

1

Prototalk : A framework for the design and operational evaluation of
prototype-based languages

Christophe Dony,
LIRMM – Montpellier-II University

<Abstract
The paper presents a Smalltalk-80 framework dedicated to an operational simulation and evaluation of
prototype-based languages. Its principle could be applied to the comparison of any set of similar languages. The
ability to reuse code is widely used and the framework architecture makes it possible to implement very easily
an object model and an evaluator for a new language by deriving and extending classes representing other
similar languages.
Prototype-based languages are currently proposed as a substitute to class-based languages for a higher flexibility
in manipulating objects. These languages all revolve around the same basic ideas : object-centered
representation, dynamic addition of behavior and slots, cloning operations and a message delegation mechanism.
As for any emerging technology, existing languages propose variations on the main concepts. Our framework
includes a taxonomy of interpreters for the widely known prototype-based languages. Basic classes implement
some “minimal” kernel languages and alternative models such as Self, Act1, ObjectLisp and Actra’s examplars
are derived from them

1. Introduction

The prototalk platform described in this paper is a Smalltalk-80 framework the
general goal of which is to explore the semantics of alternative implementations of
the main concepts involved in prototype-based programming. This is a part of a
research effort to understand the primitive concepts involved in the design of
prototype-based languages, to explore alternatives in their implementation, and to
classify prototype-based programming languages on the basis of their respective
properties. The analysis made with this platform is presented in [DMC92] but the
description of the framework itself has never been published. The platform’s goal is
neither to fully implement all prototype-based languages, nor to provide efficient
implementations of them, but rather to experiment, to focus on determining aspects
and to forget incidental ones.

The platform fully exploits the reuse capabilities offered by object-oriented
inclusion polymorphism. It is a framework because it offers an architecture to easily
implement new languages. Its principle could be applied to the implementation of
any kind of languages.

A language is globally represented in the platform by three classes: a first one
defining and implementing its object model, a second one implementing an evaluator
and a third one allowing to create a workspace in which a toplevel allows expressions
of the langage to be entered and evaluated. To implement a new langage consists in

2

subclassing those classes that represents the closest language already implemented.

The next section briefly recall what is proototype-based programming. Section 4
describes the implementation and use of one basic prototype-bases language. Section
ICI presents the global architecture of the framework. Section ICI shows how a new
langage can be implemented using the framework.

2. Prototype-based programming

Prototype-based languages propose a new programming paradigm that is justified in
two fundamental ways compared to more classical class-based languages. First, on
the philosophical side, people's natural way to grasp new concepts is generally to
begin by creating concrete examples of these concepts rather than abstract
descriptions; class-based languages force to work in the opposite direction by
creating abstractions (classes) prior concrete objects (instances). Second, on the more
pragmatical side, class-based languages seem to unnecessarily constrain objects, by
disallowing to have distinctive behavior for individual objects among instances of a
class, and by forbidding inheritance between objects, to share values of instance
variables.

Two fundamental concepts found the prototype approach: autonomous
representation of individual objects and sharing (or reuse) between similar
individuals based on prototypical examples of concepts. At first, a prototype seems to
be some elected object, yet any object can be a prototype [KhAb90, p. 128], and be
considered as an example of its own particular concept. Also, autonomy of objects is
very important. Prototypes are not meant to be descriptions of concepts, as classes
are, and they are not linked in any way to another object that would describe them, as
in the class-based approach. Prototypes are concrete examples that represent
concepts, and any reference to a concept must first be rephrased in terms of its
concrete example, as pointed out by Lieberman [Lieb86]:

"If Clyde was the elephant most familiar to you, the prototypical elephant might be an image of Clyde himself.
If I ask a question such as "How many legs does an elephant have?", a way to answer the question is to assume
that the answer is the same as how many legs Clyde has, unless there is a good reason to think otherwise."

1.2. Motivation

Compared to the class-instance approach, prototype-based languages seems to
provide a simpler and more flexible programming model, and this flexibility is
actually appreciated in applications like user interfaces [MGDV90] as well as virtual
reality systems [Born81, Smit86]. Many languages using prototypes have been
proposed since a few years. Borning derived a small prototype-based language to
compare them to classes [Born86]. Lieberman [Lieb86] gave an informal description
of its Delegation system, from which he argued that prototypes are strictly more
powerful than classes. Self [UnSm87] is a pure prototype-based language efficiently

3

implemented [ChUL89, HoCU91, ChUn91] and openly distributed [HCCU90].
Systems mixing prototypes and classes have also been proposed: Lalonde's
Examplars [LaTP86, Lalo89] and Stein's Hybrid language [Stei87, Stei89].

