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Abstract

This paper’s primary aim is to improve the un-
derstanding of the delegation mechanism as de-
fined in [18]. We propose a new characterization
of delegation based on the notions of name shar-
ing, property sharing and value sharing. It allows
us (1) to clearly differentiate delegation from class-
inheritance in particular and more generally from
other inheritance mechanisms and (2) to explain
how a founded use of delegation relies on a correct
semantics of variable property sharing between ob-
jects connected by a delegation link. We then de-
scribe a model of split objects which is proposed
as an example of a disciplined and semantically
founded use of delegation, where property sharing
expresses viewpoints within objects.

1 Introduction

All kinds of inheritance mechanisms in object-
oriented programming or representation languages,
despite their diversities [5, 26], have at least the fol-
lowing common points [11]:

e They are based on a relation Z between ob-
jects or between concepts (for example the

*Partially supported by Marché CNRS/CNET 93 1B 142,
Projet 5115 “Réseau futé”.

subtype relation between abstract data types
which is implemented in class-based languages
by a “superclass” link between classes).

e The mechanism itself uses that relation to
achieve inheritance (for example a message
sending mechanism in class-based language
which performs a lookup — whatever form it
takes — along the “superclass” links to re-
trieve inherited properties).

e An interpretation or a semantics is given to the
relation Z to justify the above mechanism. For
example in class-based languages the formal
property that gives a meaning to the “super-
class” link and underlies inheritance is inclu-
sion polymorphism! [6], other interpretations,
such as concept specialization or set inclusion,
have been given in other contexts.

e Finally, a common characteristic of all inher-
itance mechanisms is that they are used to
achieve some kind of sharing [26].

We deal in this paper with the “delegation”
mechanism, as it is defined in [17, 18, 26], which
does not exactly denotes a message redirection (as
in actors systems) but actually a kind of inher-
itance mechanism (which can be understood in

'The reason why it is founded to “look up” for methods
in a superclass is that any function applicable to objects
of a type T (instances of a class C) is intended to be also
applicable to objects of type 7' subtype of 7 (instances of
C’s subclasses).



a way as a message redirection). Delegation in
this sense is thus a kind of inheritance mechanism
which is generally associated to object-centered or
prototype-based programming [18, 29, 30] in a “one
kind of object-one kind of link” world. In fact, to
be class-less and to provide a delegation mechanism
are two orthogonal features of an object-oriented
programming or representation language [19]. Ef-
ficient class-less languages with some kind of shar-
ing but without delegation can be built [28] and
it is possible to imagine some uses of delegation
in many different worlds including worlds without
classes [1] and worlds with classes [10, 15, 16]. The
delegation mechanism is based on a link (generally
called “parent” or “delegation” link) between ob-
jects?, rather than between descriptions. In object-
oriented programming, delegation is presented as
a message forwarding mechanism [17, 18], infor-
mally described in the following way: “an object
that cannot answer a question can delegate it to
its parent, if the parent can answer it, the answer
will be performed in the context of the values of
the original object”. An example of such objects
can be found in the classical point-turtle example
(see Fig. 3-a, page 8). Finally delegation is a kind
of sharing mechanism [9, 26].

If this very general description is to be compared
to the four points above, it appears that two very
important things are missing that limit our under-
standing of delegation: (1) what is the kind of
sharing actually achieved by this mechanism and
(2) how to interpret the relation on which the mech-
anism is based:

1. The kind of sharing achieved by delegation
is not yet well characterized, for example
the difference between delegation and class-
inheritance (let us give that name to the in-
heritance mechanism found in class-based sys-
tems) is still unclear. Contrasting with gener-
ally accepted ideas, we claim that delegation is
not class-inheritance and that delegation is not
to class-less objects what class-inheritance is

*We more exactly mean between entities holding vari-
able values and used to perform computations, these can be
classes but seen as objects.

to classes. Delegation is not class-inheritance
because the former and the latter do not in-
duce the same sharing relation between ob-
jects: an instance 47 of a class a and an in-
stance 79 of a class 3 subclass of a do not share
the same things than an object 0; and an ob-
ject o9, 01 having 09 as parent.

2. Once the kind of sharing actually achieved by
delegation has been characterized, the next
question is: what does it mean for two en-
tities to be connected by a delegation link?
More precisely: what semantics or interpreta-
tion can be given to the relation based on that
link?

The aim of this paper is to address these
two points. Concerning sharing, it is already
well known that delegation induces a sharing of
variable values but a formal characterization of
delegation is needed to express more precisely
and in a simple way the differences with other
inheritance-based sharing mechanisms. For what
concerns the interpretation of the link, the problem
is to correctly use variable value sharing which,
when used without care, raises the problem of
object-identity [9, 19, 27]. What does it mean for
an entity to share variables values with another?
A first answer can be found in some existing
systems in which delegation is used to perform
some life-time default value sharing between
concepts and objects.
develop a second answer [3, 20] by defining what

We will introduce and

we call “split objects”. In split objects, delegation
is used inside objects to express property sharing
between different perspectives or viewpoints.

