
Split Objects: a Disciplined Use of Delegation within Objects �Daniel Bardoubardou@lirmm.fr Christophe Donydony@lirmm.frLaboratoire d'Informatique, de Robotique et de Micro-�electronique de Montpellier161, rue Ada { 34392 Montpellier Cedex 5 { FRANCEAbstractThis paper's primary aim is to improve the un-derstanding of the delegation mechanism as de-�ned in [18]. We propose a new characterizationof delegation based on the notions of name shar-ing, property sharing and value sharing. It allowsus (1) to clearly di�erentiate delegation from class-inheritance in particular and more generally fromother inheritance mechanisms and (2) to explainhow a founded use of delegation relies on a correctsemantics of variable property sharing between ob-jects connected by a delegation link. We then de-scribe a model of split objects which is proposedas an example of a disciplined and semanticallyfounded use of delegation, where property sharingexpresses viewpoints within objects.1 IntroductionAll kinds of inheritance mechanisms in object-oriented programming or representation languages,despite their diversities [5, 26], have at least the fol-lowing common points [11]:� They are based on a relation I between ob-jects or between concepts (for example the�Partially supported by March�e CNRS/CNET 93 1B 142,Projet 5115 \R�eseau fut�e".

subtype relation between abstract data typeswhich is implemented in class-based languagesby a \superclass" link between classes).� The mechanism itself uses that relation toachieve inheritance (for example a messagesending mechanism in class-based languagewhich performs a lookup | whatever form ittakes | along the \superclass" links to re-trieve inherited properties).� An interpretation or a semantics is given to therelation I to justify the above mechanism. Forexample in class-based languages the formalproperty that gives a meaning to the \super-class" link and underlies inheritance is inclu-sion polymorphism1 [6], other interpretations,such as concept specialization or set inclusion,have been given in other contexts.� Finally, a common characteristic of all inher-itance mechanisms is that they are used toachieve some kind of sharing [26].We deal in this paper with the \delegation"mechanism, as it is de�ned in [17, 18, 26], whichdoes not exactly denotes a message redirection (asin actors systems) but actually a kind of inher-itance mechanism (which can be understood in1The reason why it is founded to \look up" for methodsin a superclass is that any function applicable to objectsof a type T (instances of a class C) is intended to be alsoapplicable to objects of type T 0 subtype of T (instances ofC's subclasses).

a way as a message redirection). Delegation inthis sense is thus a kind of inheritance mechanismwhich is generally associated to object-centered orprototype-based programming [18, 29, 30] in a \onekind of object-one kind of link" world. In fact, tobe class-less and to provide a delegation mechanismare two orthogonal features of an object-orientedprogramming or representation language [19]. Ef-�cient class-less languages with some kind of shar-ing but without delegation can be built [28] andit is possible to imagine some uses of delegationin many di�erent worlds including worlds withoutclasses [1] and worlds with classes [10, 15, 16]. Thedelegation mechanism is based on a link (generallycalled \parent" or \delegation" link) between ob-jects2, rather than between descriptions. In object-oriented programming, delegation is presented asa message forwarding mechanism [17, 18], infor-mally described in the following way: \an objectthat cannot answer a question can delegate it toits parent, if the parent can answer it, the answerwill be performed in the context of the values ofthe original object". An example of such objectscan be found in the classical point-turtle example(see Fig. 3-a, page 8). Finally delegation is a kindof sharing mechanism [9, 26].If this very general description is to be comparedto the four points above, it appears that two veryimportant things are missing that limit our under-standing of delegation: (1) what is the kind ofsharing actually achieved by this mechanism and(2) how to interpret the relation on which the mech-anism is based:1. The kind of sharing achieved by delegationis not yet well characterized, for examplethe di�erence between delegation and class-inheritance (let us give that name to the in-heritance mechanism found in class-based sys-tems) is still unclear. Contrasting with gener-ally accepted ideas, we claim that delegation isnot class-inheritance and that delegation is notto class-less objects what class-inheritance is2We more exactly mean between entities holding vari-able values and used to perform computations, these can beclasses but seen as objects.

to classes. Delegation is not class-inheritancebecause the former and the latter do not in-duce the same sharing relation between ob-jects: an instance i1 of a class � and an in-stance i2 of a class � subclass of � do not sharethe same things than an object o1 and an ob-ject o2, o1 having o2 as parent.2. Once the kind of sharing actually achieved bydelegation has been characterized, the nextquestion is: what does it mean for two en-tities to be connected by a delegation link?More precisely: what semantics or interpreta-tion can be given to the relation based on thatlink?The aim of this paper is to address thesetwo points. Concerning sharing, it is alreadywell known that delegation induces a sharing ofvariable values but a formal characterization ofdelegation is needed to express more preciselyand in a simple way the di�erences with otherinheritance-based sharing mechanisms. For whatconcerns the interpretation of the link, the problemis to correctly use variable value sharing which,when used without care, raises the problem ofobject-identity [9, 19, 27]. What does it mean foran entity to share variables values with another?A �rst answer can be found in some existingsystems in which delegation is used to performsome life-time default value sharing betweenconcepts and objects. We will introduce anddevelop a second answer [3, 20] by de�ning whatwe call \split objects". In split objects, delegationis used inside objects to express property sharingbetween di�erent perspectives or viewpoints.The paper is organized as follows. Section 2formally de�nes name sharing, value sharing andproperty sharing. Section 3 proposes a character-ization, in term of these notions, of both sharingin class-based systems and sharing in delegationclass-less systems. It shows how delegation inducesproperty sharing for both variables and methods.Section 4 recall the possible bad consequences ofsharing variables on object modularity. Section 5