However, the simplicity of prototypes is only apparent. Behind a common
terminology, many different interpretations of the primitive concepts exist. The
current languages all revolve around the same few implementation mechanisms:
objects blending behavior and state, dynamic addition of new behavior or state to
objects, cloning of existing objects, and delegation. But, concrete implementations of
these mechanisms differ in many ways, and this situation makes the understanding
of the prototype-based approach quite difficult. Furthermore, current prototype-based
languages are either described in an informal way [Lieb86], leaving many crucial
implementation issues unresolved1, or tied to their operational semantics in such a
way that one can hardly understand their behavior without having an intimate
understanding of all aspects of their implementation2 [UnSm87].

The large spectrum of variations in the definition of its fundamental concepts plays
a large role in the problem we face when trying to understand the prototype �based
approach. Cloning, for example, can be interpreted as shallow copy, deep copy, or a
mix of both; it is quite clear that the resulting objects will not have the same
properties. Delegation, as sharing mechanism, also has many alternatives for its
implementation. How do object identify the prototypes they will delegate to? Should
delegation be implicit (done automatically by the evaluator) or explicit (done by the
object)? Answers to these questions can have important effects on the properties of
resulting programming model. Its is our conviction that to achieve the goals of
getting a full understanding of prototypes, to compare and assess alternatives, we
must also consider the implementation mechanisms, since they have a profound
impact on the properties of the resulting model. This is the main motivation of this
paper.

1.3. A Smalltalk-80 framework for rapid implementation of prototype-based languages.

Thus, facing such fragmented and divergent approaches, a clear definition of the
prototype-based model is definitely needed. The Treaty of Orlando [StLU88] has
given a classification of class-based and prototype-based models. However, the
Treaty of Orlando do not consider the influence of many crucial implementation
choices. In this paper, we propose another way to clarify semantic issues and to
obtain a good understanding of these multiple approaches: to implement them within

1such as the treatment of the pseudo-variable self in delegation, the choice between implicit and explicit delegation, as well as its
implementation.
2In Self, its is almost impossible to predict the behavior of an object without knowing the entire subgraph of its parent objects as
well as the exact implementation of the lookup algorithm, in particular if features like multiple parents and dynamic inheritance are
used [ICI].

4

a common framework, in order to compare, and to show relationships between them.
Therefore, we have implemented a Smalltalk-803 platform to achieve this goal.

Exemple of a language

In order to make the framework’s architecture understandable, this section
superficially describes the implementation of one very simple language; since it does
not correspond to any known langugage, we simply named it L1. With such a
language, users can define new empty objects or clone existing ones, add them
variables and methods, send them messages to execute either user-defined methods
or langage primitives. Variables can be accessed inside methods. All Smalltalk
litteral object (numbers, characters, etc) as well as a predefined prototype, named
Root, are available. The syntaxic constructs are variable reference, assignment and
message sending. The syntax is Smalltalk’s one.

Although very poor, this language is usable; the following figure ICI shows an
example of a session. The figure ICI shows a snapshot of a L1 workspace in our
platform. The prototype O1 is created by sending the message newEmpty to Root .
The Root prototype is created at bootstrap in order to allow users to start working.
Two methods: x, y, foo and bar are defined on O1. The pseudo-variable self usually
represents in each method the current receiver.

Overview of a language implementation

The set of classes involved in the implementation of L1 are summarized in figure
ICI.

3Smalltalk-80 is prefered to existing prototype-based languages, because none of the latters provide a similar programming
environment.

5

L1OM

 iv: variables methods

 methods: newEmpty clone addMethod: ...

PBLanguage

 iv: objectmodel globalVarDictionary nodeBuilder

 methods: run

ProgramNodeBuilder

 methods: "to indicate which node to craeate"

PrototypeProgramNodeBuilder

 methods: "to indicate which node to craeate"

EncapsulationProgramNodeBuilder

 methods: "to indicate which node to craeate"

ProgramNode

VariableNode

 methods: eval:

MessageNode

 methods: eval:

EncapsulationVariableNode

 methods: eval:

EncapsulationAssignmentNode

 methods: eval:

AssignmentNode

 methods: eval:

First, each langage is represented by an instance of a class named PBLanguage

(which stands for “prototype-based language”) which owns the following instance
variables: objectModel, globalVarDictionary and nodeBuilder.
• objectModel is a pointer to the class defining the object model.
• GlobalVarDictionary is a dictionarry containing global variables used within a

sessionwith the language. When a session begins, this dictionary contains at least
one variable named Root referencing a predefined object, which is an instance of
the class stored in the variable objectModel. This dictionary can be compared to
the Smalltalk-80 global dictionaty containg associations between classes names
and classes objects and other global entities. Concerning prototype-based
languages, there are no classes and the first objects will be created by the
programmer by cloning or extending the Root object.

