapt resource
consumption to criticality and risk. When the leader fails,
its responsibility is transferred to another replica. When a
passive replica is chosen to become the leader, its status is
changed to active. The state of the task (meaning the state
of all the replicas of the corresponding replication group) is
thus rolled back to the state of the new leader (which repre-
sents the previous consistent state of the task, backed up in a
passive replica). If no replica still exists, the task has finally
been destroyed by the failure. Every agent executes inside
a task (cf. Fig. 1). As such, agents can be replicated by
the middleware and benefit from this fault-tolerance mech-
anism. The following sections explain how EH is combined
with replication.

3. CONTROLSTRUCTURESFOREHWITH
REPLICATED AGENTS

This section motivates and presents the first part of our
proposal: the X-Sage control structures for exception han-
dling designed for agent programmers. These control struc-
ture only slightly differ from those of the Sage system. In-
deed, they are programmer-directed and replication mecha-
nisms do not interfere in any programmer-directed capabil-
ity as replication must be transparent to the agent program-
mer. Handling replication will intervene in the implementa-
tion of these control structures in Sect. 4 and 5.

26

3.1 Requirements for an Agent Programmer-
directed EHS

The key requirements of the X-Sage exception handling
system, extended from [19, 5], are:

• to enforce agent encapsulation,

• to provide a representation for collaborative concur-
rent activities [17] so that they can be coordinated
and controlled [16],

• to look for handlers in the history of computation, in-
stead of delegating exception handling to specialized
agents, and to execute handlers in their lexical defi-
nition context; we call this caller contextualization [5]
for handler definition and execution. When encapsula-
tion and decoupling are enforced, non lexical handlers
do not have access to the execution contexts where the
exceptions are signaled (the agents which execute the
faulty services). They can only use generic manage-
ment operations (such as service or agent termination)
to cope with the signaled exception.

• to handle concurrent exceptions with resolution func-
tions [9],

• and, to support asynchronous signaling and handler
search so as to maintain agent reactivity.

Our specification comes in four steps indicating: (1) to which
program code units exception handlers can be attached, (2)
how exceptions can be signaled, (3) what can be written
within the code of exception handlers to put the system back
into a coherent state and, (4) in which order handlers are
searched for. The following two subsections are dedicated
to items 1 to 3. Item number 4 involves interfacing with the
replication mechanism; it is discussed in Sect. 4 and 5.

3.2 Signaling Exceptions and Attaching Han-
dlers

Figure 3 shows the java code of an X-Sage agent that de-
fines services and various exception handlers.
X-Sage takes advantage of the java annotations to make
EH for agents as seamless as possible. It shows examples of
service definitions (annotated by @service): lines 6–7 define
the pollProviders service and lines 17–30 the contactParties
service. It also illustrates (lines 20–28) how a message can
be sent by (a service of) a client agent to request a server
agent to provide him with some (sub-) service. Signaling ex-
ceptions is done by the means of a classical signal primitive
(cf. Fig. 3, line 11). Signaling is possible anywhere in the
code. This includes the possibility of signaling an excep-
tion from within handlers. Steps of the request / response
interaction pattern highlight the role of three key entities:
the request, the service and the active agent. They are the
three program code units to which exception handlers can
be attached:

• Exception handlers can be attached to requests. Such
handlers can, for example, specify two distinct reac-
tions to the occurrence of two identical exceptions raised
by two invocations of the same service. Lines 23–27 of
Fig. 3 shows how a handler can be attached to a spe-
cific request.

• Exception handlers can be attached to services. Such
handlers treat exceptions that are raised, directly or in-
directly, by some service’s execution. If the service is
complex, the handler has to be able to deal with con-
current exceptions, to compose with partial results or
to ignore partial failures. Lines 10–14 of Fig. 3 shows
the code of two handlers attached to a same service
(@serviceHandler annotation). Note that the service-
name attribute of the annotation allows to identify the
service the handler protects.