The paper is organized as follows. Section 2
formally defines name sharing, value sharing and
property sharing. Section 3 proposes a character-
ization, in term of these notions, of both sharing
in class-based systems and sharing in delegation
class-less systems. It shows how delegation induces
property sharing for both variables and methods.
Section 4 recall the possible bad consequences of
sharing variables on object modularity. Section 5



recall a well-known use and interpretation of vari-
able sharing with delegation and its semantics as
it can be found in existing systems. Section 6 then
discuss a second founded use of delegation which
express viewpoints. Section 7 describes what could
be a model in which the latter use of delegation is
disciplined within what we call split objects. Fi-
nally section 8 briefly compares split objects with
some existing object systems allowing to express
viewpoints.

2 Name sharing, value sharing,
and property sharing

We define in this section the notions of name shar-
ing, property sharing and value sharing® between
objects integrated in a single’ inheritance world.
These notions will be used in the next section to
formally characterize the kind of sharing achieved
by various inheritance mechanisms.

2.1 Properties

What defines objects in object-oriented systems
are, generally speaking, properties. We use the
term property to designate either a “slot”, an “at-
tribute”, a “field”, an “instance variable”, or a
“method”. We do not use the term property to
designate generic properties® (it is for example pos-
sible to talk about the global entity printOn: in
Smalltalk), but rather the properties actually de-
fined on classes or objects (for example the method
printOn: of the class String in Smalltalk). Proper-
ties are declared and defined for objects (wherever
the declaration and definition take place).

3The formalism we define has been inspired from the one
appearing in [11] in which the notions of name inheritance
and value inheritance are defined. The two formalisms are
however different and there is no direct correspondence be-
tween name inheritance and name sharing, or between value
inheritance and value sharing. Indeed, generic properties are
considered in [11] whereas they aren’t here.

“These notions are basically not different in presence of
multiple inheritance but are more difficult to express for-
mally.

®Such entities are reified in Clos (generic functions) and
in Lore.

Property names. We consider that properties
can be identified by a name in the context of an
object®. Several properties can of course be given
the same name for different objects.

Property values. Properties may be complex
entities but they have at least a value (they may
also have a type, a signature, a cardinality, etc.).
Each property has only one value (of course, a

value can be the value of several properties).

Formally, let us consider an object system char-
acterized by a set O of objects, a set P of prop-
erties, a set N of property names and a set V of
values, we define the following functions:

NameO f P — N
RefProp N — 27
Prop : OxN — P
Val : P — VY

Given an object o € O, a property p € P and
a property name n € N': NameOf(p) is the name
of p, Ref Prop(n) is the set of the properties named
n, Prop(o,n) is the property of o which is named
n (the property identified by n within the con-
text of 0), and Val(p) is the value of p. We also
note Value(o,n) = Val(Prop(o,n)) the value of
the property of o which is named n.

Various kind of sharing will then be defined in
terms of two sets: N, and N° N, is the set of
property names which identify a property within
the context of o, in other words N, is the set of
properties declared for 0. The value of a property
for an object o can be either defined at the object
level” or inherited. For an object o, N is the set
of the names of properties the value of which is de-
fined at the object level. We separate o’s property
names in two sets: N° and N, — N, the set of the
names of properties the value of which is inherited.

5We use the term “name” to designate what is sufficient
to identify a property, this term can thus encompass name
and signature for example.

"We mean either in the object or in its class or anywhere
in a place directly accessible independently of the inheritance
mechanism.



2.2 Sharing

To say that an object o has a property n with
value v means three things: (1) o has a prop-
n € N,), (2) this property
is identified in o by n as a certain property p
(i.e. Prop(o,n) = p € P), and (3) the value
of the property of o which is named n is v (i.e.
Value(o,n) = Val(p) =v € V).

We define sharing as a relation® S from O to O,

erty named n (i.e.

and we note <g (respectively <g) the transitive
(respectively transitive and reflexive) closure of S.
Sharing thus applies at those three levels: what can
actually be shared are property names, properties
themselves and property values.

1. Name sharing

What is shared in name sharing is the fact
of having a property of a given name, or in
other words, the declaration of a property or
the existence of a property.

More formally, a sharing relation S is charac-
terized as being a name sharing relation when:

2
V(O],Og) e , 01 <§ 09 = Nm QNOQ

or: if 07 <s 09 then if 0o has a property
named n, then 0 also has one. For a concrete
example, consider a class-based world with two
instances i1 and iy of a class a (or i; an in-
stance of o and 79 an instance of a subclass of
a): if an instance variable name n is declared
on « then 47 and 4o share the fact that they
have a property named n, and that it will be
possible to ask any of 4; and 9 the value of its
property named n.