• nodeBuilder is a kind ofProgramNodeBuilder used to parse user-defined
methods of the prototype-based languages.

Object Model

The object model not only determines the structure of prototypes but also the set of
primitives available to users to manipulate them. For examples, prototypes in L1
have variables and methods; empty or initialized prototypes can be created with the
primitives newEmpty and newInitial:; variable and methods can be added (primitive
addMethod: and addVariable:). The object model of the language L1 is defined by
the class L1ObjectModel.which defines two instance variables named variables and
methods. A prototype in L1 is implemented as an instance of L1ObjectModel. Its two
instance variables (as a Smalltalk object) are initalized with Smalltalk dictionaries to
hold its variables and methods (as a prototype). The class L1ObjectModel also
defines two sets of methods.
• The first one is the set of L1 language primitives, for example newEmpty, clone,

addmethod: or addVar:value:. These primitives, when encountered in a L1

6

program will of course be computed by the Smalltalk interpreter4. To make these
primitives available to users, they are inserted in the method dictionary of the
Root object of each language.

• The second one is the set of methods used in the evaluation process such as
varValue: which returns the value of a variable of a prototype.

 2.1.1 Internal representation of user-defined methods.

The L1 methods foo and bar (see figure ICI) internal representation are syntax trees
generated by the Smalltalk-80 Parser5. Such trees are first-class entities; their nodes
being instances of subclasses of the class ProgramNode. For example, an instance of
the class MessageNode is created when the parser finds a message sending
instruction. Furthermore, the evaluation of variables read and write access in L1 is
different from the standard, thus specific nodes classes (EncapsulationVariableNode
and EncapsulationAssignmentNodes) have been created with specific evaluation
methods. Which kind of nodes are generated for each kind of instruction of a
language is determined by an object, a kind of ProgramNodeBuilder, passed as an an
argument to the parser. To each class representing a language in our platform is thus
associated a program node builder. To L1 is associated an instance of
EncapsulationProgramNodeBuilder, a subclass6 of PrototypeProgramNodeBuilder.
The figure 2 shows the internal representation of the above method foo.

a Collection

 1:

a MethodNode

selector: foo

block:
a SequenceNode

temporaries: nil

statements

a MessageNode

receiver:

selector: +

arguments:

a VariableNode

name: x

an Array

1:

a MessageNode

receiver:

selector: bar

arguments: nil

a VariableNode

name: self

a BlockNode

arguments: nil

body:

Figure 2: internal representation of the method: bar

2.1.2 An insights into the evaluator.

Each evaluator in the platform is a set of eval: methods, defined on subclasses of
programNode7, each one being tailored to the interpretation of a particular syntactic
construct of the language. An evaluator is thus splitted as in [Lieb87] in several
methods. Advantages of this object-oriented representation are (1) that different
evaluators for different languages can share some eval: methods, for example the

4This makes no problem since there is a one to one correspondence between a prototype and the Smalltalk object that implements it.
5To be able to reuse the Smalltalk parser, we chose to use a Smalltalk-like syntax for all our prototype-based languages.
6As far as the syntaxic constructts of VM-PBL are similar to Smalltalk’s one, this first subclass of ProgramNodeBuiulder does not
redefine any method but is designed as an autonomous root of the subhierarchy of future program node builders dedicated to other
prototype-based languages.
7Except for the classes MethodNode and BlockNode which have an apply method instead.

7

eval: method on the class literalNode will be shared by all evaluators, and (2) that it
is possible to specialize each part of an evaluator independently of the others. Aside
from this, the evaluation process is very classical; as an example, let us simply
describe the eval: message sending method, used for L1 and defined on the class
MessageNode, in order to compare it with a further version that will implement
implicit delegation.

eval8: context “defined on the class MessageNode”
 | method rec args newContext | “ temporaries”
1 rec := receiver eval: context. “ receiver is evaluated”
2 method := rec methodNamed: selector. “ searches the method in the receiver”
3 if method equals nil
4 then the exception doesNotUnderstand is raised
5 else args := arguments evlis: context. “ the arguments are evaluated”
6 if the method is a smalltalk compiled method
7 then this is a message to a litteral or a primitive9
8 return the result of applying the smalltalk method to its arguments
9 else “ this is a user-defined method”
10 newContext := PContext new. “I create a new context”
11 newContext at: #self put: rec. “In which self is the new receiver”
12 return (method applyWith: args in: newContext)

methodNamed: name “defined on the class L1”
 I return: (methods at: name ifAbsent: [nil])

Figure 3: evaluation of message sending for the L1 language.
The syntax is a mix of Smalltalk’s messages sending, assignmentsand pseudo-code.To evaluate a
message sending instruction in basic-proto (fig. 3) amounts to search a method in the receiver and to
apply it. When the method to be applied has been found, a new context is created in which “self” is
bound to the new receiver. The method methodNamed:, defined on L1, is responsible for finding
methods in objects.

