
Prototalk : an Environment for Teaching,

Understanding, Designing and Prototyping

Object-Oriented Languages.

Alexandre Bergel a Christophe Dony b Stéphane Ducasse a

aSoftware Composition Group
Institut für Informatik und angewandte Mathematik

Universität Bern, Switzerland
bLIRMM, Montpellier, France

Abstract

With prototype-based languages, concretization and abstraction are unified into
a single concept a prototype. Prototype-based languages are based on a simple set of
principles: object-centered representation, dynamic reshape of objects, cloning and
possibly message delegation. However, they all differ in the interpretation and com-
bination of these principles. Therefore there is a need to compare and understand.

In this paper we present Prototalk, a research and teaching vehicle to understand,
implement and compare prototype-based languages. Prototalk is a framework that
offers a predefined set of language data structures and mechanisms that can be
composed and extended to generate various prototype-based language interpreters.
It presents a classification of languages based on different mechanisms in an opera-
tional manner.

1 Introduction

Born at the end of the eighties [1][2][3][4], and influenced by frame and actors
languages, prototype-based languages propose an object-oriented model based
on the object as the sole entity of structure and computation. The prototype
paradigm and the semantics of its main aspects have been declined into several
variations. In the first age of prototype-based languages, research languages
such as Self [3][5], Agora [6] [7], Kevo [8], Obliq [9], Garnet [10], Moostrap [11],

Email addresses: bergel@iam.unibe.ch (Alexandre Bergel), dony@lirmm.fr
(Christophe Dony), ducasse@iam.unibe.ch (Stéphane Ducasse).

ESUG Conference 2004 Research Track (www.esug.org)

Objects + message sending + shallowClone

handling of
split objects

delegation

creation
primitive

creation
ex-nihilo

representation

dynamic
structure

modification

variables and methods slots

yes no

L1

yes no

new
Empty

L2

new
Initials

L3

... ...

L6

L4 L5

L13 L14

L15

uninteresting
language

noyes

new
Empty

new
Initials

implicit

yesno

explicit

L2 is reducible to L1
L2 L1

L1

...

possible extensoins of L1
not developped in [Dony92a]

yes

yes

L7 L8

new
Empty

new
Initials

no

L9

......

no

yes no

L12

L11L10

new
Empty

new
Initials

L16 L17

L18

implicit

yesno

explicit

Fig. 1. Classifying prototype-based languages [16]

and ACT-1 [2] [12] have been developed and others such as NewtonScript [13]
[14] and GlyphicScript have been used in industrial setting.

While the concept of prototype which results from a desire for simplification
and unification seems simple at first glance, prototype-based languages come
with different models and mechanisms in key language aspects: knowledge
representation, object creation and modification, information sharing, mes-
sage delegation, method lookup. The Treaty of Orlando was the first attempt
at defining more clearly the notion of prototypes and as such acknowledged
that understanding the differences and grouping was needed [15]. Later on,
various studies have proposed taxonomies and analyses to explain and com-
pare the mechanisms and bring to the fore problems [16] [8] [6] [17] [18] [19].
Figure 1 presents a first taxonomy based on five basic criteria [16]. Most of the
languages mentioned in the taxonomy are implemented in Prototalk. Along
this paper references to languages named like L1 or L5 refer to the one classified
in Figure 1.

Today new prototype-based languages are continuously appearing. Lua [20] is
used as a light scripting language. JavaScript with its prototypical instance
is still the web-client programming language [21] [22]. More recently IO, a
new and extremely compact language with NewtonScript’s double inheritance
[23], Pic% [24] a new prototype language with mixins, Slate a mix between

2

Smalltalk and Self [3] and Prothon [25] a mix between Python and Self have
been released. New areas such as mobile and distributed applications [26] are
discovering the potential benefits of prototype-based languages or of some of
the mechanisms or aspects they advocate. Therefore the diversity of prototype-
based languages has been and is again quite real. Comparing these languages,
being able to design alternative ones, by plugging together adequate aspects,
being able to check how far some aspects are compatible is a challenging and
useful task since language facets can interact.

The paper presents Prototalk, a framework for implementing interpreters for
various prototype-based languages by specializing and composing existing
components. The goal of Prototalk is twofold: Firstly, it supports the un-
derstanding, classification or teaching of existing languages in a syntactically
uniform environment. Second it helps designing and testing new languages.

Prototalk follows the approach “by construction” promoted by Actalk [27] and
ObjVLisp [28] where concurrent languages or reflective class-based ones are
decomposed and built from scratch. Like ObjVLisp and Actalk, Prototalk is
also an open pedagogical laboratory used to teach object-oriented develop-
ment. Enabling students compose or design their own language in a concrete
way and get an executable language is a pedagogical advantage.

This article is structured as follows. Section 2 presents the goal and the de-
sign decision, from the research and pedagogic point of views, that motivated
the initial need of a platform to model prototypes-based languages[16]. Sec-
tion 3 describes the architecture of the framework and shows how the Self and
NewtonScript language can be simulated. Section 4 presents the bases for pro-
grams interpretation. Section 5 details the step to integrate a new interpreter
in the platform. An interpreter for NewtonScript is presented. This language
introduced the idea of having two inheritance hierarchies based on two kinds
of parent links. Section 6 presents an evaluation of the use of Prototalk.

2 Goals and Design Decisions

While designing the Prototalk platform we had the following goals in mind:

(1) Uniformity: The first objective has been to establish an operational se-
mantics for the basic primitives of the basic prototype-based languages
and to to unify the languages description to achieve easy comparisons.

(2) Minimality: In the tradition of ObjVLisp, Classtalk and Actalk, we wanted
through a minimal kernel to express the most general semantics of pro-
totype-based languages,

(3) Extensibility: We wanted Prototalk to be a framework so that new lan-

3

guages simulation can be integrated efficiently and easily.
(4) Usability: We didn’t want to restrict our system to a semantic model

and a raw implementation but we wanted it to be a fully usable envi-
ronment, including dedicated browsers and inspectors, to achieve actual
experiments with prototype-oriented programming.