recall a well-known use and interpretation of vari-able sharing with delegation and its semantics asit can be found in existing systems. Section 6 thendiscuss a second founded use of delegation whichexpress viewpoints. Section 7 describes what couldbe a model in which the latter use of delegation isdisciplined within what we call split objects. Fi-nally section 8 brie
y compares split objects withsome existing object systems allowing to expressviewpoints.2 Name sharing, value sharing,and property sharingWe de�ne in this section the notions of name shar-ing, property sharing and value sharing3 betweenobjects integrated in a single4 inheritance world.These notions will be used in the next section toformally characterize the kind of sharing achievedby various inheritance mechanisms.2.1 PropertiesWhat de�nes objects in object-oriented systemsare, generally speaking, properties. We use theterm property to designate either a \slot", an \at-tribute", a \�eld", an \instance variable", or a\method". We do not use the term property todesignate generic properties5 (it is for example pos-sible to talk about the global entity printOn: inSmalltalk), but rather the properties actually de-�ned on classes or objects (for example the methodprintOn: of the class String in Smalltalk). Proper-ties are declared and de�ned for objects (whereverthe declaration and de�nition take place).3The formalism we de�ne has been inspired from the oneappearing in [11] in which the notions of name inheritanceand value inheritance are de�ned. The two formalisms arehowever di�erent and there is no direct correspondence be-tween name inheritance and name sharing, or between valueinheritance and value sharing. Indeed, generic properties areconsidered in [11] whereas they aren't here.4These notions are basically not di�erent in presence ofmultiple inheritance but are more di�cult to express for-mally.5Such entities are rei�ed in Clos (generic functions) andin Lore.

Property names. We consider that propertiescan be identi�ed by a name in the context of anobject6. Several properties can of course be giventhe same name for di�erent objects.Property values. Properties may be complexentities but they have at least a value (they mayalso have a type, a signature, a cardinality, etc.).Each property has only one value (of course, avalue can be the value of several properties).Formally, let us consider an object system char-acterized by a set O of objects, a set P of prop-erties, a set N of property names and a set V ofvalues, we de�ne the following functions:NameOf : P �! NRefProp : N �! 2PProp : O �N �! PV al : P �! VGiven an object o 2 O, a property p 2 P anda property name n 2 N : NameOf(p) is the nameof p, RefProp(n) is the set of the properties namedn, Prop(o; n) is the property of o which is namedn (the property identi�ed by n within the con-text of o), and V al(p) is the value of p. We alsonote V alue(o; n) = V al(Prop(o; n)) the value ofthe property of o which is named n.Various kind of sharing will then be de�ned interms of two sets: No and N o. No is the set ofproperty names which identify a property withinthe context of o, in other words No is the set ofproperties declared for o. The value of a propertyfor an object o can be either de�ned at the objectlevel7 or inherited. For an object o, N o is the setof the names of properties the value of which is de-�ned at the object level. We separate o's propertynames in two sets: N o and No�N o, the set of thenames of properties the value of which is inherited.6We use the term \name" to designate what is su�cientto identify a property, this term can thus encompass nameand signature for example.7We mean either in the object or in its class or anywherein a place directly accessible independently of the inheritancemechanism.

2.2 SharingTo say that an object o has a property n withvalue v means three things: (1) o has a prop-erty named n (i.e. n 2 No), (2) this propertyis identi�ed in o by n as a certain property p(i.e. Prop(o; n) = p 2 P), and (3) the valueof the property of o which is named n is v (i.e.V alue(o; n) = V al(p) = v 2 V).We de�ne sharing as a relation8 S from O to O,and we note <S (respectively �S) the transitive(respectively transitive and re
exive) closure of S.Sharing thus applies at those three levels: what canactually be shared are property names, propertiesthemselves and property values.1. Name sharingWhat is shared in name sharing is the factof having a property of a given name, or inother words, the declaration of a property orthe existence of a property.More formally, a sharing relation S is charac-terized as being a name sharing relation when:8(o1; o2) 2 O2; o1 <S o2) No1 � No2or: if o1 <S o2 then if o2 has a propertynamed n, then o1 also has one. For a concreteexample, consider a class-based world with twoinstances i1 and i2 of a class � (or i1 an in-stance of � and i2 an instance of a subclass of�): if an instance variable name n is declaredon � then i1 and i2 share the fact that theyhave a property named n, and that it will bepossible to ask any of i1 and i2 the value of itsproperty named n.2. Property sharingProperty sharing implies name sharing. Whatis shared in property sharing are properties8We do not expect a sharing relation to be symmetric.This can be misleading as far as to say that something isshared between an object o1 and another one o2 is equivalentto say that the same thing is shared between o2 and o1. Wede�ne however sharing as a directed relation in order to beable to identify what is shared between two objects.

themselves. It occurs when a given name nidenti�es exactly the same property in two ormore di�erent objects). We characterize as be-ing a property sharing relation any name shar-ing relation S such that:8(o1; o2) 2 O2; o1So2)(8n 2 No1 �N o1 ; P rop(o1; n) = Prop(o2; n))or: if o1So2 then if o2 has a property named nand if o1 has no local de�nition for that prop-erty (n 2 No1 � N o1) then the property ofo1 which is named n is also the property ofo2 which is named n. The important conse-quence (discussed in x 4) is that the value ofthe property of o1 which is named n will be thesame than the value of the property o2 whichis named n (at least as long as n 2 No1�N o1).For an example, consider two instances i1 andi2 of the same class � and a method named mwhich value is de�ned on �, i1 and i2 sharethat method.3. Value sharingWhat is shared in value sharing are propertyvalues. A sharing relation S is said to be avalue sharing relation if:8(o1; o2) 2 O2; o1So2)(8n 2 No1 �N o1 ;V alue(o1; n) = V alue(o2; n))or: if o1So2 then if o2 has a property named nthen the value of the property named n of o1 isthe same as the value of o2's property. Valuesharing implies name sharing . Property shar-ing implies value sharing but the opposite isnot necessarily true. Value sharing is furtherdiscussed in x 5.3 Sharing in class-based systemsand sharing achieved by dele-gationWe give in this section a characterization of bothkinds of sharing found in class-based systems and