2. Property sharing

Property sharing implies name sharing. What
is shared in property sharing are properties

8We do not expect a sharing relation to be symmetric.
This can be misleading as far as to say that something is
shared between an object 01 and another one os is equivalent
to say that the same thing is shared between o2 and o1. We
define however sharing as a directed relation in order to be
able to identify what is shared between two objects.

themselves. It occurs when a given name n
identifies exactly the same property in two or
more different objects). We characterize as be-
ing a property sharing relation any name shar-
ing relation S such that:

V(Ol,()g) € 02, 01802 =
(V’I’L € Nm 7-/\/’01’ _P’f'Op(()l,’I’L) = P’I“Op(OQ,’I’L))

or: if 01509 then if 0y has a property named n
and if 0 has no local definition for that prop-
erty (n € N, — N°) then the property of
01 which is named n is also the property of
09 which is named n. The important conse-
quence (discussed in § 4) is that the value of
the property of 01 which is named n will be the
same than the value of the property oy which
is named n (at least as long as n € N,, —N ).
For an example, consider two instances 7; and
19 of the same class « and a method named m
which value is defined on «, i1 and iy share
that method.

3. Value sharing

What is shared in value sharing are property
values. A sharing relation S is said to be a
value sharing relation if:

V(O],OQ) S 02, O]SOQ =
(Vn e Ny, — N1,

Value(or,n) = Value(oz,n))

or: if 01505 then if 09 has a property named n
then the value of the property named n of 0; is
the same as the value of 0y’s property. Value
sharing implies name sharing. Property shar-
ing implies value sharing but the opposite is
not necessarily true. Value sharing is further
discussed in § 5.

3 Sharing in class-based systems
and sharing achieved by dele-
gation

We give in this section a characterization of both
kinds of sharing found in class-based systems and



delegation-based systems, using the previously de-
fined notions of name sharing and property shar-
ing. This characterization will reveal how the two
inheritance mechanisms are different.

3.1 Sharing in class-based systems is
name sharing for variables and
property sharing for methods

Classes, variables and methods. In class-based
systems a distinction is made between state proper-
ties (variables) and behavioural properties (meth-
ods).
names and the definitions of method values® are

The declarations of variable and method

done at the class level. Given an object o, let us
note Class(o) the class of o, and given a class «,
VN, the set of the variable names declared for in-
stances of a and MN, the set of method names
declared for instances of a. According to our pre-
vious definitions (see § 2), N, = VN, U MN, for

any object o.

Class-inheritance. Classes are organized in a
class-inheritance graph which we note Gz = (C,Z)
where C is the set of classes and Z is the inheritance
relation. We note <z the transitive closure of Z,
and <7 the transitive and reflexive closure of 7.
Given two classes « and £, if a <7 (3 (respectively
oZ3) then « is said to be a subclass (respectively

a direct subclass) of 3.

Sharing in class-based system is variable
name sharing. Class-inheritance is used to deter-
mine the VA, set for any given class «. It ensures
that any variable name of which the declaration
is held by « or one of the «’s superclasses is an
element of VN :

Y(a,B) € C* a <z B= VN, 2D VN,

Therefore, it is easy to prove the existence of a

variable name sharing relation S7 between objects,
which can be defined by:

Class(o1) = Class(02)
Y(o1,02) € O?, 018709 & or
Class(01)ZClass(oz2)

9Method values can be thought of as lambda-expressions.

In other words, each instance of a class « shares the
existence of its variables with any other instance
of @ and moreover with any other instance of any
a’s subclass. Of course, each instance will own a
proper value for each variable declared in its class.
Note that there is neither property nor value shar-
ing for variables.

Sharing in class-based systems is method
property sharing. As for variable name decla-
rations, class-inheritance is used to determine the
MN, set of any given class «:

Y(a,B) € C?, a <z = MN, 2D MN;

It is straightforward to establish that Sz is also a
method name sharing relation.

Furthermore, class-inheritance is also used for
Methods that can be acti-
vated by sending a message to a given object o

method activation.

are those the value of which is defined in Class(o)
or in one of Class(o)’s superclasses. We distin-
guish between them by calling MN 15500 the
set of the former (the latter being in the set
MNCZass(o) - MNCMSS(O))'

Given an object o1, when a message is sent to
activate the method m named n of 01, a lookup for
m’s value definition is performed which is started
at o1’s class and eventually continued along the
inheritance links to be finally found in a certain
class 6. [ can hold only one value definition for
the method named n, this implies that n identifies
a unique method within the context of 8, and this
method is m. As we could have chosen any object
0o among the instances of any class a, such that
Class(0o1) <7 B and a <7 f, instead of o; for the
lookup to terminate in 3, we can conclude that:

V(Ol,()g) € 02, 0181'02 =
(VTL e MNClass(ol) _ MNClass(ln)’
Prop(o1,n) = Prop(OQ,n))

Thus class-inheritance induces property sharing
for methods. In other words, all the instances of a
class # have the same behavioural properties (and
thus the same behaviour) and, given any «, sub-
class of 3, all of these properties which are not



redefined in « are also some behavioural properties
of a’s instances.