Prototalk has been initially conceived and used for research purposes but
has rapidly been used for pedagogical purposes to teach object-orientation
and program interpretation. Its implementation uses all important object-
oriented concepts and techniques. It is a framework composed of three main
class hierarchies that also uses the Interpreter design pattern. Besides, one
of the most interesting points is that it is not so obvious for a student to
understand how a class can describe the structure and behavior of objects of
a classless world or what distinguishes primitive methods from user-defined
methods.

3 The Prototalk Architecture

In Prototalk, a prototype language is represented by an object model class
which implements all the language primitives and prototype internal repre-
sentation (See Section 4.2). In addition, the object model class related to a
dedicated program node builder which is responsible for emitting the abstract
syntax tree of the program (see Figure 2). Programs written in Prototalk are
parsed by the Smalltalk parser that generates an abstract syntax tree (AST).
The nodes composing this tree are specified by the program node builder as-
sociated with the object model. The resulting abstract syntax tree is used to
interpret a program following the Interpreter Design Pattern [29].

Prototalk is a framework that can be used at different levels: At the most
basic level a user can experiment with languages by combining existing object
models provide by Prototalk and existing interpreters. For example, a language
L1 making a distinction between the variable and method representation and
supporting encapsulation of the variables is created by executing the following
expression:

(LanguageBuilder new)
name: #L1
model: VariableMethodProto
builder: EncapsulationProgramNodeBuilder

The way to define a new language is to (1) define a new object model with
its associated program node builder, (2) define new program nodes specifying
the semantics of the language, (3) define new primitives and associating them
to a language. These tasks are often based on refining or extending existing
classes proposed by the framework as shown in Figures 5 and 4 which refers

4

AbstractObjectModel

evaluate: sourceCode
compileMethodAt: name
compile: codeSource
globalVar: varName put: aValue
nodeBuilder

NodeBuilder

newVariableName: name
newMessageReceiver: rcvr
...

ProgramNode

eval: context

MethodNode
selector
block
eval: context
applyWith: args in: context

VariableNode
variableName
eval: context

MessageNode
selector
eval: context

Language1
variables
methods
methodOwner: name
clone
...

Language1NodeBuilder

newVariableName: name
newMessageReceiver:
...

Language1
VariableNode

eval: context

Language1
MessageNode

eval: context

Prototalk Base

Implementation of Language1

Fig. 2. An object model, its associated program node builder and the corresponding
AST elements.

to the taxonomy presented in [16] and in Figure 1. We illustrate these steps
in Section 5. Now we present the core elements of the Prototalk architecture.

3.1 Object Model Class

For a given prototype language, the object model class has the following re-
sponsibilities: (i) it executes programs written in this language by invoking an
interpreter on the program nodes, (ii) implements new concepts of the pro-
totype language such as methods or variables lookup, (iii) represents in the
Smalltalk memory prototypes created at runtime within a program, and (iv)
provides predefined objects such as the empty prototype PRoot or namespace
for prototypes.

Executing. A program written in a prototype language is executed by in-
voking the method evaluate: sourceCode implemented on the class side of the
object model class implementing the corresponding language. This method is
the starting point of the program interpretation which is based on the Inter-
preter design pattern [29]. The argument passed to this message is the source
code of the program to be executed. The return value of this method execution
is the result of the very last statement specified in the program.

The object model class defines all the concepts for a specific prototype lan-
guage. However, it delegates to the program node builder the responsibility

5

to assemble a program representation that will then be interpreted (see Sec-
tion 3.2). A dedicated program node builder is associated with an object model
class by the method nodeBuilder. Figure 3 shows a part of the program node
builder hierarchy defined in Prototalk.

Prototype Language Primitives. An object model class gathers the dif-
ferent concepts defining the prototype language by implementing primitives
related to the following aspects:

• Object variable and method management. An object model class has to pro-
vide the necessary primitives (i) to add or retrieve methods or variables
(e.g., addMethod: code, addVar: name, or addSlot: name) and (ii) to perform
some basic object creation operations (e.g., clone or newEmtpy). These prim-
itives are implemented as instances methods defined on the object model
class.

• Method Lookup and Delegation. Primitives related to message sending and
delegation have to be implemented by the object class model through the
method methodOwner: name. This method returns the prototype owner of
the method name. It defines the lookup semantics. Traditionally it follows
the chain of parents objects. This method can be specialized in order to si-
mulate other behaviors such as multiple-parents or double inheritance (Sec-
tion 5.1).

The method AbstractProto class�addPrimitivesOn: defines the primitives that
are shared by all the prototype languages. By default any prototype can be
cloned, printed and saved in textual format. The method #clone is defined
when the structure of the prototype is defined. For example the class SlotProto
which unifies variables and methods into slots redefines the primitive #clone.
The language L7AndImplicitDelegation which introduces the concept of parent
adds two primitives #newSon and #parent.

AbstractProto class � addPrimitivesOn: aRoot
aRoot addPrimitiveNamed: #clone.
aRoot addPrimitiveNamed: #printOn:.
aRoot addPrimitiveNamed: #fileIn:.
ˆaRoot

AbstractProto� clone
self subclassResponsibility

SlotProto� clone

| nDic |
nDic := Dictionary new.
slots associationsDo: [:each | nDic add: each copy].
ˆ self shallowCopy initMethDic: nDic

L7AndImplicitDelegation class� addPrimitivesOn: aRoot
super addPrimitivesOn: aRoot.
aRoot addPrimitiveNamed: #newSon.
aRoot addPrimitiveNamed: #parent:.
ˆaRoot

Prototype Representation. Smalltalk instances of the object model class
represent prototype objects. Therefore the object model class defines the com-
mon structure of any prototype. For instance prototypes in the SelfLike lan-
guage are represented as instances of this object model class SelfLike. Proto-

6

types are Smalltalk objects, therefore Prototalk does not have to deal with
the garbage collector.

Predefined Prototypes. Often predefined objects such as the default object
to be cloned have to be provided to properly build programs. Usually such
a root object offers primitives (cloning, adding variables or methods, . . .)
accessible to all of its children. For instance the PRoot object is created by
the method createRoot defined on the class AbstractProto.