delegation-based systems, using the previously de-�ned notions of name sharing and property shar-ing . This characterization will reveal how the twoinheritance mechanisms are di�erent.3.1 Sharing in class-based systems isname sharing for variables andproperty sharing for methodsClasses, variables and methods. In class-basedsystems a distinction is made between state proper-ties (variables) and behavioural properties (meth-ods). The declarations of variable and methodnames and the de�nitions of method values9 aredone at the class level. Given an object o, let usnote Class(o) the class of o, and given a class �,VN� the set of the variable names declared for in-stances of � and MN� the set of method namesdeclared for instances of �. According to our pre-vious de�nitions (see x 2), No = VN � [MN� forany object o.Class-inheritance. Classes are organized in aclass-inheritance graph which we note GI = (C;I)where C is the set of classes and I is the inheritancerelation. We note <I the transitive closure of I,and �I the transitive and re
exive closure of I.Given two classes � and �, if � <I � (respectively�I�) then � is said to be a subclass (respectivelya direct subclass) of �.Sharing in class-based system is variablename sharing. Class-inheritance is used to deter-mine the VN� set for any given class �. It ensuresthat any variable name of which the declarationis held by � or one of the �'s superclasses is anelement of VN �:8(�; �) 2 C2; � <I �) VN� � VN �Therefore, it is easy to prove the existence of avariable name sharing relation SI between objects,which can be de�ned by:8(o1; o2) 2 O2; o1SIo2 , 8><>: Class(o1) = Class(o2)orClass(o1)IClass(o2)9Method values can be thought of as lambda-expressions.

In other words, each instance of a class � shares theexistence of its variables with any other instanceof � and moreover with any other instance of any�'s subclass. Of course, each instance will own aproper value for each variable declared in its class.Note that there is neither property nor value shar-ing for variables.Sharing in class-based systems is methodproperty sharing. As for variable name decla-rations, class-inheritance is used to determine theMN� set of any given class �:8(�; �) 2 C2; � <I �)MN� �MN �It is straightforward to establish that SI is also amethod name sharing relation.Furthermore, class-inheritance is also used formethod activation. Methods that can be acti-vated by sending a message to a given object oare those the value of which is de�ned in Class(o)or in one of Class(o)'s superclasses. We distin-guish between them by calling MNClass(o) theset of the former (the latter being in the setMNClass(o) � MNClass(o)).Given an object o1, when a message is sent toactivate the method m named n of o1, a lookup form's value de�nition is performed which is startedat o1's class and eventually continued along theinheritance links to be �nally found in a certainclass �. � can hold only one value de�nition forthe method named n, this implies that n identi�esa unique method within the context of �, and thismethod is m. As we could have chosen any objecto2 among the instances of any class �, such thatClass(o1) �I � and � �I �, instead of o1 for thelookup to terminate in �, we can conclude that:8(o1; o2) 2 O2; o1SIo2)(8n 2MNClass(o1) �MNClass(o1);P rop(o1; n) = Prop(o2; n))Thus class-inheritance induces property sharingfor methods. In other words, all the instances of aclass � have the same behavioural properties (andthus the same behaviour) and, given any �, sub-class of �, all of these properties which are not

rede�ned in � are also some behavioural propertiesof �'s instances.3.2 Delegation achieves (variable andmethod) property sharingWe characterize here the kind of sharing achievedby delegation. In a delegation-based system, prop-erty name declarations and property value de�ni-tions are directly done at the object level, on a per-object basis [26], and inheritance directly occursbetween objects. Objects are linked together bydelegation (or parent) links in a delegation graphGD = (O;D), the vertices of GD are the objects ofthe system. D is the delegation relation, we note<D its transitive closure and �D its transitive andre
exive closure. If, given two objects o1 and o2,o1 <D o2 (respectively o1Do2, i.e. there is a dele-gation link from o1 to o2) then o1 is said to be adescendant (respectively a child) of o2, and o2 anancestor (respectively the parent) of o1.Delegation is a message forwarding mechanismwhich ensures that: when an object o1 is asked forthe value of one of its properties named n and it cannot answer by itself (i.e. n 62 N o1), the question isforwarded to the ancestors of o with the task forthe nearest ancestor which is able to answer, let'scall it o2, (i.e. n 2 N o2) to perform the answer inthe value context of o.D is also a name sharing relation. Indeed, for anyobject o a value can be computed for any propertyname which is declared for any ancestor of o, ei-ther this value is explicitly de�ned for o, or it isinherited. Therefore any property name which isthe name of a property of at least one of the ascen-dants of o is also a property name for o:8(o1; o2) 2 O2; o1 <D o2) No1 � No2D is also a property sharing relation. Indeed,consider the lookup performed at the reception ofa message sent to an object o1 asking for the valueof a property p named n. Let's call o2 the objectwhere this lookup ends. o2 is the object holdingthe de�nition of p's value, and since o2 can onlyhold one de�nition of the value of the property

named n, n also identi�es p within the context ofo2 (i.e. Prop(o1; n) = p = Prop(o2; n)). Note thatwe could have done the same reasoning with anyobject o3, such that o1 �D o3 and o3 �D o2. Wethus deduce that:8(o1; o2) 2 O2; o1Do2)(8n 2 No1 �N o1 ; P rop(o1; n) = Prop(o2; n))In other words, an object shares each of its prop-erties with its descendants which do not hold a def-inition of the value of this property.Remark: As there is exactly the same kind of shar-ing for both variables and methods in delegation-based systems, they can be (but are not necessar-ily) embedded in the unique notion of property (asdone with the \slots" of Self [1]).4 Variable value sharing and del-egation semanticsThe important result of the previous section isthe characterization of delegation as a mechanismentailing property sharing for both variables andmethods and class-inheritance as one entailing alsomethod property sharing but only variable namesharing. From this perspective, the main di�erencebetween the two mechanisms is that delegation in-duces property sharing for variables. We focus onthis characteristics to bring to the fore the semanticissues raised by the existence of a delegation linkbetween two objects. For this purpose, we recallin x 4.1 the intrinsic interest of variable propertysharing and in x 4.2 the problems it raises.4.1 Variable property sharing is usefulConsider some objects representing a person |say Joe | in a delegation-based system as shownin Fig. 1 (such an example is also consideredin [3, 9, 20]). Suppose we �rst want to con-sider Joe as a simple person, we create the ob-ject JoePerson with the variables address, age,name and phone, and a method growOld. Thenthe object JoeSportsman is created with the vari-ables stamina and weight as a child of JoePerson

in order to be able to deal with Joe as a sports-man. The delegation link from JoeSportsman toJoePerson ensures that all the properties of thelatter are shared by the two objects. Note thatrepresenting Joe by these two objects allows us todeal with:� Joe as a sportsman (whose properties areweight, stamina, address, age, name, phoneand growOld),� Joe as person (without the weight andstamina properties).
parent link

...