Interface

Framework architecture

The framework is organized around three main classes hierarchies: the hierarchy of
object models classes, the hierarchy of program node builders classes and the
hierarchy of program nodes classes holding the evaluators. To implement an
interpreter for a new language amount creates an instance of PBLanguage and to
initialize its instance variables with an instance of an object model class and an
instance of a program node builder class. It is possible to choose either existing
classes or to insert at the right places new classes in those three hierarchies. As usual
with frameworks, the hardest task is certainly to choose this right place, which
requires a good understanding of the whole platform.

Different existing (self, ObjectLisp, Exemplars) or “imaginary” languages are
already simulates in the platform. We now describe the hierarchy architecture and

8All methods eval: have an argument which holds the lexical context in which the related instruction has to be evaluated. This
lexical context is a dictionary including the arguments, the temporaries and the current value of “self”.
9In order to make our platform usable rapidly, we have included the possibility to send Smalltalk messages in our methods. For
example in the method bar, the message + is send to the result of “self x”.

8

give examples of how a new langage can be implemented.

Basic hierarchies
The above part of hierarchies is of great importance, the top classes have to be as

general (abstract) as possible in order to allow any level of specialisation.

Object models hierarchy.

AbstractProto

 methods: "basic stuffs"

VMProto

 iv: variables methods

 methods: newInitials clone ...

Sproto

 iv: slots

 methods: newInitials clone: ...

DelegatingProto

 iv: parent

 methods: son clone

: subclass

VMModifiable

 methods: newEmpty addMethod: addVar:value: ...
SModifiable

 methods: newEmpty addSlot: ...

VMAndDelegation SMAndDelegation

SelfLike

VMAndDelegation SAndDelegation

ObjectLispLike
Fig. x12: A subpart of object models hierarchy

A subpart of the hierarchy is shown in figure x12. The top of the hierarchy is made
of a set of abstract or very specific classes implementing various basic options.The
hierarchy’s root class (AbstractProto) is an abstract class that do not represent a
concrete strucure for prototypes but defines and factorizes method allowing to
manipulate prototypes independantly of their structure. Of course most of these
methods use other deffered (or “subclass-responsibility” ones.VMProto represents
prototypes in languages that handles variables and methods differently as ObjectLisp
[ICI] or Exemplar; for prototypes corresponding to that model, variable and methods
can only be defined at prototypes creation time (method newInitials:). Sproto is for
those prototypes that unify variables and methods under the notion of slots as in Self,
at the implementation level in our platform prototypes only have a slot dictionary and
creation primitive newInitials does a different job. DelegatingProto adds a parent to
the prototypes to allow differential creation (method son) and delegation.

Program node builders and program nodes hierarchies

Each new evaluator is inheriting its implementation from a previous one, except for
those constructions that are given a different semantics in the new language, thus
needing their eval method to be redefined. The hard task when implementing a new
evaluator is therefore to find where it should be inserted in the hierarchy.

9

PrototypeProgramNodeBuilder

ImplicitDelegationPNB ExplicitDelegationPNB

EncapsulationPNBdelegationPNB

SelfLikePNB

ObjectLispLikePNB

ProgramNodeBuilder

IDE-PNB EDE-PNB

Figure x13: a subpart of the programNodeBuilder hierarchy

ProgramNode

ImplicitDelegationMN ExplicitDelegationMN

MessageNode VariableNode

EncapsulationVariableNodeSelfLikeVariableNodeObjectlispLikeMN

superMessageNode DelegationMessageNode

AssignmentNode

EncapsulationAssignmentNode

Figure x14: a subpart of the program nodes hierarchy

From an implementation point of view, cloning and delegation have distinct
natures. Cloning is performed via message sending and simply requires the definition
of a new primitive whereas delegation cannot be implemented with message sending
[Lieb86] and supposes modifications in the evaluator . Delegation requires that
within the applied method, the pseudo-variable “self” be bound to the client (i.e. the
initial receiver of the message) rather than to the object in which the method was
found.