For a given language, PRoot is contained in the global environment and it
provides a prototype normally intended to be the root of the object hierarchy.

3.2 Abstract Syntax Tree and Program Node Builder

The method evaluate: sourceCode implemented on the object model class calls
the Visualworks Smalltalk parser to generate the abstract syntax tree (AST)
of the program source code passed as argument. This AST is composed of
nodes obtained from the program node builder associated with object model
class. Each language L in our platform is associated with program node builder
class that determines, via a set of methods, which kind of interpreter program
nodes represent an L expression. This is a hook offered by the Smalltalk com-
pilation framework to specialize the generated AST. The class ProgramNode-
Builder is implemented by the Smalltalk compilation framework. This class
emits specific AST nodes when the parser requests it. It offers a common pro-
tocol that can be specialized to get different ASTs from the same or different
source code. For example, the ProgramNodeBuilder defines the following meth-
ods: declareVariableName:, newCascadeReceiver:messages:, newAssignmentVari-
able:value:, newMessageReceiver:selector:arguments: or newSelfMessageSelector:.

Syntax. In Prototalk, programs are written using a Smalltalk syntax (cf. Sec-
tion 6). Therefore syntactically, a Prototalk program is a valid Smalltalk one.
However, the semantics are different, variable accesses and method invocations
depend on the semantics of the language implemented. Most of the nodes
composing a prototalk program AST are the Smalltalk ones, except for a few
of them that need to be specialized to reflect prototype languages features such
as MessageNode and SuperMessageNode for method lookup and VariableNode
and AssignmentNode that represent variables.

3.3 Object Model Class Hierarchies

Prototalk heavily uses inheritance to structure and reuse the various aspects
of prototype-based languages. Figure 4 gives the hierarchy of object model

7

SelfLikeAssignment
MethodBuilder

Smalltalk ProgramNodeBuilder

Prototalk ProgramNodeBuilder

ProgramNodeBuilder

newCondition(cond, then, else)
newLiteralValue(literal)
newMessageReceiver(object)
newMethodSelector(methName)
newVariable(varName)
newAssignmentVariable(name)

ImplicitDelegationPNB

newMessageReceiver: object

ImplicitDelegation
EncapsulationPNB

newMessageReceiver: object
newAssignmentVariable: name

ObjectLispLikePNB

newMessageReceiver: object

SelfLikePNB

newVariable: varName

EncapsulationPNB

newVariable: varName
newAssignmentVariable: name

ExplicitDelegationPNB

newMessageReceiver: object

ExplicitDelegationEncapsulationPNB

newVariable: varName
newAssignmentVariable: name

AbstractProto

nodeBuilder

Fig. 3. Hierarchy of the program node builder.

classes representing languages in which prototype objects are defined by a set
of slots. For example, the class SlotProto has an instance variable slots and
some primitive methods to add new slots (addSlot: name), and to retrieve slots
values (slotNamed: name).

Having a class hierarchy for the object models facilitates the extensibility. The
definition of a new language is done by simply defining the differences with
a previous language. For example the class L11 is a refinement of the class
SlotProto that allows prototypes to be created and initialized with a set of
slots (method newInitials: slots). The language L11 is refined to the language
L11AndImplicitDelegation. The object model class adds an instance variable
parent and implements methodOwner: name, parent and newSon. This language
is specified by defining the differences with L11.

The object model class hierarchy that defines languages having variables and
methods is shown in Figure 5. The class VariableMethodProto defines two in-
stance variables: variables and methods. These variables are initialized in the
constructor of this class to an empty set. It also contains all the necessary
primitives to manipulate them properly (e.g., addVar: name and addMethod:
code to add a variable or a methods). Each prototype objects of this language
has its own set of variables and methods.

8

AbstractProto

newEmpty

SlotProto
slots
clone
addSlot: name
method: code
methodNamed: name

L11

initInitials: slots
newInitials: slots

L11AndImplicitDelegation
parent
clone
methodLookup: name
parent
son

L16

ModifiableSlot

L7

L7AndImplicitDelegation
parent
initializeParent: parent
close

SelfLike

addSlot: slot
assignmentMethod: code

L7AndExplicitDelegation

Fig. 4. Hierarchy of object model classes for languages having slots.

4 Basics for Language Interpretation

In Prototalk programs are not compiled, instead interpreted directly from the
AST. This AST implements the Interpreter design pattern [29]: each node of
the hierarchy is evaluated (through a method eval: context). The interpretation
(i.e., execution of a program) starts in its root node. This method is triggered
by the object model class when the method evaluate: sourceCode is invoked.
Evaluating a node requires a context containing information related to the
action performed. The context refers to the receiver of the message currently
sent (self), possibly the super one, the variables passed as argument within
a method. Access to the self reference is necessary when new variables are
defined (i.e., method eval: context of class VariableNode and its subclasses),
when new slots are added (methods addSlot: code in the class SelfLike), or when
message are sent (method eval: context class MessageNode and its subclasses).

4.1 Variable and Message Nodes

Modeling prototype-based languages has to deal with object representation
and message lookup semantics. This means that embedding a prototype lan-
guage within a class-based language requires the redefinition of the semantics
of messages passing and variables lookup. In Prototalk, the AST used to repre-
sent prototype program is quite similar to the one offered by Smalltalk except

9

AbstractProto

newEmpty

VariableMethodProto
methods
variables
addMethod: code
addVar: name
initialMethods: dictionary
initialVariables: dictionary
methodOwner: name

ModifiableVariableMethod

VMNonModifiableL5
hasUserMethods
hasUserMethod:
initialMethods: array

L1

Act1Like
proxies
canDelegates
clone
cloneWithProxy

L5

L5AndImplicitDelegation
parent
initializeParent: parent

L1AndImplicitDelegation
parent
clone
methodLookup: name
methodOwner: name
son

ObjectLispLike

defobfun: code
have: name

L13L14

L15

L1AndExplicitDelegation
parent
clone

Fig. 5. Hierarchy of object model classes for languages having variables and methods.

that the nodes MessageNode, AssignmentNode and VariableNode have several
subclasses to represent the different semantics for sending messages and ma-
nipulating a prototype state. Four different message send semantics are imple-
mented in Prototalk: (i) explicit delegation to represent languages like ACT-1
where the delegation has to be done manually (no parent relationship), (ii)
implicit delegation to the parents for messages that are not understood by
the receiver (e.g., Self), (iii) invocation of a message by invoking the function
ask(receiver, messageName, arguments) (à la ObjectLisp) and (iv) super call
used to explicitly forward a message to the object contained in the super slot.
Figure 6 shows the specialization of the Smalltalk AST to allow Prototalk to
use different language semantics.