...

...

favActor

favFilm

favDirector

JoeFilmEnthusiast

...

...

stamina

weight

30

11-11-11-11

age

age := age + 1

8 Octave street

Johnname

phone

JoePerson

JoeSportsman

growOld

address

Figure 1: A representation of Joe split in threeobjects.We also keep the ability to create other chil-dren of JoePerson along other lines. We doit when creating the JoeFilmEnthusiast object,having JoePerson as parent, with the de�nitionsof the variables favouriteActor, favouriteFilmand favouriteDirector.Note that in this example we clearly want thethree objects to denote the same entity of the realworld, the real person Joe. Thus the addressvariable10 owned by JoePerson is also intendedto be the address variable of JoeSportsman andJoeFilmEnthusiast. For that reason, variableproperty sharing achieved by delegation is in thiscase welcomed because any message attempting toa�ect the address variable will result in the mod-i�cation of the address variable in the JoePersonobject and thus be e�ective for all the three objects.10The address variable is here considered as an example,we could have made the same remarks for any other variableowned by JoePerson.

parent link

...

22-22-22-22

adress Universal university

degree

phone

...

...

...

favActor

favMovie

favDirector

...

...

stamina

weight

30

11-11-11-11

age

age := age + 1

8 Octave street

name Joe

phone

JoePerson

JoeEmployee JoeFilmEnthusiast JoeSportsman

growOld

address

Figure 2: Another representation of Joe completedwith an employee aspect.Furthermore any property can be rede�ned in achild of JoePerson. For example, JoeEmployee iscreated as a new child of JoePerson, denoting Joeas an employee, in which a new degree variable isde�ned and the two variables address and phoneare rede�ned (see Fig. 2). As far as rede�ned prop-erties are not shared, Joe is represented as havingdi�erent address and phone number while he is athis work.There is no simple way to obtain an equivalentrepresentation in a class-based language since class-inheritance simply does not achieve variable prop-erty sharing.4.2 Variable property sharing raises theproblem of object identityWe recall here how variable property sharingbreaks the frontiers of objects and subsequentlybreaches encapsulation [27]. More generally weraise the issue of the interpretation of the delega-tion link.Consider another example in a delegation-basedsystem. A point at 5@10 is represented by an ob-ject Point1, and a turtle at 10@10 and headingto 90 by an object Turtle1 (see Fig. 3-a). Be-cause a turtle object is like a point object havingone more variable (heading) and two more meth-ods (rotate and forward), and more speci�callybecause Turtle1 has the same value (at least atcreation time) for the y variable and a di�erent

value for the x one as Point1, Turtle1 is made achild of Point1. If now Turtle1 is asked to move at10@14, its y value has to be changed. A value def-inition of y is not found in Turtle1 but in Point1where the modi�cation is performed (see Fig. 3-b).As delegation basically achieves property sharing,the parent link not only grants a read access butalso a write access for Turtle1 to the y variableowned by Point1.Consequently, if we only expect an object to bean entity which is able to receive messages, thenTurtle1 and Point1 can be considered as two dif-ferent objects but this become false as soon as wealso expect an object to be an independent indi-vidual entity.In most of the delegation-based languages, thereis no prerogative to create an object as a child ofanother. Full access to an object's properties canthen be gained in an unexpected manner by creat-ing a child of it. Either property sharing basicallyachieved by delegation should be restricted to valuesharing (see x 2 for de�nition), or a set of objectsconnected by delegation links have to be consid-ered as the parts of the representation of only oneglobal entity (as was done in our previous examplegiven in x 4.1). To choose between these two alter-natives amounts to choose between two di�erentbut founded use of delegation.5 A �rst semantics: individualobjects and default valuesA �rst sound semantics for delegation can be foundin some actors systems (e.g. Act1 [17]), frame-based ones (e.g. Y3 [10]) but also prototype-basedones (e.g. the KR language of Garnet [22]). Inthese systems, the properties of an object can notbe modi�ed by sending an a�ectation message toone of its descendants. An object has at least asmany properties as its parent, each of these prop-erties is identi�ed by the same name within thecontext of any of the two objects and has the same

default value11.
90heading

...

...

forward

rotate

Turtle1

10x

x

y

...

...

add

move

5

10

Point1

Figure 3-a: before the mod-i�cation of y.
90heading

...

...

forward

rotate

Turtle1

10x

x

...

...

add

move

5

Point1

y 14

Figure 3-b: after the mod-i�cation of y with propertysharing.
90heading

...

...

forward

rotate

x

y

...

...

add

move

5

10

Point1

Turtle1

10x

14y

parent link

Figure 3-c: after the modi�-cation of y with value shar-ing.Figure 3: Point1 and Turtle1 share the y variable.The modi�cation of y's value of Turtle1 leads tothe case of 3-b with property sharing and to thecase of 3-c with value sharing.Consider again our point-turtle example (seeFig 3-a). The reason why the Turtle1 object ismade a child of the Point1 object is clearly in thiscase the reuse of the de�nition of Point1's proper-ties. We do not want Point1's properties to be thevery properties of Turtle1, but rather Point1 toprovide default values for the Turtle1's variableswhich are not rede�ned. In order to ensure this any a�ectation message sent to Turtle1 should not11Lieberman also suggested objects as default behaviourand value repositories for their children in [18].