3.2 Delegation achieves (variable and
method) property sharing

We characterize here the kind of sharing achieved
by delegation. In a delegation-based system, prop-
erty name declarations and property value defini-
tions are directly done at the object level, on a per-
object basis [26], and inheritance directly occurs
between objects. Objects are linked together by
delegation (or parent) links in a delegation graph
Gp = (0, D), the vertices of Gp are the objects of
the system. D is the delegation relation, we note
<p its transitive closure and <p its transitive and
reflexive closure. If, given two objects 07 and o9,
01 <p 0y (respectively 01Doog, i.e. there is a dele-
gation link from o7 to 0y) then o; is said to be a
descendant (respectively a child) of oy, and 0y an
ancestor (respectively the parent) of o;.

Delegation is a message forwarding mechanism
which ensures that: when an object 07 is asked for
the value of one of its properties named n and it can
not answer by itself (i.e. n & N°), the question is
forwarded to the ancestors of o with the task for
the nearest ancestor which is able to answer, let’s
call it 09, (i.e. n € N°) to perform the answer in
the value context of o.

D is also a name sharing relation. Indeed, for any
object o a value can be computed for any property
name which is declared for any ancestor of o, ei-
ther this value is explicitly defined for o, or it is
inherited. Therefore any property name which is
the name of a property of at least one of the ascen-
dants of o is also a property name for o:

V(01,02) € OQ, 01 <p 02 = Nm 2 N02

D is also a property sharing relation. Indeed,
consider the lookup performed at the reception of
a message sent to an object oy asking for the value
of a property p named n. Let’s call o the object
where this lookup ends. o9 is the object holding
the definition of p’s value, and since oy can only
hold one definition of the value of the property

named n, n also identifies p within the context of
09 (i.e. Prop(o1,n) = p = Prop(o2,n)). Note that
we could have done the same reasoning with any
object o3, such that 07 <p 03 and o3 <p 09. We
thus deduce that:

V(O],OQ) S OQ, 01Doy =
(Vn € Ny, = N°, Prop(o1,n) = Prop(os,n))

In other words, an object shares each of its prop-
erties with its descendants which do not hold a def-
inition of the value of this property.

Remark: As there is exactly the same kind of shar-
ing for both variables and methods in delegation-
based systems, they can be (but are not necessar-
ily) embedded in the unique notion of property (as
done with the “slots” of SELF [1]).

4 Variable value sharing and del-
egation semantics

The important result of the previous section is
the characterization of delegation as a mechanism
entailing property sharing for both variables and
methods and class-inheritance as one entailing also
method property sharing but only variable name
sharing. From this perspective, the main difference
between the two mechanisms is that delegation in-
duces property sharing for variables. We focus on
this characteristics to bring to the fore the semantic
issues raised by the existence of a delegation link
between two objects. For this purpose, we recall
in § 4.1 the intrinsic interest of variable property
sharing and in § 4.2 the problems it raises.

4.1 Variable property sharing is useful

Consider some objects representing a person —
say Joe in a delegation-based system as shown
in Fig. 1 (such an example is also considered
in [3, 9, 20]).

sider Joe as a simple person, we create the ob-

Suppose we first want to con-

ject JoePerson with the variables address, age,
name and phone, and a method grow0ld. Then
the object JoeSportsman is created with the vari-
ables stamina and weight as a child of JoePerson



in order to be able to deal with .Joe as a sports-
man. The delegation link from JoeSportsman to
JoePerson ensures that all the properties of the
latter are shared by the two objects. Note that
representing Joe by these two objects allows us to
deal with:

e Joe as a sportsman (whose properties are
weight, stamina, address, age, name, phone
and grow01d),

e Joe as person (without the weight and
stamina properties).

JoePerson
growOld | —= age:=age+1
address ——= 8 Octave street
age —T— 30
name ——= John
phone —T— 11-11-11-11
=
parent link
JoeFilmEnthusiast JoeSportsman
favActor | —T= ... stamina - ..
favFilm T .. weight =
favDirecto] ——= ...

Figure 1: A representation of Joe split in three
objects.

We also keep the ability to create other chil-
dren of JoePerson along other lines. We do
it when creating the JoeFilmEnthusiast object,
having JoePerson as parent, with the definitions
of the variables favouriteActor, favouriteFilm
and favouriteDirector.

Note that in this example we clearly want the
three objects to denote the same entity of the real
Thus the address
variable'® owned by JoePerson is also intended

world, the real person .Joe.

to be the address variable of JoeSportsman and
JoeFilmEnthusiast. For that reason, variable
property sharing achieved by delegation is in this
case welcomed because any message attempting to
affect the address variable will result in the mod-
ification of the address variable in the JoePerson

object and thus be effective for all the three objects.

'The address variable is here considered as an example,
we could have made the same remarks for any other variable
owned by JoePerson.

JoePerson

growOld | —= age:=age+1

address ——= 8 Octave street

age —T— 30
—_—
parent link name | T Joe

phone —T— 11-11-11-11
JoeEmployee JoeFilmEnthusiast JoeSportsman
adress —— Universal university favActor | —— .. stamina - .
degree = .. favMovie | —T= .. weight .
phone = 22-22-22-22 favDirecto] —— ...

Figure 2: Another representation of Joe completed
with an employee aspect.