4.2 Primitives and Basic Behavior

Primitives refer to the methods implemented on the object model class that
can be invoked (by a direct or indirect method call) from within code written
in the prototype language implemented by the object model class. While the
object model class instance represents prototype, methods defined by the user

10

ProgramNodeMethodNode

SelfLikeAssignment
MethodNode

VariableNode

Encapsulation
VariableNode

SelfLikeVariable
Node

MessageNode

ExplicitDelegation
MethodNode ImplicitDelegation

MethodNode

ObjectLispAsk
MethodNode

SuperMessage
Node

Smalltalk Nodes Prototalk Nodes

Assignment
Node

NewtonScript
AssignmentNode

Fig. 6. Specialization of Smalltalk nodes to simulate prototype language behavior.

on these instances are not defined on the object model class. Such methods
are stored either in the methods dictionary of an object defined by the class
VariableMethodProto or on slot dictionary of an object defined by the class
SlotProto (see Figures 5 and 4). These two method holders contain Smalltalk
compiled methods in case of primitives, or AST in case of user defined me-
thods.

Some utility methods are provided to enable the programmer to easily ma-
nipulate methods such as the method Object�lookup: name that returns the
class implementing a particular method name. In addition the method com-
piledMethodAt: has been specialized to take care of the fact that the owner of
a method is now an object instead of a class (i.e., Smalltalk).

4.3 Default Primitives

The class AbstractProto, which is the root of the object model classes, of-
fers severals methods that can be used as primitives in the prototype-based
languages. This class offers eleven primitives.

Four primitives are defined on the instance side of the class AbstractProto. (i)
New primitives can be added using addPrimitive: aCompiledMethod named: sel.
However it is declared as abstract but it is redefined in its two direct subclasses
VariableMethodProto and SlotProto: either to store a primitive in a method or
a slot. Global environment for a language can be accessed through a prototype
(ii) globalVar: varName put: aValue and (iii) globalVarValue: varName are used
for that. (iv) Creation from ex-nihilo (i.e., empty object) is available with
newEmpty.

11

On the class side of AbstractProto seven primitives are offered. Even if these
methods are usually not directly invoked during the interpretation of a pro-
gram they are essential. (i) New primitives are added to the default objects
offered to the user (e.g., PRoot) using addPrimitivesOn: aRoot. (ii) New method
are added by the user through compile: aString (e.g., this method is indirectly
called by addSlot:). (iii) The definition of the PRoot object is contained in the
createRoot method. (iv) Compilation and execution of a program is done with
evaluate: aStream. The result of this method is the result of the very last state-
ment defined in the program passed as a Stream. The global environment for
a language is managed by (v) globalVar: varName put: aValue and (vi) global-
VarValue: varName. These methods are invoked by the corresponding method
on the instance side. And the reference to the node builder is got by invoking
(vii) nodeBuilder.

4.4 Evaluation

Even if programs expressed within Prototalk have a particular semantics, their
syntax is always the one of Smalltalk (Section 6). Prototalk extends all of
the Smalltalk AST nodes with the bare minimum, that defines a prototype
language where: (i) variables do not need to be declared (they are created
when first referenced) and (ii) any node of the AST can be particularized
using subclassing.

The following classes implement an eval: context methods that simulate the
normal Smalltalk behavior (which is identical to Prototalk’s i.e., control flow
structure): ArithmeticLoopNode, BlockNode, CascadeNode, ConditionalNode, Lit-
eralNode, LoopNode, MessageNode, ReturnNode, SequenceNode.

Differences between Prototalk and Smalltalk only rely on a few nodes points:
variable assignment, sending messages, and accessing variables.

As described below, an assignment refers either to binding a new value to a
key existing in the context (i.e., self, super, or arguments passed to a method
or a block) or creating a new global variable (explained later in this section).
Accessing a variable looks at a binding up either in the current context or in
the global environment.

AssignmentNode� eval: context
| varName val client |
varName := variable name asSymbol.
val := value eval: context.
(context hasLocalVar: varName)

ifTrue: [ˆ context at: varName put: val]
ifFalse:

[client := context at: #self.
ˆ client globalVar: varName put: val]

VariableNode� eval: context
| client varName |
varName := name asSymbol.
ˆ context at: varName

ifAbsent:
[client := context at: #self.
client globalVarValue: varName]

12

The class SimpleMessageNode is the node that represents a message send.
It implements the default message send semantics. Its eval: context method
performs the following steps: (i) evaluation of the receiver in the local context,
(ii) evaluation of the arguments related to this message (the method evalList:
is implemented on the class Collection), (iii) lookup of the prototype that
defines the looked up method and if it is not found then raise an error, (iv)
if the method retrieved is a CompiledMethod (i.e., if it is a primitive or if
it correspond to a Smalltalk message) then the result of the methods is its
execution 1 else, (v) the retrieved method is an AST (it corresponds to a
method defined by the user) and it is applied to the arguments using a new
context where the receiver is bound to #self.

SimpleMessageNode� eval: context
| method rec args newContext owner |

rec := receiver eval: context.
args := arguments evalList: context.
owner := rec lookup: selector.
owner isNil ifTrue: [AbstractProto unknownMethod raiseWith: selector].
method := owner compiledMethodAt: selector.
(method isKindOf: CompiledMethod)

ifTrue: [”this is either a call to a primitive or a smalltalk message”
ˆ method valueWithReceiver: rec arguments: args].

”this is a user-defined method”
newContext := PContext new.
newContext at: #self put: rec.
ˆ method applyWith: args in: newContext

4.5 Application

The classes BlockNode (representing a Smalltalk block closure) and MethodNode
(representing a method definition) implement a method applyWith: args in: con-
text invoked when a block or a method has to be evaluated (cf. last example
in the previous paragraph).