result in Point1's y value modi�cation as shownin Fig. 3-b but rather in the de�nition of the yvariable in Turtle1 as shown in Fig. 3-c. Such aninterpretation of variable a�ectation amounts to re-strict, by a separate mechanism, property sharing(basically achieved by delegation) to value sharing.Either this mechanism can test for the existenceof a de�nition in some ascendant for the variableto be a�ected before adding a new local de�nition(as in Y3 [10]. Or it can systematically considerthe a�ectation of a non locally de�ned variable asthe creation of a new initialized variable (as in KR[22]).Delegation links can in this case be intended as\is-like-a" links. Delegation then grants read accessto variables but no more write access to the par-ent properties. The frontiers between objects arethen clear: in our example Point1 and Turtle1are really two di�erent objects and can evolve ontheir own. The only way to modify the value of thePoint1's y variable is to explicitly send a messageto Point1. Although this will also modify the yvalue for Turtle1, this isn't unexpected since thisvalue is only intended to be a default one.6 A second semantics: view-points within an objectWe showed in the previous section that propertysharing is restricted to value sharing in some exist-ing systems in order to get rid o� the problem ofobject identity. But we also pointed out in x 4.1the usefulness of property sharing by producing anexample of the representation of a person Joe. Weintroduce in this section a second sound semanticswhich retains property sharing.Consider again the representation of Joewhich is split in four objects (see Fig. 2):JoePerson, JoeEmployee, JoeFilmEnthusiastand JoeSportsman. What does this mean exactly?According to Ferber, objects denoting the same en-tity (coreferent objects) denote viewpoints of thisentity [13]. It should be clear that JoePersondenotes Joe as a person, JoeSportsman Joe as a

sportsman, JoeFilmEnthusiast Joe as a �lm en-thusiast and JoeEmployee Joe as an employee.To split a representation in several objects in adelegation hierarchy is simply a natural way of rep-resenting viewpoints. As in a description hierarchy,the most general viewpoints are those denoted bythe objects near the top of the hierarchy whereasthe most speci�c viewpoints are those denoted bythe objects which are leaves of the hierarchy. In ourexample, person is a more general viewpoint on Joethan either employee, sportsman or �lm enthusiast.We however still face some problems because wecan not deal with the whole representation of Joe.We can not send messages to it but only to oneof the objects denoting a viewpoint of Joe. Weneither deal with the whole representation as astructure in order to duplicate it for example. Theproblem of object identity is still not resolved butwe now know that the frontier to be put on thesplit representation is one around it all, that isaround the four objects in our example. A solutionto these problems is to give the object status tothe whole representation and to remove that sta-tus from its four parts. Indeed, we can no moreconsider JoeEmployee (for example) as an objectbecause there would be a con
ict between its fron-tier and the one of the whole representation. Theinadequacy between the system and the real-worldshould be recovered: a one-to-one correspondencebetween objects in the system and entities of thereal world should be ensured. We de�ne split ob-jects for this purpose in the next section.7 Split objectsWe have shown in the previous section that dele-gation can be used to achieve a per-viewpoint rep-resentation of a single entity of the real world. Wealso pointed out that a solution to some problemsraised by these representations relies on a one-to-one correspondence between objects in the systemand entities of the world being represented. Wepropose in this section a model for split objects inwhich this correspondence is respected.

30

11-11-11-11

age

age := age + 1

8 Octave street

name Joe

phone

...

22-22-22-22

adress Universal university

degree

phone

...

...

...

favActor

favMovie

favDirector

...

...

stamina

weight

club

...

...

3 rackets

experimentedskillLevel

equipment

ranking

...

...papers

projects

...courses

planning ...

...team

skillLevel average

equipment borrowed

beginnerskillLevel

growOld

address

Person

Employee FilmEnthusiast Sportsman

Teacher Researcher TennisPlayer VolleyballPlayer Skier

Joe parent link

piece

Figure 4: A split object representing a person, each piece denotes a viewpoint on this person.7.1 A basic model for split objectsA split object is de�ned as a collection of pieces.The properties of a split object are stored into itspieces. Pieces are organized within an object ina delegation hierarchy (a property sharing one).A split object denotes a single entity of the realworld and its pieces denote viewpoints of this en-tity. Pieces do not have an object status,whereas split objects do. To illustrate what asplit object is, consider our new completed repre-sentation of Joe shown in Fig. 4. Joe is now repre-sented by a single split object Joe which containsnine pieces. Person, Employee, FilmEnthusiast,and Sportsman are no more objects but onlypieces of Joe. We detail below the basic fea-tures that an object-centered language with cloningshould include to provide for split objects. Thereader is also referred to [3] for a more completedescription of this model and to [20] for a denota-tional semantics of a similar one.

Naming and accessingAs far as split objects are �rst class entities, theyare directly accessible. This is not the case ofpieces, which can only be accessed through the en-compassing split object by specifying a piece name.CreationSplit objects are created by cloning. A special caseof creation is creation ex-nihilo: it is achieved by�rst cloning the empty split object (a prede�nedobject of the language having no pieces) and thenperforming as many piece additions as required.CloningCloning a split object results in a new split ob-ject, initially composed of the same set of piecesholding the same properties. Cloning a split objectthus consists in deep copying the pieces hierarchyin which each piece is shallow copied.Modi�cationSplit objects can be modi�ed on a per piece basis.

One can add to, delete from or modify a piece of asplit object.� Adding a piece is performed by creating a newempty piece as a child of an existing one. Iden-ti�ers of both the existing and the new piecesshould be speci�ed.� Piece deletion also implies the deletion of allthe descendant pieces in the hierarchy: recallthat a piece denotes a viewpoint and descen-dant pieces denote more speci�c viewpoints. IfJoe is no more a sportsman, it is clear that hecan no more be a skier, a volleyball player ora tennis player.� Piece modi�cation consists in either adding aproperty, deleting a property, setting a newvalue to a variable, or changing the body of amethod stored in a piece of the split object.Basic message sendingA split object's property values are accessed bymessage sending. Since methods and variables areowned by the pieces and since pieces denote view-points, messages are sent on a per viewpoint ba-sis. When a message is sent to an object, a view-point must be speci�ed by giving the identi�er ofthe piece denoting it. A lookup is then performed,starting at this piece and eventually continued inits ascendant pieces, in order to compute and re-turn the reply. Message sending can be extended tosupport messages sent to an object without speci-fying any viewpoint. This will be further discussedin x 7.2.Pseudo-variablesAs in all object-oriented languages, a pseudo-variable self is bound, during a method's activa-tion, to the current receiver, i.e. in our case a splitobject. For the particular case where one wantsto send a message to self from the same viewpointas the message currently being evaluated, a sec-ond pseudo-variable thisViewpoint is also provided.During the evaluation of a message, thisViewpointis bound to the name of the piece denoting the cur-rent viewpoint.