Two forms of delegation have been identified [StLU 87]: implicit and explicit. With
implicit delegation, the system is responsible for pursuing the search in the shared
part of the object, identified by the parent link, when a slot has not been found in the
personal part. With Explicit delegation, no internal mechanism is provided to achieve
delegation automatically: when a client does not hold a method, it is responsible for
saying if it wants to delegate the message and, if so, for explicitly pointing out the
server for this message. Implicit and explicit delegation share the above
characteristics but vary in their implementations.

10

3. Differential creation, sharing and reutilisation

Just creating objects from scratch is far from the expressive power expected of an
object-oriented language. The questions that arise now are: how to built new objects
out of existing ones? How to share knowledge common to different objects? And
how to make existing objects reusable (i.e. sharable with potential future objects).
For all of them, the notion of differentiation is fundamental. Cloning and delegation
have been proposed in prototype-based languages as fundamental mechanisms to
create new objects from others either by copying and modifying or by expressing
differences.

Cloning (see the primitive “create” in Act1 or “clone” is Self) is a copy operation
that avoids the creation of new objects from scratch provided that objects of the same
kind already exist in the system. Cloning makes it possible to reuse the design of the
structure and the implementation of methods of the cloned object (let us call it the
model). Cloning duplicates the structure of the model but ensure slots values sharing
at creation time.

Cloning becomes slightly more complicated when split objects and delegation are
introduced in the language.

3.2. Delegation

Delegation has been introduced [Lieb81] as a mechanism to retrieve and reuse
knowledge shared by different objects. Delegation thus supposes the ability to define
objects having a shared part and a personal part:

“To create an object that shares knowledge with a prototype, you construct an extension object, which has a list
containing its prototypes, which may be shared by other objects, and personal behaviour idiosyncratic to the
object itself.” [Lieb86]

The shared part can be any other object in the system and the personal part defines
the slots of the new object that are not in the shared part or that differ from those
stored in the shared part. Prototypes can thus be defined by similarity with, or
distinction from, other prototypes. For example, in Act1, the primitive “extend”
creates a new object, the shared part of which being the receiver of the extend
message. The personal part knows about its shared part through a link named
“proxy”. In Self, the creation of an empty object to which is added a slot named
“parent” assigned to an existing object is conceptually equivalent to “extend”. In
both cases, the parent or proxy link is used to retrieve the shared part. The most
important point here is that sharing is done at the level of concrete objects and not at
the level of concepts as with class-inheritance; this means that structures, behaviour
and values are shared. Retrieving a shared value or invoking a shared method is
made by delegation, which works as follows:

“When an extension object receives a message, it first attempts to respond to the message using the behaviour
stored in its personal part. If the object's personal characteristics are not relevant for answering the message, the
object forwards the message on to the prototypes to see if one can respond to the message. This process of

11

forwarding the message is called delegating the message.” [Lieb86]

If we call “client” the object that receives the message and “server” the shared part in
which the related slot is found, the key-point of delegation is that while executing the
method found in the server, any reference to a variable (see section 5) or any
message sent to “self” has to be interpreted as an access to a variable of the client or
as a message sending to the client. This property makes it possible for an object to
reuse methods that are defined in its shared part.

3.5. Extending L1 with delegation.

3.5.1 Implicit delegation.

We describe in this section the class ImplicitDelegation, derived form BasicProto,
and its related evaluator. The figure 6 shows what can be done with the language
associated to the class ImplicitDelegation: creation of new objects having parents,
method definitions and message sending with implicit delegation.

ImplicitDelegation

 instance variables:

 methods:

subclass

BasicProto

instanceVariables:

methods:

methods,

ProgramNodeBuilder
associated node builder:

newEmpty, method:

parent

son

subclass

Fig. 6: The class ImplicitDelegation and the related language.

Structure of objects and new primitives

In a system with implicit delegation, objects can have parents. Different choices
have to be made concerning the parent link.

The internal representation of the prototypes in our new language will have two
fields, one pointing to the parent and one, inherited from BasicProto pointing to the
methods dictionary. In figure 6, idPen1 is created as a son of Root and idPen2 as a
son of idPen1. Sending the message m1 to idPen2 returns 50, m1 has been delegated
to the parent and executed in the right environment. Sending the message m2 to
idPen2 sends the message m1 to idPen1 but as it is not a delegation, it returns 30.

The evaluator.

As long as delegation is implicit, the question whether to express it or not via

12

message sending does not hold; the evaluator is responsible for finding the right
method and installing the right context when applying it.