• Finally, exception handlers can be attached to agents.
Such handlers act as if they were repeatedly attached
to all of the agent’s services. They can be used, for
example, to uniformly maintain in the consistency of
the agent’s private data. Lines 3–4 of Fig. 3 shows
how such handlers can be associated to agents using
the@agentHandler annotation.

Our experience with Sage showed us that these capabili-
ties are powerful enough to encompass most cases the agent
programmer will be confronted to and simple enough to be
easy to learn and use.

3.3 Defining EH and Resolution Functions
Exception handlers are classically defined by the set of

exception types they can catch and by their code body (as
illustrated by Fig. 3, lines 23–27, for example). There are
three main actions a handler can classically have:

• A handler can restore whatever should be, to put back
data into a consistent state, and can return a value
that becomes the value of the expression the handler
is associated to. In case of a message sending expres-
sion (standard or broadcast), the value returned by
the handler is the value of the expression. In case of
a handler attached to a service, the value becomes the
result of the service execution. In case of a handler
attached to an agent, the value becomes the result of
the execution of the service that raised the exception.

• A handler can signal a new exception (generally of
a higher conceptual level) or re-signal the original
exception (Fig. 3, line 11). Of course, handlers cannot
protect themselves from the exceptions they signal.

• A handler can retry the execution of the program unit
it is attached to (Fig. 3, line 27). Retry amounts to
entirely re-execute the program unit it is attached to,
generally after having modified the local environment,
but in the same historical context. In case of handlers
attached to agents, retrying means re-executing the
service that signaled the exception.

X-Sage provides exception resolution support integrated to
the handler search. It enables resolution functions to be de-
fined at places where concurrent activities are launched and
have to be co-ordinated (i.e., at the service level). There is
no need for a resolution function either at the request level,
because requests are atomic, or at the agent level because all
semantically sound activities of agents, that need to be co-
ordinated, are accessible via services. The default behavior
of the resolution function associated to a service is, once all
recipients have replied, to aggregate all the exceptions that
occurred into a new concerted exception. Another possible

27

(1) public class Broker extends X_SaGEAgent
(2) {
(3) // handler associated to the Broker agent
(4) @agentHandler public void handle (GlobalNetworkException exc) { ... }
(5)
(6) // service provided by the Broker agent
(7) @service public void pollProviders () { ... }
(8)
(9) // handler associated to the PollProviders service
(10) @serviceHandler(servicename=pollProviders) public void handle (BadParameterException exc)
(11) { signal (new NoAirportInDestinationException (...); }
(12)
(13) // handler associated to the PollProviders service
(14) @serviceHandler(servicename=pollProviders) public void handle (NoProviderException exc) { ... }
(15)
(16) // service provided by the Broker agent
(17) @service public void contactParties ()
(18) {
(19) ...
(20) sendMessage (new RequestMessage (aServerAgent, "ContactSelectedProvider")
(21) {
(22) // handler associated to a request
(23) @requestHandler public void handle (OffLineException exc)
(24) {
(25) wait(120);
(26) retry();
(27) }
(28) });
(29) ...
(30) }
(31)
(32) // resolution function associated to the pollProviders service
(33) @serviceResolutionFunction(servicename=pollProviders) public TooManyProvidersException concert ()
(34) {
(35) int failed = 0;
(36) for (int i=0; j<subServicesInfo.size(); i++)
(37) if ((ServiceInfo) (subServicesInfo.elementAt(i)).getRaisedException() != null) failed++;
(38) if (failed > 0.3*subServicesInfo.size()) return new TooManyProvidersException(numberOfProviders);
(39) return null;
(40) }
(41) }

Figure 3: Service, handler and resolution function definitions in X-SaGE using annotations

behavior is to transmit a response as soon as it arrives with-
out waiting for others. Such a use of resolution for concerted
exception slightly differs from the original work of [9]. A res-
olution function is executed each time an exception handler
is searched for at the service level, this makes our system
reactive, because our resolution function evaluates the situ-
ation each time an exception is signaled. Of course, a pro-
grammer can define his own exception resolution function
using the @serviceResolutionFunction annotation as shown
in the example of Fig. 3, lines 33-40.