Structure coherence controlsAt modi�cation time, it is possible to check thatthe tree structure of the piece graph of a split objectis preserved.7.2 Extending message sending to ad-dress more viewpointsWe have presented in previous subsection a basicmodel in which the user can deal with each of theviewpoints denoted by a piece in a split object.An interesting issue is now to know whether thereare only as many denoted viewpoints as there arepieces in a split object. We show in this section thatthere are more viewpoints than pieces. We givesome clues on how messages can be sent from allthese viewpoints, including a particular one whichcan be thought of as the \reunion" of all the others.The split object Joe (see Fig. 4) is a collection ofnine pieces and each of them denotes a viewpointon Joe. Joe thus denotes at least nine viewpoints.We are able to deal with any of these nine view-points by sending messages. We can for exampleask Joe as a researcher which are the papers he haswritten by sending a message to Joe, indicating theResearcher piece and the selector papers. Buthow can we get this information if we do not knowthat the papers variable of Joe is stored in theResearcher piece? Shouldn't we be able to dealwith Joe as a whole, the global viewpoint on Joefrom which any of the properties de�ned in Joe'spieces can be a priori accessed? We would like toanswer yes to this question but there is no piecewhich denotes Joe as a whole: the global viewpointis only implicitly denoted in Joe, and messages cannot a priori be sent from it.If we allow pieces to have more than one parent, ana��ve solution to this problem would be to create apiece to denote Joe as a whole. This piece could bean empty one made the child of each of the leavesof the hierarchy in order to gain access to any ofthe properties de�ned for Joe. But this solution isonly applicable in a system providing for multipledelegation.However, a key remark is that Joe as a whole

can be considered as the composition of otherviewpoints of Joe, denoted by pieces of di�erentbranches of the sharing hierarchy. We can also con-sider that all possible combinations of such piecesdenote interesting implicit viewpoints on the en-tity denoted by a split object. For example, wecould want to deal with the teacher-and-researcherviewpoint on Joe (denoted by the combination ofthe Teacher and Researcher pieces). But we alsoneed to consider all possible compositions of view-points, since even a combination of some pieces ofthe same branch does not denote the same view-point as the one denoted by the more speci�c ofthese pieces. Just consider for example the person-and-employee viewpoint (denoted by the combina-tion of the Person and Employee pieces): it is notthe same viewpoint as the employee one becauseasking the address of Joe as an employee is an un-ambiguous question whereas asking the address ofJoe as a person-and-employee is ambiguous.When counting the viewpoints (implicitly or ex-plicitly) denoted in a split object, one must thuscount as many as there are non empty subsets inthe whole set of pieces. In our example, Joe has 9pieces and denotes 29 � 1, that is 511, viewpointson Joe. We conclude that creating an empty pieceto explicitly denote each viewpoint implicitly de-noted is not a practically applicable solution withrespect to the memory consumption.Message sending can be extended to supportmessages along any of the viewpoints denoted ina split object. Implicitly denoted viewpoints canbe speci�ed by a list of piece identi�ers. It is alsopossible to systematically consider a message sentwith no viewpoint speci�cation as a message sentfrom the global viewpoint. Properties of a splitobject can then be activated without knowing inwhich pieces they are stored and full support forencapsulation is thus provided.As there can be ambiguous messages, a lookupstrategy should be chosen, which at least detectsambiguities. It seems reasonable to expect also thisstrategy to not perform any lookup in pieces whichare not related (either ascendant or descendant of)the pieces speci�ed as a viewpoint. We have pro-

posed such a strategy in [3] which ensures an uni-formly de�ned semantics of messages sent to eitherexplicitly or implicitly denoted viewpoints.8 Viewpoints in other systemsOur primary goal in this work was not to designa new model for viewpoints but rather to fullyunderstand delegation and its semantics. Thenotion of viewpoints nevertheless came naturallyout when we thought about split representations.Many other works have been done around thisnotion in the object-oriented �eld of research. Wediscuss them in a short comparison with our splitobjects.The notion of perspectives appears in Loops [4,5]. Perspectives, which are rei�ed by independentobjects with separate name spaces, are clusteredinto some special composite objects and are inter-preted as di�erent views on the same conceptualentity. Each perspective on an entity can be ac-cessed from any other perspective on the same en-tity.Ferber developed a theory of viewpoints basedon the coreferentiality [12, 13], where viewpointsof an entity are represented by coreferent objects.Translation operations and coreference rules be-tween coreferent objects can be de�ned to ensurethe coherence of the whole representation of theapplication domain.The main di�erences between these two ap-proaches split objects lies in the fact that view-points on a split object are not rei�ed. Viewpointsare also clustered as in Loops, but they are not in-dependent. Some kind of coherence between view-points is also ensured by the sharing relation be-tween pieces.ROME [7, 8] emphasizes fragmentation of thede�nition of properties in a inheritance hierarchy(principle of multiple and evolving representationof objects). Viewpoints (denoted by classes) arealso organized in a generalization/specializationhierarchy in which lookup can be restricted tosome classes during the evaluation of as-expression