Furthermore any property can be redefined in a
child of JoePerson. For example, JoeEmployee is
created as a new child of JoePerson, denoting Joe
as an employee, in which a new degree variable is
defined and the two variables address and phone
are redefined (see Fig. 2). As far as redefined prop-
erties are not shared, Joe is represented as having
different address and phone number while he is at
his work.

There is no simple way to obtain an equivalent
representation in a class-based language since class-
inheritance simply does not achieve variable prop-
erty sharing.

4.2 Variable property sharing raises the
problem of object identity

We recall here how variable property sharing
breaks the frontiers of objects and subsequently
breaches encapsulation [27]. More generally we
raise the issue of the interpretation of the delega-
tion link.

Consider another example in a delegation-based
system. A point at 5@10 is represented by an ob-
ject Pointl, and a turtle at 10@10 and heading
to 90 by an object Turtlel (see Fig. 3-a). Be-
cause a turtle object is like a point object having
one more variable (heading) and two more meth-
ods (rotate and forward), and more specifically
because Turtlel has the same value (at least at
creation time) for the y variable and a different



value for the x one as Point1, Turtlel is made a
child of Point1. If now Turtlel is asked to move at
10@14, its y value has to be changed. A value def-
inition of y is not found in Turtlel but in Point1
where the modification is performed (see Fig. 3-b).
As delegation basically achieves property sharing,
the parent link not only grants a read access but
also a write access for Turtlel to the y variable
owned by Point1.

Consequently, if we only expect an object to be
an entity which is able to receive messages, then
Turtlel and Point1 can be considered as two dif-
ferent objects but this become false as soon as we
also expect an object to be an independent indi-
vidual entity.

In most of the delegation-based languages, there
is no prerogative to create an object as a child of
another. Full access to an object’s properties can
then be gained in an unexpected manner by creat-
ing a child of it. Either property sharing basically
achieved by delegation should be restricted to value
sharing (see § 2 for definition), or a set of objects
connected by delegation links have to be consid-
ered as the parts of the representation of only one
global entity (as was done in our previous example
given in § 4.1). To choose between these two alter-
natives amounts to choose between two different
but founded use of delegation.

5 A first semantics: individual
objects and default values

A first sound semantics for delegation can be found
in some actors systems (e.g. Actl [17]), frame-
based ones (e.g. Y3 [10]) but also prototype-based
ones (e.g. the KR language of Garnet [22]). In
these systems, the properties of an object can not
be modified by sending an affectation message to
one of its descendants. An object has at least as
many properties as its parent, each of these prop-
erties is identified by the same name within the
context of any of the two objects and has the same

default value'l.

Pointl
X —T=5
y —T= 10
add -, ...
move - ..
Turtlel
X —T= 10
heading —— 90 _—
forward | ——= ... parent link
rotate - ..

Figure 3-a: before the mod-

ification of y.

Pointl
Pointl X =5
X —T—=5 y —— 10
y =14 add —+=
add -, ... move -, ..
move - ..
Turtlel

Turtlel X —= 10
X —T= 10 y 14
heading —T—= 90 heading —T—= 90
forward -, ... forward -, ...
rotate - .. rotate - ..

Figure 3-b: after the mod- Figure 3-c: after the modifi-
ification of y with property cation of y with value shar-
sharing. ing.

Figure 3: Point1 and Turtlel share the y variable.
The modification of y’s value of Turtlel leads to
the case of 3-b with property sharing and to the
case of 3-c with value sharing.

Consider again our point-turtle example (see
Fig 3-a). The reason why the Turtlel object is
made a child of the Point1 object is clearly in this
case the reuse of the definition of Point1’s proper-
ties. We do not want Point1’s properties to be the
very properties of Turtlel, but rather Point1 to
provide default values for the Turtlel’s variables
which are not redefined. In order to ensure this an
y affectation message sent to Turtlel should not

"lieberman also suggested objects as default behaviour
and value repositories for their children in [18].



result in Point1’s y value modification as shown
in Fig. 3-b but rather in the definition of the y
variable in Turtlel as shown in Fig. 3-c. Such an
interpretation of variable affectation amounts to re-
strict, by a separate mechanism, property sharing
(basically achieved by delegation) to value sharing.
Either this mechanism can test for the existence
of a definition in some ascendant for the variable
to be affected before adding a new local definition
(as in Y3 [10]. Or it can systematically consider
the affectation of a non locally defined variable as
the creation of a new initialized variable (as in KR
22)).

Delegation links can in this case be intended as
“is-like-a” links. Delegation then grants read access
to variables but no more write access to the par-
ent properties. The frontiers between objects are
then clear: in our example Pointl and Turtlel
are really two different objects and can evolve on
their own. The only way to modify the value of the
Point1’s y variable is to explicitly send a message
to Pointl. Although this will also modify the y
value for Turtlel, this isn’t unexpected since this
value is only intended to be a default one.

6 A second semantics: view-

points within an object

We showed in the previous section that property
sharing is restricted to value sharing in some exist-
ing systems in order to get rid off the problem of
object identity. But we also pointed out in § 4.1
the usefulness of property sharing by producing an
example of the representation of a person Joe. We
introduce in this section a second sound semantics
which retains property sharing.