The delegation algorithm is very similar to the way class-based language lookup
algorithms follow the superclass link to find an inherited method. The slight
difference between delegation and class-inheritance [Naka90] is that with class
inheritance, the client and the server are the same object10 whereas with delegation
the client and the server are different. This remarks applies clearly when message
sending to the pseudo-variable “super”, fundamental for reusability, is to be
implemented (see next section). Let us suppose for now that we do not use “super”.

With that restriction, the only difference between ImplicitDelegation and
BasicProto evaluators lies in the way methods are searched in the objects. The
sequencing of operations and the management of contexts are exactly the same. This
means that the above method eval: (figure 3) requires no modifications: examining it
shows that the pseudo-variable self is bound to rec in the new context (line 11)
wherever the method is found. Considering the message “self x” in the method m1,
after the initial call “idPen2 m1”, this is what is needed. Of course, the inherited
method methodNamed: (figure 3) has to be redefined on ImplicitDelegation and is
now responsible for finding the method either in the receiver or in its parent
considered as the implicit server.

methodNamed: name “defined on ImplicitDelegation”
 if (self hasMethod: name)
 then I return (methods at: name)
 else if parent equals nil
 then I return nil
 else I return (parent methodNamed: name)

Sending messages to “super”.

The pseudo-variable “super” is conceptually similar to its Smalltalk counterpart or
to the Clos function “call-next-method”. Adding the following method: “idPen2
method: 'm1 1 + super m1' ” and sending m1 to idPen2 will return 51. Introducing
“super” in the implicit delegation mechanism requires modifications in the evaluator
that are very similar to those necessary for explicit delegation. Indeed saying “super
m1” does not means “send the message m1 to the appropriate object” but “delegates
the message the message to the appropriate object while preserving the original
client”; the only difference with explicit delegation being that, here, the evaluator is
responsible for finding the “appropriate object”.

4. Modifying states of objects and ensuring encapsulation.

10The client is the reveiver and the server is also the receiver since the method is found in its class or in a superclass of its class,
passing form a class to the superclass does not change the object considered as server (this has nothing to do with considering classes
as objects ot not).

13

Up to now, objects variables (states of objects), for example the x-position of a pen,
were simulated with methods returning constants values. In the three languages
basic-proto, implicit-delegation and explicit-delegation presented in the above
sections, objects states cannot be modified simply11 and there is no encapsulation.
Lack of encapsulation means that the internal state of objects are, by default,
accessible from anywhere in the system by message sending. The next step towards
our simulation of actual prototype-based languages consists in explaining the various
solutions for modifying objects states and introducing encapsulation.

4.1. Two techniques for conceptually disjoining variables and methods

Accessing variables by references to their names.

. Any message can be sent from anywhere in the system but a reference to a
variable supposes that the variable is visible. The evaluator (or the compiler) owns
the visibility rules ensuring encapsulation: variables referenced within methods
should be either local variables of the method or variables of the receiver of the
applied method or global variables. Encapsulation12 comes from the impossibility to
access objects variables via message sending unless accessor methods are provided.
Modifying variables values supposes that a write accessor be part of the interface of
its owner and that an assignment instruction in the language (see the method setY: in
figure 10).

The problem comes with delegation. Without delegation, a variable which is not a
temporary or a global cannot be anything else than a variable stored in the current
receiver of the method in which the variable is referenced. With delegation, variables
values can be inherited and objects can subsequently be split in different parts. For
example, if t1 is a turtle with variables [y -> 30, heading -> 90], with parent a pen p1
with variables [x ->10, y -> 20], a part of t1, the variable x and its value, is stored in
p1. If a method (defined on t1 or on one of its parents) is applied to t1 in which x is
referenced, finding x’s value will require a lookup in t1’s parent. The problem is the
same for assignments.

To sum up, distinguishing variables access from message sending gives
encapsulation for free but requires that the delegation algorithm be duplicated
variables accesses

Having one entity: the slot, with distinct internal representations for variables and methods.

The second solution has been proposed in Self and is a consequence of that last

11Defining a method with the same name and returning a different value will destroy the original one.
12As far as the language allows to add methods on existing object (as in Smalltalk for classes), it is always possible for a user to add
an accessor method for a particular variable but as far as this accessor was not provided by the implementor, the user is warned that
this is a potentially dangerous action.

14

remark: as far as the same dynamic binding algorithm has to be applied to retrieve
both state and behaviour scattered in the shared parts of objects, both can be accessed
by message sending and have the same external status of slots. The difference
between them, and therefore the solution for modifying states, lies in the way slots
representing variables and slots representing methods are created. The system is able
to recognise, at creation time, whether the slot will hold a variable or a method. As
far as a slot representing a variable is to be created, a different internal representation
is provided and a related assignment slot13 (with the same name followed by “:”) is
automatically created. Having the same mechanism for accessing methods and
variables, dynamic binding for variables requires no extra mechanisms.