Applying a block on a set of arguments (i) extends the local context with the
arguments, and (ii) evaluate the block’s body.

BlockNode�applyWith: args in: context
1 to: arguments size do: [:i |

context at: ((arguments at: i) variable name asSymbol)
put: (args at: i)].

ˆ body eval: context.

If no error occurs during the application of a method then the result is the
application of the related block defining a method. In Smalltalk the body of
a method is represented as a block closure referenced by the instance variable
block.

MethodNode�applyWith: args in: context

1 note that the context is discarded because the method is not interpreted by
prototalk

13

ˆ AbstractProto returnFromSignal
handle: [:ex | ex returnWith: ex parameter]
do: [block applyWith: args in: context]

4.6 Extensions in basic classes

The classes Object and Behavior offered by Smalltalk has to be extended in
order to make them normal smalltalk objects able to receive message from
prototypes. The goal is to make Smalltalk objects usable in any language
expressed in Prototalk.

Object is extended with a method lookup: selectorName used to return the class
contained in the class hierarchy of the receiver that defines a method named
selectorName. Methods are retrieved with methodNamed: name.

Object� lookup: selectorName
ˆ self methodOwner: selector

Object� methodOwner: selectorName
ˆ self class

smalltalkMethodOwner: selectorName

The class Behavior is extended with two methods useful to retrieve a class
contained in the super chain of the receiver that defines a method (smalltalk-
MethodOwner: selector) or a variable (smalltalkVariableOwner: selector).

Behavior�smalltalkMethodOwner: selector
”Answer the class owner of the method or nil.”
(self includesSelector: selector) ifTrue: [ˆ self].
superclass == nil ifTrue: [ˆnil].
ˆsuperclass smalltalkMethodOwner: selector

Behavior�smalltalkVariableOwner: selector
”Answer self if the variable is one the receiver variables
or one of its superclasses variables and nil otherwise.”
(self allInstVarNames includes: selector)

ifFalse: [ˆnil].

5 Implementing NewtonScript’s Double Inheritance Semantics

Prototalk served as a basis to implement the key features of prototype-based
languages as discussed. In this section we present how double inheritance of
NewtonScript is implemented in Prototalk. We choose NewtonScript since
it was one of the few prototype-based language used in production for the
Apple Newton PDA [14]. The major design goals of the language were to
minimize memory consumption and support graphical user interface definition
by introducing an environmental acquisition mechanism [14] [30] that allows
sharing between composite graphical objects and their parts.

14

_proto

_parent

_parent
_proto

_proto

retrieve function object

{ }f

_proto testAssign function object

_parent
_proto

x 12

x 42
x is found here...

new x slot is created here

f := {retrieve: func () x, _proto: {_proto: {}}};
f._parent := {_proto: {x: 12}};
f._parent._parent := {_proto: {testAssign: func () x := 42}};
f:testAssign();
Print (f:retrieve());

Fig. 7. NewtonScript double inheritance method lookup and variable access.

5.1 NewtonScript

In NewtonScript an object is called a frame. A frame element is a slot which
can either be an attribute or a function reference. Slots can be inserted or
deleted dynamically at run time. New frames can be created from ex-nihilo
(empty frame), by cloning and by extending an existing frame.

NewtonScript has a double inheritance scheme in which a prototype link
(proto) is searched prior to a parent one forming a comb-like graph traver-
sal as shown in Figure 7. This specific inheritance supports the building of
user-interfaces as well as the minimization of memory [31]. Each frame has a
prototype frame from which it is derived (refers to by a slot called proto).
Each time the NewtonScript interpreter does not find a slot variable or func-
tion locally it looks into the frame’s prototype and then recursively into its
prototype until the whole proto chain is searched through. When the slot is
not found in the prototype chain of the receiver, it is looked in the parent
(following the parent slot) and the parent prototype chain.

The semantics of assignment is slightly different and supports space consump-
tion minimization: the same lookup occurs to locate the frame containing the
variable, but the assignment is only allowed to alter an object in the parent
chain, not the one in a proto chain. If necessary, a new slot is created in the
object on the parent chain nearest the object where the slot was found as
shown in Figure 7. It provides a form on copy-on-write in which the initial
value of for a slot comes from the prototype. This way the allocation of the
slot to hold a new value is delayed until a new value is actually assigned.

15

Here is an example of NewtonScript code and its implementation in Prototalk.
Even if syntactically the two programs are different, their execution leads to
the same objects and construction.

Point := {
x : 0,
y : 0,
move: func (newX, newY)

begin
x := newX;
y := newY;

end,
same : func (pt)

begin
(pt.x = x) and (pt.y = y)
end

};

Point := PRoot clone.
Point addSlot: ’x = 0’.
Point addSlot: ’y = 0’.
Point addSlot: ’moveToX: newX andY: newY

x := newX.
y := newY.’.

Point addSlot: ’same: p
(p x = x) & (p y = y)’.

5.2 In Prototalk

The first step is to create the object model class NewtonScriptLike as shown
below. Because of the similarity between Self and NewtonScript (implicit de-
legation, reference to a parent object, slot management, . . .) the object model
class inherits from the class SelfLike. In NewtonScript a frame has a parent (in-
stance variable inherited from SelfLike) and a prototype named proto instance
variable which has to be defined in the object class model.

Smalltalk defineClass: #NewtonScriptLike
superclass: #{Smalltalk.SelfLike}
instanceVariableNames: ’proto ’

The method methodOwner has to return the object that implement the looked
up method. The NewtonScript’s method lookup semantics described previous-
ly is specified by specializing the method methodOwner: name as follow: if the
current frame provides an implementation of a name method then return this
frame, otherwise check if one of the frame’s prototypes implements it. If not
then we lookup in the frame’s parent. The lookup in the prototype chain is
simply done by running over it: for each frame it is checked if it implements
a method named name. Note that this lookup does not have to run over the
parent link.