Consider again the representation of Joe
which is split in four objects (see Fig. 2):
JoePerson, JoeEmployee, JoeFilmEnthusiast
and JoeSportsman. What does this mean exactly?
According to Ferber, objects denoting the same en-
tity (coreferent objects) denote viewpoints of this
entity [13].
denotes Joe as a person, JoeSportsman Joe as a

It should be clear that JoePerson

sportsman, JoeFilmEnthusiast Joe as a film en-
thusiast and JoeEmployee Joe as an employee.

To split a representation in several objects in a
delegation hierarchy is simply a natural way of rep-
resenting viewpoints. As in a description hierarchy,
the most general viewpoints are those denoted by
the objects near the top of the hierarchy whereas
the most specific viewpoints are those denoted by
the objects which are leaves of the hierarchy. In our
example, person is a more general viewpoint on Joe
than either employee, sportsman or film enthusiast.

We however still face some problems because we
can not deal with the whole representation of .Joe.
We can not send messages to it but only to one
of the objects denoting a viewpoint of Joe. We
neither deal with the whole representation as a
structure in order to duplicate it for example. The
problem of object identity is still not resolved but
we now know that the frontier to be put on the
split representation is one around it all, that is
around the four objects in our example. A solution
to these problems is to give the object status to
the whole representation and to remove that sta-
tus from its four parts. Indeed, we can no more
consider JoeEmployee (for example) as an object
because there would be a conflict between its fron-
tier and the one of the whole representation. The
inadequacy between the system and the real-world
should be recovered: a one-to-one correspondence
between objects in the system and entities of the
real world should be ensured. We define split ob-
jects for this purpose in the next section.

7 Split objects

We have shown in the previous section that dele-
gation can be used to achieve a per-viewpoint rep-
resentation of a single entity of the real world. We
also pointed out that a solution to some problems
raised by these representations relies on a one-to-
one correspondence between objects in the system
and entities of the world being represented. We
propose in this section a model for split objects in
which this correspondence is respected.
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Figure 4: A split object representing a person, each piece denotes a viewpoint on this person.

7.1 A basic model for split objects

The properties of a split object are stored into its
pieces. Pieces are organized within an object in
a delegation hierarchy (a property sharing one).
A split object denotes a single entity of the real
world and its pieces denote viewpoints of this en-
tity. Pieces do not have an object status,
whereas split objects do. To illustrate what a
split object is, consider our new completed repre-
sentation of Joe shown in Fig. 4. Joe is now repre-
sented by a single split object Joe which contains
nine pieces. Person, Employee, FilmEnthusiast,
and Sportsman are no more objects but only
pieces of Joe. We detail below the basic fea-
tures that an object-centered language with cloning
The

reader is also referred to [3] for a more complete

should include to provide for split objects.

description of this model and to [20] for a denota-
tional semantics of a similar one.

Naming and accessing

As far as split objects are first class entities, they
are directly accessible. This is not the case of
pieces, which can only be accessed through the en-

compassing split object by specifying a piece name.

Creation

Split objects are created by cloning. A special case
of creation is creation ex-nihilo: it is achieved by
first cloning the empty split object (a predefined
object of the language having no pieces) and then
performing as many piece additions as required.

Cloning

Cloning a split object results in a new split ob-
ject, initially composed of the same set of pieces
holding the same properties. Cloning a split object
thus consists in deep copying the pieces hierarchy
in which each piece is shallow copied.

Modification
Split objects can be modified on a per piece basis.



One can add to, delete from or modify a piece of a
split object.

e Adding a piece is performed by creating a new
empty piece as a child of an existing one. Iden-
tifiers of both the existing and the new pieces
should be specified.

e Piece deletion also implies the deletion of all
the descendant pieces in the hierarchy: recall
that a piece denotes a viewpoint and descen-
dant pieces denote more specific viewpoints. If
Joe is no more a sportsman, it is clear that he
can no more be a skier, a volleyball player or
a tennis player.

e Piece modification consists in either adding a
property, deleting a property, setting a new
value to a variable, or changing the body of a
method stored in a piece of the split object.

Basic message sending

A split object’s property values are accessed by
message sending. Since methods and variables are
owned by the pieces and since pieces denote view-
points, messages are sent on a per viewpoint ba-
sis. When a message is sent to an object, a view-
point must be specified by giving the identifier of
the piece denoting it. A lookup is then performed,
starting at this piece and eventually continued in
its ascendant pieces, in order to compute and re-
turn the reply. Message sending can be extended to
support messages sent to an object without speci-
fying any viewpoint. This will be further discussed
in § 7.2.

Pseudo-variables

As in all object-oriented languages, a pseudo-
variable self is bound, during a method’s activa-
tion, to the current receiver, i.e. in our case a split
object. For the particular case where one wants
to send a message to self from the same viewpoint
as the message currently being evaluated, a sec-
ond pseudo-variable this Viewpoint is also provided.
During the evaluation of a message, this Viewpoint
is bound to the name of the piece denoting the cur-
rent viewpoint.