The problem here comes with encapsulation. As far as a variable’s value can be
accessed by sending a message, the selector of which being the name of the variable,
they become visible and modifiable from anywhere in the system. Achieving
encapsulation thus requires additional mechanisms.

4.2. Extending existing classes with variables and encapsulation.

We describe here how we have integrated in our platform languages in which
variables and methods are distinguished. We have named the class in which variables
are introduced: Encapsulation, for, as we have said, the separation of states and
behaviour makes variables privates by default. Encapsulation is a subclass of
BasicProto which holds a new instance variable named “variables” to store the
variable dictionary of objects and a new primitive: var:value: to create and initialize
variables. The figure 10 illustrates the way variables are defined and used; note the
automatic delegation of variables values when the message m1 is send to idPen2 and
how assigning the variable y in the method setY: owned by idPen2 also modifies
idPen1.

Since the interesting problem with the addition of variables occurs when delegation
is introduced, we will directly describe the language including the both
characteristics. We face here our first problem in designing the taxonomy. The ideal
scheme would be to combine by multiple inheritance the classes ImplicitDelegation
and Encapsulation (fig. 9a). Because Smalltalk does not support multiple inheritance,
we have derived our new class, named ImplicitDelegationAndEncapsulation (let us
call it IDAE) from the class ImplicitDelegation and we have duplicated the instance
variables and methods of the class Encapsulation (fig. 9b).

13Except for read-only variables.

15

BasicProto

Encapsulation ImplicitDelegation ExplicitDelegation

ImplicitDelegationAndEncapsulation

BasicProto

ImplicitDelegationAndEncapsulation ExpDel&Enc.

a) b)

: subclass

Encapsulation ImplicitDelegation ExplicitDelegation

Fig. 9: an ideal taxonomy with multiple inheritance simulated with simple inheritance.

A new program node builder class, let us call it IDAENodeBuilder, is associated to
the class IDAE ; it is a subclass of ProgramNodeBuilder and simply states that when
a method is parsed and a variable access (resp. a variable assignment) is encountered,
an instance of the new class EncapsulationVariableNode (resp.
EncapsulationAssignmentNode) instead of VariableNode (resp. AssignmentNode)
should be created.

ImplicitDelegation

 instance variables:

 methods:

subclass

BasicProto

instanceVariables:

methods:

methods,

ProgramNodeBuilder
associated node builder:

newEmpty, method:

parent

son

ImplicitDelegationAndEncapsulation

 instance variables:

 methods:

variables

var:value:

associated node builder: IDAENodeBuilder

Figure 10: The class ImplicitDelegationAndEncapsulation and the related language.

The difference between the evaluator for this language and the one for the implicit-
delegation language, lies in the new method eval: defined on the class
EncapsulationVariableNode. (fig. 11). The methods variableOwner and varValue:
are defined in the classes Encapsulation and IDAE , the former returns either the
owner of the variable, the receiver or one of its parents, the latter directly access the
variable dictionary of objects. The method eval: on EncapsulationAssignmentNode is
similar except for the read access to the owner that becomes a write access.

eval: context “defined on EncapsulationVariableNode”
 | client varName owner |
 varName := name asSymbol.
 if varName is bound in context “this is either self, or an argument or a temp”
 then I return (context at: varName)
 else [client := context at: #self.
 owner := client variableOwner: varName.
 if (owner == nil) “the variable belongs neither to the receiver nor to its parents”
 then I return (client globalVarValue: varName) “is it a global variable?”
 else I return (owner varValue: varName) “the value is asked to the owner”

Figure 11: Eval: on EncapsulationVariableNode.

This illustrates how to perform dynamic binding for variables without externally
accessing them by message sending, thus giving them the status of private properties.

16

Finally, extending the class ExplicitDelegation raises the crucial problem of how to
explicitly express delegation for variables. A first solution consists in redefining
variables at the delegating object level and to assign them with a special keyword,
known of the system, saying how to delegate it. We have implemented a second
solution, not described here, that consist in following the same delegation path than
the one used to find the method in which the variable is accessed14.