16

NewtonScriptLike�methodOwner: name
”return the owner of the method or nil”

ˆ (self includesSelector: name)
ifTrue: [self]
ifFalse: [l t l

t := self methodOwnerInProtoChain: name.
t isNil

ifTrue: [
parent isNil

ifTrue: [nil]
ifFalse: [parent methodOwner: name]]

ifFalse: [t]]

NewtonScriptLike�methodOwnerInProtoChain: name

ˆ (slots includesKey: name)
ifTrue: [self]
ifFalse: [

proto isNil
ifTrue: [nil]
ifFalse: [proto methodOwner

InProtoChain: name]]

The class NewtonScriptLike has to provide an accessor and a mutator for its
instance variable proto (code not shown). These have to be accessible from
a program intended to be interpreted. Therefore two primitives have to be
added to the PRoot object which is the first prototype from which others can
be cloned. By having the primitives proto and proto: defined in PRoot, they
are accessible from each object.

NewtonScriptLike class�addPrimitivesOn: aRoot
super addPrimitivesOn: aRoot.
aRoot addPrimitiveNamed: #proto.
aRoot addPrimitiveNamed: #proto:.
ˆ aRoot

The object model class has to implement a method nodeBuilder that returns
the class of its associated node builder (NewtonScriptPNB).

NewtonScriptLike class�nodeBuilder
ˆ NewtonScriptPNB

Program Node Builder. The class NewtonScriptPNB inherits from Pro-
gramNodeBuilder. It defines the program node builder used to yield proper
nodes when requested by the Smalltalk parser. When the Smalltalk parser
parses an assignment, the method newAssignmentVariable: var value: val leftAr-
row: bool is invoked on the program node builder. A proper node representing
an assignment has to be emitted.

NewtonScriptPNB�newAssignmentVariable: var value: val leftArrow: bool
ˆ NewtonScriptAssignmentNode new variable: var value: val leftArrow: bool

Sending a message has to trigger the method lookup algorithm described pre-
viously in the method NewtonScriptLike�methodOwner:. Here we reuse the be-
havior of the class ImplicitDelegationMethodNode which implements a lookup of
method and the use of super. The method ImplicitDelegationMethodNode�eval:
invokes the methodOwner: that is used to execute properly methods in pres-
ence of the parent slot. When invoked by the parser, the method newMes-
sageReceiver: rcvr selector: sel arguments: args creates then an ImplicitDelega-
tionMethodNode node.

NewtonScriptPNB�newMessageReceiver: rcvr selector: sel arguments: args
ˆ ImplicitDelegationMethodNode new

17

receiver: rcvr
selector: sel
arguments: args

Accessing a variable in NewtonScript has the same meaning as in Self: acces-
sing a variable is equivalent to trigger its accessor. Referencing a variable foo
is equivalent to sending the message foo to itself. On that point NewtonScript
behaves in the same way as in Self. Therefore we reuse the SelfLikeVariableNode
behavior as follows:

NewtonScriptDelegationPNB�newVariableName: nameString
ˆSelfLikeVariableNode new name: nameString

Variable Assignment. The class NewtonScriptAssignmentNode is a subclass
of AssignmentNode. It implements the methods eval: context that defines se-
mantics of assigning a value to a variable in NewtonScript. This method re-
quires a context as argument containing the references to self and to the
temporary local variables.

NewtonScriptAssignmentNode�eval: context
l varName val client owner l
varName := variable name asSymbol.
val := value eval: context.
ˆ (context hasLocalVar: varName)

ifTrue: [context at: varName put: val]
ifFalse:

[client := context at: #self.
self inAMethod

ifTrue: [owner := client methodOwnerInParentChain: varName.
owner isNil

ifTrue: [client addSlot: (variable name, ’ = ’, val printString)]
ifFalse: [owner addSlot: (variable name, ’ = ’, val printString)]]

ifFalse: [client globalVar: varName put: val]]

NewtonScriptLike�methodOwnerInParentAndProtoChain: slotName
”Return the first frame in the parent hierarchy that has (or one of its proto)
a slotName defined”

(slots includesKey: slotName)
ifTrue: [ˆ self]
ifFalse: [

proto notNil
ifTrue: [(self methodLookupInProtoChain: slotName) notNil

ifTrue: [ˆ self]].
parent isNil

ifTrue: [ˆ nil]
ifFalse: [ˆ parent methodOwnerInParentAndProtoChain: slotName]]

First the right branch of the assignment (designed by the value instance va-
riable) is evaluated using the current context. Then, if the left branch of the
assignment, the variable named varName), is already defined in the context,
it is a temporary variable. Then its value in it is updated. If not, a new frame
variable or a global variable is created regarding if this assignment occurs in
a method or not.

If the left branch of the assignment occurs in a method and if varName refers
no local or global variable, then varName is related to the state of the current

18

frame (self). According to the semantic given by NewtonScript a new variable
is created in the current frame if none of its prototypes already has a slot
named varName. If one of these already defines varName, then its value is
updated by the value of the assignment.

This implementation of NewtonScript double inheritance shows how already
existing semantical elements provided by the framework can be reused or
redefined.

6 Evalutation

Prototalk is ideally suited for teaching concepts of object-oriented languages
and has been successfully incorporated into the masters degree program at
the University of Paris VI, Montpellier and Berne. It served as a tool to
help teaching object-oriented languages and software engineering as well as
program interpretation. Here a synthesis of what we learned from these ex-
periments.

Prototalk has first proved to be a very interesting pedagogical tool although
we did not perform registered and controlled experiments to evaluate and
compare its impact. Firstly, it is an obvious help to explain what prototypes
are and to ask students to invent or explain various languages. Secondly, its
implementation is an interesting laboratory because it uses important object-
oriented concepts and techniques. It is primarily a classical framework made of
three main class hierarchies (object models, program nodes and program node
builder) conceived to be extended. It also uses the Interpreter Design Pattern
and extends it in various ways as such it could be called “Interpreter Family”
and still remains to be described. Prototalk explicitly separates the object
model from the instructions and their associated semantics in a language.
Then it uses class specialization and composition to express the fact that
various semantics can, in different languages, be associated to a single syntactic
construction. For example each subclass of DelegationMessageNode and their
respective eval: methods define one semantics of delegation whose study is
an excellent way to present the semantics of delegation in prototype-based
languages. Another very interesting point is the study of the AbstractProto
class and subclasses. This class defines the structure and behavior of classless
objects. The study of that apparent paradox (a class been used to describe and
represent classless objects) is a key point for the understanding of language
implementations and of reflective languages. Methods defined on AbstractProto
are primitives of the classless languages. Within such a methods, an instance of
VariableMethodProto for example, is a Smalltalk object but the same physical
entity is a prototype in the implemented language.