Structure coherence controls

At modification time, it is possible to check that
the tree structure of the piece graph of a split object
is preserved.

7.2 Extending message sending to ad-
dress more viewpoints

We have presented in previous subsection a basic
model in which the user can deal with each of the
viewpoints denoted by a piece in a split object.
An interesting issue is now to know whether there
are only as many denoted viewpoints as there are
pieces in a split object. We show in this section that
there are more viewpoints than pieces. We give
some clues on how messages can be sent from all
these viewpoints, including a particular one which
can be thought of as the “reunion” of all the others.

The split object Joe (see Fig. 4) is a collection of
nine pieces and each of them denotes a viewpoint
on Joe. Joe thus denotes at least nine viewpoints.
We are able to deal with any of these nine view-
points by sending messages. We can for example
ask Joe as a researcher which are the papers he has
written by sending a message to Joe, indicating the
Researcher piece and the selector papers. But
how can we get this information if we do not know
that the papers variable of Joe is stored in the
Researcher piece? Shouldn’t we be able to deal
with Joe as a whole, the global viewpoint on Joe
from which any of the properties defined in Joe’s
pieces can be a priori accessed? We would like to
answer yes to this question but there is no piece
which denotes Joe as a whole: the global viewpoint
is only implicitly denoted in Joe, and messages can
not a priori be sent from it.

If we allow pieces to have more than one parent, a
naive solution to this problem would be to create a
piece to denote Joe as a whole. This piece could be
an empty one made the child of each of the leaves
of the hierarchy in order to gain access to any of
the properties defined for Joe. But this solution is
only applicable in a system providing for multiple
delegation.

However, a key remark is that Joe as a whole



can be considered as the composition of other
viewpoints of Joe, denoted by pieces of different
branches of the sharing hierarchy. We can also con-
sider that all possible combinations of such pieces
denote interesting implicit viewpoints on the en-
tity denoted by a split object. For example, we
could want to deal with the teacher-and-researcher
viewpoint on Joe (denoted by the combination of
the Teacher and Researcher pieces). But we also
need to consider all possible compositions of view-
points, since even a combination of some pieces of
the same branch does not denote the same view-
point as the one denoted by the more specific of
these pieces. Just consider for example the person-
and-employee viewpoint (denoted by the combina-
tion of the Person and Employee pieces): it is not
the same viewpoint as the employee one because
asking the address of Joe as an employee is an un-
ambiguous question whereas asking the address of
Joe as a person-and-employee is ambiguous.

When counting the viewpoints (implicitly or ex-
plicitly) denoted in a split object, one must thus
count as many as there are non empty subsets in
the whole set of pieces. In our example, Joe has 9
pieces and denotes 29 — 1, that is 511, viewpoints
on Joe. We conclude that creating an empty piece
to explicitly denote each viewpoint implicitly de-
noted is not a practically applicable solution with
respect to the memory consumption.

Message sending can be extended to support
messages along any of the viewpoints denoted in
a split object. Implicitly denoted viewpoints can
be specified by a list of piece identifiers. It is also
possible to systematically consider a message sent
with no viewpoint specification as a message sent
from the global viewpoint. Properties of a split
object can then be activated without knowing in
which pieces they are stored and full support for
encapsulation is thus provided.

As there can be ambiguous messages, a lookup

ambiguities. It seems reasonable to expect also this
strategy to not perform any lookup in pieces which
are not related (either ascendant or descendant of)
the pieces specified as a viewpoint. We have pro-

posed such a strategy in [3] which ensures an uni-
formly defined semantics of messages sent to either
explicitly or implicitly denoted viewpoints.

8 Viewpoints in other systems

Our primary goal in this work was not to design
a new model for viewpoints but rather to fully
understand delegation and its semantics. The
notion of viewpoints nevertheless came naturally
out when we thought about split representations.
Many other works have been done around this
notion in the object-oriented field of research. We
discuss them in a short comparison with our split
objects.

The notion of perspectives appears in Loops [4,
5]. Perspectives, which are reified by independent
objects with separate name spaces, are clustered
into some special composite objects and are inter-
preted as different views on the same conceptual
entity. Each perspective on an entity can be ac-
cessed from any other perspective on the same en-
tity.

Ferber developed a theory of viewpoints based
on the coreferentiality [12, 13], where viewpoints
of an entity are represented by coreferent objects.
Translation operations and coreference rules be-
tween coreferent objects can be defined to ensure
the coherence of the whole representation of the
application domain.

The main differences between these two ap-
proaches split objects lies in the fact that view-
points on a split object are not reified. Viewpoints
are also clustered as in Loops, but they are not in-
dependent. Some kind of coherence between view-
points is also ensured by the sharing relation be-
tween pieces.

ROME [7, 8] emphasizes fragmentation of the
definition of properties in a inheritance hierarchy
(principle of multiple and evolving representation
of objects). Viewpoints (denoted by classes) are
also organized in a generalization/specialization
hierarchy in which lookup can be restricted to
some classes during the evaluation of as-expression



messages. In this respect, the functionalities of
split objects with extended message sending are

very similar to those of ROME.