4. HANDLER SEARCH IN AN RAS
Handler search requires that a tree of service execution

contexts be monitored. Each node represents a service ex-
ecution context and records the identities of the service be-
ing executed and the agent that owns the current service
(cf. Fig. 5). Each node can optionally have a parent node
that links to the calling context of the current service. In
this parent node, the request that triggered the current ser-
vice is recorded. Links between nodes (callee to caller links)
are used to look for handlers. Figure 2 shows the service ex-
ecution context tree that results from the services executed
in the travel agency example.

If an exception is raised within an agent service, then the
execution of the service is suspended and handler search is
launched. The handler search process decomposes into four
steps. Figure 4 then shows the organigram that synthesizes
the different steps of the handler search process.
First, if there is a resolution function at the service level, it
is executed. During resolution, three cases are possible:

1. the exception is critical for the service. The resolu-
tion function returns the exception object and handler
search carries on.

2. the resolution function evaluates that the exception is
under-critical and that nothing more should be done
yet. The exception is logged, the resolution function
returns null and the handler search process stops. The
collective activity is not affected. The only service that
is terminated is the defective sub-service.

3. the resolution function evaluates that the exception is
under-critical but that there is a need to signal some-
thing, for example because too many under-critical ex-
ceptions have been logged. The resolution function
returns a special exception that reflects the situation
and handler search carries on.

28

Figure 4: Organigram for handler search

If there is no resolution function or in resolution cases 1 &
3, a handler for the exception is then searched in the list of
handlers associated to the service. If a handler is found, it is
executed. If no handler has been found at the service level,

Figure 5: Node of a service execution context tree

one is searched at the agent owner of the service. If a suitable
handler is found, it is executed and its execution terminates
the execution of the service. The agent is of course still
alive. Along with the execution of the handler, all pending
services called by the current service, if any, are terminated.
If no handler has been found at the agent level, and if the
agent is replicated, control is given to its RM. Each RM has
a handler that traps all exceptions and acts as a resolution
function the goal of which is to coordinate the answers given
by replicas of the agent. The behavior of this RM handler
is described in Sect. 5). If the RM does not want to handle
the exception or if it propagates it, search proceeds in the
calling context. First, the caller service is suspended and
the search for a handler is initiated in the calling service’s
context. The list of handlers associated to the request which
initiated the called service is searched first. If a handler is
found, it is executed and the search stops. Then, the search
proceeds by starting again at step 1, executing the resolution
function associated with the service, if any, then searching
the list of handlers associated to the current service, then,
those associated to the owner agent of the current service,
etc. The same four steps are repeated until an adequate
handler is found and executed, following callee to caller links
in the service execution context graph. If no handler has

been found when the root of the service execution context
tree is reached, a default top-level handler is executed.

5. HANDLING EXCEPTIONS AT THE RM
LEVEL

With replication, we face the following global issues: (1)
how to trap an exception raised by the leading replica of
an agent before the exception is propagated to the caller?
(2) What to do when it has been trapped? Solving issue 1
is done by invoking the replication manager during handler
search as explained in the preceding section. We have added
in each RM a resolution function and an associated handler
that traps all exceptions. Concerning issue 2, the RM han-
dler will either, as described in the following section, put
the system back into a coherent state, signal a new excep-
tion to the request caller or propagate one of those it has
trapped. In this latter case, the handler search will continue
as explained in Sect. 4.