messages. In this respect, the functionalities ofsplit objects with extended message sending arevery similar to those of ROME.The viewpoint notion can also cover viewpointson the entire application domain, rather thansolely viewpoints on individual entities. Indeed, inTropes [21, 24] a viewpoint corresponds to a wholehierarchy of classes. Such hierarchies, the root ofwhich are called concepts are used for classi�cationpurposes: an object is the instance of only one con-cept, which totally describes its attributes names,but can be classi�ed within a viewpoint in the con-cept's subclasses, which specialize descriptions ofinstances in term of attribute values.Harrison and Ossher proposed a model of sub-jects [14], where a subject also speci�es a wholehierarchy of classes. A subject merely correspondsto the view of the world one can have from thecontext of a particular application. Subjects canbe activated (eventually more than once) in orderto associate some data and behaviour to any of theobject identities of the system. An object identitycan be associated to di�erent data and behaviourby di�erent subject activations. Subjects can alsobe composed together, in which case a composi-tion rule then de�nes how they cooperate in re-spect with various topics including message send-ing, coherence of representations, object creations,etc. (see [23] for two possible composition rules).It is possible to compare split objects and ex-tended message sending with subjects, because forexample viewpoints can be composed in the twomodels. Semantics of viewpoints composition arenot determined by the same factors: this issue doesnot rely in our model on some composition rule butrather on the lookup strategy chosen for implicitlydenoted viewpoints and the property sharing rela-tion imposed on the pieces of a split object.Viewpoints can be considered in object-orientedapplication design techniques. Role modeling [2]emphasizes separation of concern between di�er-ent aspects at possibly di�erent level of details inthe design of more or less independent applications.A role model is a behaviour description of two or

more entities termed roles. Roles describe the re-quirements that objects have to satisfy in order toachieve the behaviour described by the role model.An important operation on role models is synthesiswhere some roles are sometimes projected togetherinto a new aggregated role to obtain a new rolemodel.Considering that requirements of a role canbe clustered into a piece, and that projection ofroles can then be thought of adding pieces to asplit objects, our model may perhaps be a well-adapted tool for the implementation of role models.Finally, Us [25] also uses delegation to expressperspectives. De�nitions of objects in Us are donethrough layers: each layer contains exactly onepiece (eventually an empty one) of each object. Ob-jects can inherit from each other by delegation, andso do layers in a separate but orthogonal delega-tion hierarchy. A layer considered together with itschain of layer parents is a perspective from whichmessages can be sent to objects. The receiver-perspective symmetry principle governs evaluationof messages: layer parent links and object parentlinks have the same semantics.The symmetry principle is quite well respected,but is weakened by the lookup algorithm whichcomposes the layer parent hierarchy �rst. Thisis the main di�erence with our model in which asplit object must �rst be considered before view-points (our viewpoints are also viewpoints on ob-jects rather than viewpoints on the whole system).There are nevertheless strong similarities betweensplit objects and Us: the notion of piece, the useof delegation and the generalization/specializationrelation between perspectives.9 Conclusion and future worksIn this paper we have introduced a formalism inwhich we de�ned the notions of name sharing ,property sharing and value sharing . This allowedus to precisely qualify the kind of sharing achievedin class-based systems as variable name sharingand method property sharing , and the one achieved

by delegation as property sharing .We have then shown how property sharing canbe used to obtain per viewpoint representations ofobjects but also explained that a secure use of del-egation relies on a correct semantics of delegationlinks. As a �rst sound semantics we highlightedthe restriction property sharing to value sharingdone in some existing systems, using delegationto achieve default life-time value sharing betweenindependent objects. As a second semanticallyfounded use of delegation, we proposed a newmodel of split objects in which property sharingno more occurs between objects but rather be-tween one object's viewpoints. We have �nallybrie
y compared the split object model with othersystems providing viewpoints.We discussed how split objects can be manipu-lated in a class-less language, creation of new ob-jects is basically achieved by cloning. We how-ever believe that there exists a corresponding class-based model: one can think of classes in which thedeclaration of variables and the de�nition of meth-ods are partitioned along a set of piece names. In-deed, delegation occurs between pieces within splitobjects and we did not put any requirements ei-ther on inheritance between split objects, or on theorganization of their world. We currently are in-vestigating what are the pros and cons of choosingbetween a class-based system or an object-centeredone to implement split objects. Topics pertinent tothis choice are including:� the possible solutions for factorization of com-mon properties: code reuse can be achieved byclass-inheritance in class-based systems, butit remains a problem in prototype-based lan-guages [3, 9];� the way viewpoints are expressed in split ob-jects, whether piece names of an object are de-�ned at the class-level or directly at the object-level;� creation and dynamic modi�cation of split ob-jects.

Another important issue to be discussed is en-capsulation. As far as it is possible to put fron-tiers between split objects, some support for en-capsulation is provided by our model, but we donot give details on how encapsulation can actuallybeen achieved. Moreover there may be two levelsof encapsulation: encapsulation of properties (the\classical one") and encapsulation of pieces.AcknowledgementsThis work began in collaboration with JacquesMalenfant, we would like to thank him for his nu-merous and relevant comments. We also would liketo thank Bernard Carr�e, Roland Ducournau andGilles Vanwormhoudt for many fruitful discussionson viewpoints and delegation. Thanks to AllisterCockburn for his help in �nalizing this paper.References[1] O. Agesen, L. Bak, C. Chambers, B.-W. Chang, U. H�olzle, J. Maloney, R.B. Smith,D. Ungar, and M. Wolczko. The Self 4.0 Pro-grammer's Reference Manual. Sun Microsys-tems Inc, Stanford University, 1995.[2] E.P. Andersen and T. Reenskaug. System De-sign by Composing Structures of InteractingObjects. In Proceedings of the 6th EuropeanConference on Object-Oriented Programming(ECOOP '92), Utrecht NL, Lecture Notes inComputer Science 707 , pp. 133{152, 1992.[3] D. Bardou and C. Dony. Propositions pour unnouveau mod�ele d'objets dans les langages �aprototypes. In Actes de LMO '95 (Langageset Mod�eles �a Objets), Nancy, France, pp. 93{109, 1995.[4] D.G. Bobrow, M. Ste�k. The LOOPS Man-ual . Memo KB-VLSI-81-13, Xerox Palo AltoResearch Center, 1983.[5] D.G. Bobrow and M. Ste�k. Object-OrientedProgramming: Themes and Variations. In TheAI Magazine (6)4 , pp. 40{62, American Asso-ciation for Arti�cial Intelligence, 1986.[6] L. Cardelli and P. Wegner. On UnderstandingTypes, Data Abstraction, and Polymorphism.