19

From a research perspective Prototalk has been used to build the taxonomies
and the evaluations presented in [16] [18] [19]. Most of important feature of
classless languages have been simulated with Prototalk.

Features and Languages Implemented. In addition to the NewtonScript’s
double inheritance, we modeled in Prototalk the following language facets.

• The proxy link of ACT-1 [2] and its associated explicit delegation mecha-
nism. Cloning was then specialized to also clone also the object proxy.

• ObjectLisp delegation. ObjectLisp, which was a layer on top of Allegro Lisp
and presented as a class language, was underneath a prototype language
inspired by Lieberan his. In ObjectLisp sending a message was performed
using the construct ask. For example the (ask point (have ’y 4)) sends the
message have to the object refer to the variable point. The receiver could be
any expression, therefore it should be interpreted in the current context, but
the arguments are executed in a new environment in which self is bound to
the current receiver. The method ObjectLispAskMessageNode�eval: context
makes clear this semantical point.

• Self’s dynamic multiple inheritance. Depending on the versions of Self, an
object could have multiple parents and their priority was denoted using *.
In the current version of Self (4.1), only one parent is used. In addition, the
parent can be changed dynamically.

• Examplars [4] mixed classes and prototypes hierarchies. Exemplars was a
prospective language that proposed a dichotomy between a subtyping hie-
rarchy made of classes and a reuse hierarchy made of prototypes. In fact
Exemplar is very interesting because its classes were an exact intuition of
Java interfaces.

ObjectLispAskMessageNode�eval: context
”context contains self which is the initial receiver in the current delegation
chain, that is the client and curRec the current receiver.”

| rec newContext result |
rec := receiver eval: context.
newContext := PContext new.
newContext at: #self put: rec.
arguments do: [:each | result := each eval: newContext].
ˆ result

As we already mentioned in Section 3 and illustrated during the implemen-
tation of NewtonScript’s double inheritance, Prototalk is a framework that
provides predefined abstractions that can be reused, extended and combined
to create different languages. At a structural level, three different elements are
offered: objects with slots, objects with variables and methods, and objects
with parent. In addition, object internal representation can be fixed or mo-
difiable. From a behavioral perspective, Prototalk offers 4 different message
passing semantics as we explained before, cloning and object creation with
initial values are also offered.

20

About Influence of the Syntax. Prototalk is a platform supporting the
coexistence of several prototype languages. Each language has the ability to
execute programs written in this language, to debug programs and to test
them. Each language expressed can reuse all the facilities provided by the
classical Smalltalk environment. Using the Smalltalk syntax has the following
advantages:

• Users can experiment with several conceptually different languages without
having to learn several syntaxes.

• By removing all the syntactic decorations, conceptual values are clearly
offered without being obfuscated.

• To not deal with lexical and syntactical parser keeps the implementation of
Prototalk simple and the implementation of new language simple too. This
helps to make its kernel focus only on essential mechanisms.

Code expressed in a prototype language has to have a Smalltalk syntax. This
means that computation is described by sending messages where a receiver is
explicitly designated. For instance a language where messages implicitly sent
to self is implementable but the implementer should use a naming convention
to distinguish self sends from implicit self-sends à la Self.

7 Conclusion and Further Work

Thanks to new application domains such as web programming, mobile and
distributed computing, various kind of programming languages such as scrip-
ting, dynamically typed, or object classless languages are subject to a renewal
of interest.

In this paper we have described Prototalk, a Smalltalk framework dedicated
to the implementation of prototype-based language interpreters. We have pre-
sented it as a research as well as a pedagogical tool. Prototalk has been con-
ceived and used in the nineties to evaluate and operationnaly compare into an
uniform environment prototype-based languages such as ACT-1, ObjectLisp,
Kevo or Self, considered as possible alternatives to class-based languages some-
how and sometimes judged too complex or rigid. All the important facets of
prototype-based languages are implemented and usable in a syntactically uni-
form environment that garanties for easy comparisons and classifications.

The paper precisely describes the Prototalk framework architecture based on
an extension of the Interpreter design Pattern and its Smalltalk implementa-
tion. It explains the value of using an object-oriented programming language
was paying off from a research and pedagogical point of view, as it supported
well incremental definition and the possibility of reusing what is already exis-

21

ting. It demonstrates why using Smalltalk, among other advantages, enabled
us to easily implement that design pattern due to its fully integrated parser.

The paper illustrates Prototalk reuse capabilities by presenting the integration
of the NewtonScript double inheritance semantics in the framework. It also
illustrates why Prototalk has been successfully used as a pedagogical tool to
teach object-oriented concepts and technologies.

The perspectives of this environment are numerous. Firstly, we plan to inte-
grate in the platform interpreters for those new languages such as IO, Pic%,
Slate or Prothon. Secondly, as Smalltalk only supports single inheritance and
since our classifications are not only ontological but also operationnal, we faced
the tyranny of the dominant decomposition. Indeed we had to follow a main
decomposition and sometimes this forces us to duplicate the behavior. Ideally
we would have prefer to have well-identified behaviors that we could freely
compose together. Investigating the use of traits [32] could be a way to solve
this problem and rely less on inheritance to model the languages. More gener-
ally, all new techniques which plug together components or aspects could be
of interest to improve that work and enable it to evolve. Finally, it appeared
to us that designing a similar environment for another family of languages
(e.g., frame languages or component-based languages) should not be difficult
and that a generalisation is somehow possible.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the projects “Tools and Techniques for
Decomposing and Composing Software” (SNF Project No. 2000-067855.02)
and “Recast: Evolution of Object-Oriented Applications” (SNF 2000-06165-
5.00/1). We also thank Gabriela Arévalo and Orla Greevy for their feedback
on the paper.