5.1 Typology of exceptions
The first global question for the RM handler of an agent

when one of its replicas raises an exception is to know whether
the same exception will also be raised by the others. Which
exception is replica-specific (examples of this include excep-
tions raised when some resources specific to a given replica
are unavailable) and which ones are replica-independent (an
example is bad parameter in the request sent to the agent
(and thus to all its replicas), leading for example to a divi-
sion by zero)? In the worst case, it could be considered that
all exceptions are replica-specific. It would mean that when
a replica signals an exception, we could systematically have
another replica retry the same computation. This would sig-
nificantly slow down program execution.
We thus have conceived our algorithms based on a classifi-
cation of exceptions. Goodenough’s seminal paper [6] has
proposed a classification in domain, range and monitoring
exceptions that highlights the reason why an exception is
raised. It however appears that we have no way to know

29

whether a range exception (for example) is replica-specific
or independent. A classification in terms of Error (serious
problem, should not be handled) and Exception (business
problem, can be handled) as in Java, inherited from the
Flavors system, highlights the exception gravity but cannot
again be applied to our problem.
A more appropriate classification classically relies on excep-
tion semantics and distinguishes business (also called do-
main or applicative) exceptions from system or resource ex-
ceptions. System exceptions are raised by the computing
environment and are likely to reflect a specific communica-
tion or resource lack problem. They can be considered to be
replica-specific. Business exceptions are direct consequences
of a programmer’s code. Under the hypothesis that all the
replicas of an agent have the same deterministic behavior,
exceptions identified as business exception can be considered
as replica-independent: they will be raised by all replicas of
a given agent. The question of knowing how to detect at
run-time whether an exception is a system or business is
left open at this point of the study. In future work, we will
consider comparing the responses (normal responses or ex-
ceptions) to a same request given by several replicas of an
agent as a possible answer to this question. Indeed, if an
exception is repeatedly raised by replicas of a given agent,
it might probably indicate that the exception is a business
exception. In such a situation, after a determined num-
ber of occurrences of the same exception, the system might
consider it is useless to wait for other replicas’ responses.
Beyond this classification, the strategies of the exception
handler of the replication manager also takes into account
the composition of the replication group. Three strategies
are described in the following sections.

5.2 Controlling one active replica with multi-
ple passive ones

The passive-replication strategy uses a single active replica
(the leader) and a set of passive ones. When the active
replica (leader) raises a business exception, it is immediately
propagated to the client agent. The leader is considered to
be in a coherent state as a business exception is part of the
behavior designed by the programmer of the agent. More-
over, this exception should be raised by any replica executing
the same request message. It is then useless to discard the
current leader and to activate another replica to retry and
execute the request.
When the active replica raises a system exception, it is han-
dled as a failure of the leader. The leader, which is left
in an undefined, potentially inconsistent and harmful state,
is destroyed. One of the passive replicas is activated (it
becomes the new leader) and is asked to retry the interpre-
tation of the requested message. If this new leader raises a
system exception too, another passive replica is used until
their number runs out. If the last replica fails, the exception
is finally signaled to the client agent.

5.3 Controlling a set of active replicas
When a business exception is raised by a replica, it is

immediately propagated to the client agent since all other
replicas are expected to raise the same exception. The RM
handler does not stop the execution of the request in the
other replicas but filters the exceptions they raise (in order
not to send the same exception to the client agent several
times). This enables to determine when the execution of the

request is achieved for all replicas, to verify that they have
raised the same exception and thus are in the same consis-
tent state.
When a system exception is raised by a replica, it is recorded
by the resolution function of the RM, until all the active
replicas have achieved the execution of the request and have
sent a response. Meanwhile, if a normal response is com-
puted by a replica, it is forwarded to the client agent. The
other subsequent normal responses are discarded by the RM.
When the replicas have sent a response, the RM destroys all
the faulty replicas. If the leader is destroyed, a new leader
is chosen among remaining replicas. If all replicas are de-
stroyed, an exception is then signaled to the client agent.

5.4 Controlling a mix of active and passive
replicas

In the case where active and passive replicas are mixed
(the most general case), the handler first behaves as if there
were only active replicas (as in Sect. 5.3). If system ex-
ceptions are successively signaled by all active replicas and
some are destroyed, it is possible to activate passive repli-
cas, whether to augment the number of active replicas for
the next request or to retry and execute the current request.
It is to be noticed that the creation of new replicas is not
part of the behavior of RMs (which are specific to each repli-
cation group) because it must be arbitrated between the dif-
ferent replication groups, according to the criticality of the
tasks and the availability of computing resources. Replica
creation is thus managed by another replication middleware
mechanism based on the observation of task termination.