The viewpoint notion can also cover viewpoints
on the entire application domain, rather than
solely viewpoints on individual entities. Indeed, in
Tropes [21, 24] a viewpoint corresponds to a whole
hierarchy of classes. Such hierarchies, the root of
which are called concepts are used for classification
purposes: an object is the instance of only one con-
cept, which totally describes its attributes names,
but can be classified within a viewpoint in the con-
cept’s subclasses, which specialize descriptions of
instances in term of attribute values.

Harrison and Ossher proposed a model of sub-
jects [14], where a subject also specifies a whole
hierarchy of classes. A subject merely corresponds
to the view of the world one can have from the
context of a particular application. Subjects can
be activated (eventually more than once) in order
to associate some data and behaviour to any of the
object identities of the system. An object identity
can be associated to different data and behaviour
by different subject activations. Subjects can also
be composed together, in which case a composi-
tion rule then defines how they cooperate in re-
spect with various topics including message send-
ing, coherence of representations, object creations,
etc. (see [23] for two possible composition rules).

It is possible to compare split objects and ex-
tended message sending with subjects, because for
example viewpoints can be composed in the two
models. Semantics of viewpoints composition are
not determined by the same factors: this issue does
not rely in our model on some composition rule but
rather on the lookup strategy chosen for implicitly
denoted viewpoints and the property sharing rela-
tion imposed on the pieces of a split object.

Viewpoints can be considered in object-oriented
application design techniques. Role modeling [2]
emphasizes separation of concern between differ-
ent aspects at possibly different level of details in
the design of more or less independent applications.
A role model is a behaviour description of two or

more entities termed roles. Roles describe the re-
quirements that objects have to satisfy in order to
achieve the behaviour described by the role model.
An important operation on role models is synthesis
where some roles are sometimes projected together
into a new aggregated role to obtain a new role
model.

Considering that requirements of a role can
be clustered into a piece, and that projection of
roles can then be thought of adding pieces to a
split objects, our model may perhaps be a well-
adapted tool for the implementation of role models.

Finally, Us [25] also uses delegation to express
perspectives. Definitions of objects in Us are done
through layers: each layer contains exactly one
piece (eventually an empty one) of each object. Ob-
jects can inherit from each other by delegation, and
so do layers in a separate but orthogonal delega-
tion hierarchy. A layer considered together with its
chain of layer parents is a perspective from which
messages can be sent to objects. The receiver-
perspective symmetry principle governs evaluation
of messages: layer parent links and object parent
links have the same semantics.

The symmetry principle is quite well respected,
but is weakened by the lookup algorithm which
composes the layer parent hierarchy first. This
is the main difference with our model in which a
split object must first be considered before view-
points (our viewpoints are also viewpoints on ob-
jects rather than viewpoints on the whole system).
There are nevertheless strong similarities between
split objects and Us: the notion of piece, the use
of delegation and the generalization/specialization
relation between perspectives.

9 Conclusion and future works

In this paper we have introduced a formalism in
which we defined the notions of name sharing,
property sharing and wvalue sharing. This allowed
us to precisely qualify the kind of sharing achieved
in class-based systems as wariable name sharing
and method property sharing, and the one achieved



by delegation as property sharing.

We have then shown how property sharing can
be used to obtain per viewpoint representations of
objects but also explained that a secure use of del-
egation relies on a correct semantics of delegation
links. As a first sound semantics we highlighted
the restriction property sharing to value sharing
done in some existing systems, using delegation
to achieve default life-time value sharing between
independent objects. As a second semantically
founded use of delegation, we proposed a new
model of split objects in which property sharing
no more occurs between objects but rather be-
We have finally

briefly compared the split object model with other

tween one object’s viewpoints.
systems providing viewpoints.

We discussed how split objects can be manipu-
lated in a class-less language, creation of new ob-
jects is basically achieved by cloning. We how-
ever believe that there exists a corresponding class-
based model: one can think of classes in which the
declaration of variables and the definition of meth-
ods are partitioned along a set of piece names. In-
deed, delegation occurs between pieces within split
objects and we did not put any requirements ei-
ther on inheritance between split objects, or on the
organization of their world. We currently are in-
vestigating what are the pros and cons of choosing
between a class-based system or an object-centered
one to implement split objects. Topics pertinent to
this choice are including:

e the possible solutions for factorization of com-
mon properties: code reuse can be achieved by
class-inheritance in class-based systems, but
it remains a problem in prototype-based lan-
guages [3, 9];

e the way viewpoints are expressed in split ob-
jects, whether piece names of an object are de-
fined at the class-level or directly at the object-
level;

e creation and dynamic modification of split ob-
jects.

Another important issue to be discussed is en-
capsulation. As far as it is possible to put fron-
tiers between split objects, some support for en-
capsulation is provided by our model, but we do
not give details on how encapsulation can actually
been achieved. Moreover there may be two levels
of encapsulation: encapsulation of properties (the
“classical one”) and encapsulation of pieces.
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