References

[1] A. H. Borning, Classes versus prototypes in object-oriented languages, in:
Proceedings of the ACM/IEEE Fall Joint Computer Conference, IEEE
Computer Society Press, 1986, pp. 36–40.

[2] H. Lieberman, Using prototypical objects to implement shared behavior in
object oriented systems, in: Proceedings OOPSLA ’86, Vol. 21, 1986, pp. 214–
223.

[3] D. Ungar, R. B. Smith, Self: The power of simplicity, in: Proceedings OOPSLA
’87, Vol. 22, 1987, pp. 227–242.

[4] W. R. LaLonde, Designing families of data types using exemplars, Transactions
on Programming Languages and Systems 11 (2) (1989) 212–248.

22

[5] D. Ungar, C. Chambers, B.-W. Chang, U. Holzle, Organizing Programs without
Classes, LISP and SYMBOLIC COMPUTATION 4 (3).

[6] P. Steyaert, W. De Meuter, A marriage of class- and object-based inheritance
without unwanted children, in: W. Olthoff (Ed.), Proceedings ECOOP ’95, Vol.
952 of LNCS, Springer-Verlag, Aarhus, Denmark, 1995, pp. 127–144.

[7] W. De Meuter, Agora: The story of the simplest MOP in the world — or —
the sche me of object–orientation, in: Prototype-based Programming, Springer-
Verlag, 1998.

[8] A. Taivalsaari, Delegation versus concatenation or cloning is inheritance too,
OOPS Messenger 6 (3) (1995) 20–49.

[9] L. Cardelli, A language with distributed scope, Computing Systems 8 (1) (1995)
27–59.

[10] B. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden, D. Kosbie, E. Pervin,
A. Mickish, P. Marchal, Garnet: Comprehensive support for graphical highly-
interactive user interfaces, IEEE Computer 23 (11) (1990) 71–85.

[11] P. Mulet, J. Malenfant, P. Cointe, Towards a methodology for explicit
composition of metaobjects, in: Proceedings of OOPSLA ’95, Austin, 1995,
pp. 316–330.

[12] H. Lieberman, Delegation and inheritance: Two mechanisms for sharing
knowledge in object-oriented systems, Bigre + Globule 48 (1986) 79–89.

[13] W. R.Smith, The newton application architecture, in: Proceedings of the 39th
IEEE Computer Society International Conference, 1994, pp. 156–161.

[14] W. Smith, Using a prototype-based language for user interface: The newton
project’s experience, in: Proceedings of OOPSLA ’95, ACM, 1995, pp. 61–73.

[15] L. A. Stein, H. Lieberman, D. Ungar, A shared view of sharing: The treaty
of orlando, in: Object-Oriented Concepts, DataBases, and Applications, ACM
Press, Addison Wesley, 1989, pp. 31–48.

[16] C. Dony, J. Malenfant, P. Cointe, Prototype-based languages: From a new
taxonomy to constructive proposals and their validation, in: Proceedings
OOPSLA ’92, 1992, pp. 201–217.

[17] J. Malenfant, On the semantic diversity of delegation-based programming
languages, in: Proceedings of OOPSLA ’95, ACM, Austin, 1995, pp. 215–230.

[18] D. Bardou, C. Dony, Split objects: a disciplined use of delegation within objects,
in: Proceedings of OOPSLA ’96, 1996, pp. 122–137.

[19] C. Dony, J. Malenfant, D. Bardou, Classification of object-centered languages,
in: J. Noble, A. Taivalsaari, I. Moore (Eds.), Prototype-based Programming:
Concepts, Languages and Applications, Springer Verlag, 1998, pp. 17–45.

[20] R. Ierusalimschy, L. H. de Figueiredo, W. C. Filho, Lua — an extensible
extension language, Software: Practice and Experience 26 (6) (1996) 635–652.

23

[21] ECMAScript Language Specification, European Computer Machinery
Association, 1997.

[22] D. Flanagan, JavaScript: The Definitive Guide, 2nd Edition, O’Reilly &
Associates, 1997.

[23] Io home page, http://www.iolanguage.com/.

[24] J. D. Wolfgang De Meuter, Theo D’hondt, Pic% intersecting classes and
prototypes, in: Andrei Ershov Fifth International Conference on Perspectives
of System Informatics, Siberia, Russia, 2003.

[25] Prothon home page, http://www.prothon.org/.

[26] W. D. M. Jessie Dedecker, Using the prototype-based programming
paradigm for structuring mobile applications, in: Workshop: Agent-oriented
methodologies. Proceedings of OOPSLA 2002, Seattle, WA USA., 2002.

[27] J.-P. Briot, P. Cointe, Programming with explicit metaclasses in Smalltalk-80,
in: Proceedings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 419–
432.

[28] P. Cointe, Metaclasses are first class: the objvlisp model, in: Proceedings
OOPSLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 156–167.

[29] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, Reading, Mass., 1995.

[30] J. Gil, D. H. Lorenz, Environmental Acquisition – A new inheritance-like
abstraction mechanism, in: Proceedings of OOPSLA’96, 1996, pp. 214–231.

[31] J. Noble, J. Potter, J. Vitek, Flexible alias protection, in: E. Jul (Ed.),
Proceedings ECOOP ’98, Vol. 1445 of LNCS, Springer-Verlag, Brussels,
Belgium, 1998.

[32] N. Schärli, S. Ducasse, O. Nierstrasz, A. Black, Traits: Composable units of
behavior, in: Proceedings ECOOP 2003, Vol. 2743 of LNCS, Springer Verlag,
2003, pp. 248–274.

24

	Introduction
	Goals and Design Decisions
	The Prototalk Architecture
	Object Model Class
	Abstract Syntax Tree and Program Node Builder
	Object Model Class Hierarchies

	Basics for Language Interpretation
	Variable and Message Nodes
	Primitives and Basic Behavior
	Default Primitives
	Evaluation
	Application
	Extensions in basic classes

	Implementing NewtonScript's Double Inheritance Semantics
	NewtonScript
	In Prototalk

	Evalutation
	Conclusion and Further Work
	References