6. CONCLUSION AND RELATED WORKS
In this paper, we have proposed the specification of the

X-Sage exception handling system for replicated agents. X-
Sage firstly offers agent programmers an EHS that works
transparently with replicated agents. It secondly offers to
the replication system programmers the capacity to imple-
ment new replication strategies based on the signaling of
programmers’ code related exception by replicas. We have
described such possible strategies for passive and active repli-
cas. It can finally offer to the replication system program-
mers the capacity to internally control internal exceptions
raised by replication algorithms, as proposed in [11]. This
last point is not developed in this paper. We have pro-
posed an original and light programming Api, using java
annotations to define handlers and resolution functions. We
propose a handler search and a handler invocation algo-
rithms that relies on service execution history and, when
possible, work asynchronously to improve agent reactivity.
The implementation of our specification in the context of
the Dimax [7] software which does not yet provide EH ca-
pabilities, is in progress.
Concerning related works, there are few studies on mixing
exception handling and replication and as far as we know, no
other in the agent context. [11] has proposed internal strate-
gies to enhance a majority voting algorithm for replicated
processes thanks to the handling of sequencing exceptions
or hardware failures via an EHS. What is done for hardware
failure has partially influenced our strategies for replication
in presence of exceptions. The system is also able to re-
port exceptions to callers. [9] has proposed an initial study
to combine distributed object-oriented programming and N-
version programming and [18] proposes an Ada framework

30

for the same purpose. Our handler at the RM level globally
plays the same role for exceptions than the “exception ad-
judicator” of [18]. One main difference with our proposal is
that the control of the consistency of versions is more com-
plex with N-version since versions are defined by different
programmers whereas replication simply duplicate agents
that run the same code on different processors. For this
reason we have been able to propose different strategies to
return responses to clients as soon as possible without wait-
ing all responses from replicas.
As replication is transparent to programmers, our exception
handling system can easily be compared with other existing
EHSs. Various proposals address the issues related to ex-
ception handling for active objects integrating asynchronous
communication [2, 10, 3, 8, 13, 14, 15, 1]. Our solution
is original in that it combines the following features: han-
dling of request / response interactions between agents, han-
dling of agent replicas, encapsulation and reactivity, ability
to write context-dependent dynamic scope handlers (caller-
contextualization), ability to coordinate and control groups
of active agents collaborating to a common task, ability to
configure the exception propagation policy by defining ex-
ception resolution functions at the service level.
These specification and implementation are first steps and
we wish to develop many points in future works. In a
first step, the interactions between the replication mecha-
nism and the exception handling system have to be further
analyzed for system-level and application-level exceptions
to refine replication strategies. We then plan to enhance
Dimax capabilities using the exception handling system as
a “last chance” mechanism to signal failures when the Darx

replication system has failed. We also look forward to use
replication as a support to give the core implementation of
an EHS that supports a resumption policy. Indeed, even if
handler search is stack destructive, as in most systems, a
replica of an agent could restart the computation where it
has been stopped in the original one.

Acknowledgments. Authors wish to thank the French
Research Agency2 (Anr) that supported part of this work
through the Facoma project of the SetIn 2006 program.
They also want to thank A. Romanovsky for his help on the
bibliography and all colleagues from the Facoma project —
J.-P. Briot, Z. Guessoum, O. Marin and J.-F. Perrot — for
fruitful and inspiring discussions.

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] N. Cacho, K. Damasceno, A. F. Garcia,

A. Romanovsky, and C. J. P. de Lucena. Exception
handling in context-aware agent systems: A case
study. In Proc. of SELMAS’06, pages 57–76, 2006.

[2] R. Campbell and B. Randell. Error recovery in
asynchronous systems. IEEE TSE, SE-12 number
8(8):811–826, August 1986.