In ACM Computing Surveys (17)5 , pp. 472{522, 1985.[7] B. Carr�e. The Point of View Notion for Mul-tiple Inheritance. In Proceedings of the OOP-SLA/ECOOP Conference, Ottawa, Canada,ACM SIGPLAN Notices (25)10 , pp. 312{321,1990.[8] B. Carr�e, L. Dekker and J.M. Geib Multipleand Evolutive Representation in the ROMELanguage. In Proceedings of TOOLS2, Paris,pp. 101{109, 1990.[9] C. Dony, J. Malenfant, and P. Cointe.Prototype-Based Languages : From a NewTaxonomy to Constructive Proposals andTheir Validation. In Proceedings of the 7thConference on Object-Oriented ProgrammingSystems, Languages and Applications (OOP-SLA '92), Vancouver, British Columbia, ACMSIGPLAN Notices (27)10 , pp. 201{217, 1992.[10] R. Ducournau. Y3/YAFOOL : Le langage �aobjets. Sema Group 1989.[11] R. Ducournau, M. Habib, M. Huchard, M.-L. Mugnier, and A. Napoli. Le point surl'h�eritage multiple. In Techniques et sciencesinformatiques (14)3 , pp. 309{345, 1995.[12] J. Ferber and P. Volle. Using Coreference inObject Oriented Representations. In Proceed-ings of the 8th European Conference on Arti-�cial Intelligence, pp. 238{240, 1988.[13] J. Ferber. Objets et agents : une �etude desstructures de repr�esentation et de commu-nications en Intelligence Arti�cielle. Th�esed'informatique, Universit�e Pierre et MarieCurie, Paris 6, 1989.[14] W. Harrison and H. Ossher. Subject-OrientedProgramming (A Critique of Pure Objects). InProceedings of the 8th Conference on Object-Oriented Programming Systems, Languagesand Applications (OOPSLA '93), Washing-ton, DC, USA, ACM SIGPLAN Notices(28)10 , pp. 411{428, 1993.[15] W.R. LaLonde, D. Thomas, and J.R. Pugh.An Exemplar Based Smalltalk. In Proceed-ings of the 1st Conference on Object-OrientedProgramming Systems, Languages and Appli-cations (OOPSLA '86), Portland, Orergon,

ACM Sigplan Notices (21)11 , pp. 322{330,1986.[16] W.R. LaLonde. Designing Families of DataTypes Using Exemplars. In ACM TOPLAS(11)2 , pp. 212{248, 1989.[17] H. Lieberman. A preview of Act1 . AI memoNo 625, Massachusetts Institute of Technol-ogy, 1981.[18] H. Lieberman. Using Prototypical Objectsto Implement Shared Behavior in Object Ori-ented Systems. In Proceedings of the 1st Con-ference on Object-Oriented Programming Sys-tems, Languages and Applications (OOPSLA'86), Portland, Oregon, ACM SIGPLAN No-tices, (21)11 , pp. 214{223, 1986.[19] J. Malenfant. On the Semantic Diversityof Delegation-Based Programming Languages.In Proceedings of 10th Conference on Object-Oriented Programming Systems, Languagesand Applications (OOPSLA '95), Austin,TX, USA, ACM SIGPLAN Notices (30)10 ,pp. 215{230, 1995.[20] J. Malenfant. Split Objects: TamingValue Sharing in Object-Oriented Languages.Rapport de recherche IRO-968, D�eparte-ment d'Informatique et de Recherche Op�era-tionnelle, Universit�e de Montr�eal, 1995.[21] O. Mari~no. TROPES . Th�ese d'informatique,Universit�e Joseph Fourier, Grenoble 1, 1993.[22] B.A. Myers, D. Giuse, R.B. Dannenberg,B. Vander Zanden, D. Kosbie, E. Pervin,A. Mickish and P. Marchal. Garnet: Com-prehensive Support for Graphical, Highly-Interactive User Interfaces. In IEEE Com-puter, 23(11), pp. 71-85, 1990.[23] H. Ossher, M. Kaplan, W. Harrison, A. Katzand V. Kruskal. Subject-Oriented Composi-tion Rules. In Proceedings of the 10th Con-ference on Object-Oriented Programming Sys-tems, Languages and Applications (OOPSLA'95), Austin, TX, USA, ACM SIGPLAN No-tices (30)10 , pp. 235{250, 1995.[24] F. Rechenmann, O. Mario and P. Uvi-etta. Multiples Perspectives and Classi�ca-tion mechanism in Object Representation. InProceedings of the 10th European Conference

on Arti�cial Intelligence, Stockholm, pp. 425{430, 1990.[25] R.B. Smith and D. Ungar. A Simple and Uni-fying Approach to Subjective Objects. To ap-pear in TAPOS special issue on Subjectivity inObject-Oriented Systems (2)3 , 1996.[26] L.A. Stein, H. Lieberman, and D. Ungar. AShared View of Sharing : The Treaty of Or-lando. In Object-Oriented Concepts, Appli-cations and Databases, W. Kim and F. Lo-chovosky eds., Addison-Wesley , 1988.[27] P. Steyaert. and W. De Meuter. A Marriage ofClass- and Object-Based Inheritance WithoutUnwanted Children. In Proceedings of the 9thEuropean Conference on Object-Oriented Pro-gramming (ECOOP '95), Aarhus, Denmark,W. Oltho� ed., LNCS 952, Springer-Verlag ,pp. 127{144, 1995.[28] A. Taivalsaari. A Critical View of Inheritanceand Reusability in Object-Oriented Program-ming . Th�ese d'informatique, Universit�e deJyv�askyl�a, No 23, Finlande, 1993.[29] D. Ungar and R.B. Smith. Self : The Powerof Simplicity. In Proceedings of 2nd Con-ference on Object-Oriented Programming Sys-tems, Languages and Applications (OOPSLA'87), Orlando, FL, ACM SIGPLAN Notices(22)12 , pp. 227{242, 1987.[30] P. Wegner. Dimensions of Object-OrientedLanguage Design. In Proceedings of 2nd Con-ference on Object-Oriented Programming Sys-tems, Languages and Applications (OOPSLA'87), Orlando, FL, ACM SIGPLAN Notices(22)12 , pp. 168{182, 1987.