[3] R. Carlsson, B. Gustavsson, and P. Nyblom. Erlang:
Exception handling revisited. In Proc. of the 3rd ACM
SIGPLAN Erlang Workshop, 2004.

[4] C. Dony, J. Knudsen, A. Romanovsky, and
A. Tripathi, editors. Advanced Topics in Exception
Handling Techniques. LNCS, vol. 4119. Springer, 2006.

2http://www.agence-nationale-recherche.fr/.

[5] C. Dony, C. Urtado, and S. Vauttier. Exception
handling and asynchronous active objects: Issues and
proposal. In Dony et al. [4], chapter 5, pages 81–101.

[6] J. B. Goodenough. Exception handling: Issues and a
proposed notation. In CACM, 18(12):683–696, 1975.

[7] Z. Guessoum, N. Faci, and J.-P. Briot. Adaptive
replication of large-scale multi-agent systems: towards
a fault-tolerant multi-agent platform. In Proc. of
SELMAS’06. Vol. 3914 LNCS, Springer, 2006.

[8] A. Iliasov and A. Romanovsky. Exception handling in
coordination-based mobile environments. In Proc. of
COMPSAC’05, pages 341–350, Edinburgh, Scotland,
UK, 2005.

[9] V. Issarny. An exception handling model for parallel
programming and its verification. In Proc. of the ACM
SIGSOFT’91 Conf. on Software for Critical Systems,
pages 92–100, New Orleans, LA, USA, 1991.

[10] A. W. Keen and R. A. Olsson. Exception handling
during asynchronous method invocation. In B. Monien
and R. Feldmann, editors, Proc. of Euro-Par 2002,
LNCS, pages 656–660. Springer, 2002.

[11] L. Mancini and S. Shrivastava. Exception handling in
replicated systems with voting. In Digest of papers,
Fault Tol. Comp. Symp-16, pages 384–389, 1986.

[12] O. Marin, M. Bertier, and P. Sens. Darx—a framework
for the fault-tolerant support of agent software. In
Proc. of ISSRE’03, page 406. IEEE CS, 2003.

[13] R. Miller and A. Tripathi. The guardian model and
primitives for exception handling in distributed
systems. IEEE TSE, 30(12):1008–1022, 2004.

[14] S. Mostinckx, J. Dedecker, E. G. Boix, T. V. Cutsem,
and W. D. Meuter. Ambient-oriented exception
handling. In Dony et al. [4], pages 141–160.

[15] E. Platon, N. Sabouret, and S. Honiden. A definition
of exceptions in agent-oriented computing. In Proc. of
ESAW, pages 161–174, 2006.

[16] B. Randell, A. Romanovsky, C. Rubira-Calsavara,
R. Stroud, Z. Wu, and J. Xu. From recovery blocks to
concurrent atomic actions. In Predictably Dependable
Computing Systems, pages 87–101, 1995.

[17] A. Romanovksy and J. Kienzle. Advances in Exception
Handling Techniques:, volume 2022 of LNCS, chapter
Action-Oriented Exception Handling in Cooperative
and Competitive Concurrent Object-Oriented
Systems, pages 147–164. Springer, 2001.

[18] A. Romanovsky. An exception handling framework for
n-version programming in object-oriented systems. In
Proc. of ISORC’00, 15-17 Mar. 2000, Newport Beach,
CA, USA, pages 226–233. IEEE CS, 2000.

[19] F. Souchon, C. Dony, C. Urtado, and S. Vauttier.
Improving exception handling in multi-agent systems.
In Software engineering for multi-agent systems II,
Research issues and practical applications, number
2940 in LNCS, pages 167–188. Springer, 2004.

[20] F. Souchon, C. Urtado, S. Vauttier, and C. Dony.
Exception handling in component-based systems: a
first study. In Exception Handling in Object Oriented
Systems: towards Emerging Application Areas and
New Programming Paradigms Workshop (at
ECOOP’03 international conference) proceedings,
pages 84–91, 2003.

31