5. Existing Systems

The finality of the platform is to easily implement simulations of various prototype-
based languages and to write comparative programs. Up to now, we have integrated
in the platform simulations of Self, Exemplars, Object-Lisp [Macl] and Act1. The
Appendix A is a Smalltalk snapshot showing the current hierarchy of classes
representing prototype-based languages. The position in the hierarchy of a class
representing each existing language figures out the kind of instructions that can be
written, the kind of mechanisms that are available in the language and the operational
semantic of these mechanisms. The platform makes it possible to know exactly in
each case what happen when a message is sent or when a variable is modified, but of
course it gives neither information on the real internal representation of objects nor
on how the mechanisms are really implemented in the actual language. Here are
some precisions on two of these simulations.

The Self language provides implicit delegation through the parent link of objects
and blends variables and methods, as far as most of the messages are send to “self”,
the syntax allows the receiver to be omitted. The class SelfLike15 thus inherits from
ImplicitDelegation. A new kind of variable node has been defined for which the
method eval: interprets symbols in position of variables as message sending to the
current value of “self” The new primitives addSlots: and parent: respectively creates
slots in the Self way (cf. section 4) and allows users to dynamically modify the
parent of an object. The snapshot gives an example of Self-like code in the “SelfLike
Workspace”.

The Examplars system is an attempt to separate subtyping from implementation
hierarchies. It includes classes and prototypes (named examplars). Examplars behave
exactly as instances of the class ImplicitDelegationAndEncapsulation, the link to
their shared parts being named “superExamplar”. They however have an additional
link to their class. Classes own general information about exemplars such as their
type or the prototypical examples that should be cloned when a new object of the
type they represent is to be created. The class ExemplarsLike has been created as a

14A similar technique is used in Self to deal with potential multiple inheritance conflicts.
15The suffix “like” means that the simulation does not pretend reflect all of the possibilities of a language but only the subset of
them directly related to the essence of prototype-based programming.

17

subclass of ImplicitDelegationAndEncapsulation and owns a new instance variable
to store exemplars classes16. The snapshot gives an example of Exemplar-like code
in the “SelfLike Workspace”.

6. Conclusion

We have given an overview of the Prototalk platform, a framework for the rapid
implementation and the use of prototype-based languges interpreters. Those
interpreters are built for language understanding and do not pretend to be efficient.
The framework architecture makes it very easy to develop an interpreter for a new
langage by specialization of the representation of existing ones.

To ease the use of the framework, it would be possible (future works) for a user to
choose with a set of radio buttons the characteristics of the prototype-based language
he want to test and to have the interpreter almost entirely automatically generated

Prototype-based programming languages are still in their infancy and their
underlying concepts await firmer semantic grounds and a more complete
understanding of the consequences of alternative mechanisms to implement them. In
this paper, we have given the first results of an effort to study, in a systematic way,
the primitive concepts of prototypes. We have explored their alternative
implementations, using a common platform written in Smalltalk-80 which classifies
them through an inheritance hierarchy.

The root of this inheritance hierarchy is a class named BasicProto representing a
minimal prototype-based language, which provides only three basic primitives:
creating a new empty object, dynamic addition of new slots to existing objects, and
message passing. Although very poor, such a language is usable, but it does not
provide any way to share common behavior and/or state values. To go beyond that,
we have explored two other primitives: cloning and delegation. Cloning, when
interpreted as shallow copying of an existing object, exhibit a form of sharing we
have called the sharing of values, where both the model object's and the clone's slots
point to the same objects just after the cloning and until one of them change the
contents of its slots. Delegation, when interpreted as implicit delegation through a
parent link, exhibits another form of sharing we have called the sharing of slots,
where a child object always shares the slots of its parent for which it delegates
messages (it cannot answer itself), thus activating them. After introducing these two

16Describing how exemplars classes have been represented is beyond the scope of this paper.

18

primitives, we have shown that they are both needed in a prototype-based language,
because they achieve very different forms of sharing. Implementations of delegation
has been proposed, and several alternatives explored. Explicit delegation has been
discussed and implemented in our platform.

The last issue we have addressed is state representation, state changes and
encapsulation. Two main alternatives are actually proposed: a unique concept of slots
melding object variables and methods, as suggested by Self, or, on the contrary,
distinct object variables and methods. We have shown that, in the first case, the late
binding of variables, needed to implement delegation comes for free since they are
accessed in the same way as methods, but that in the latter case, it is encapsulation of
objects that comes for free, because accessing a variable cannot be done from the
exterior of objects, but that the late binding of variables must then be implemented.
Finally, we have compared some existing languages using their respective position in
the class hierarchy of our implementation.

An important outcome of this paper is a discussion of the properties of a prototype-
based language having the three important primitives for the creation of new objects
from existing ones: dynamic addition of slots, cloning and delegation. We
enlightened in Section 3.5 the potential complexity of software development in such
a language, because of the rapid growth in the number of alternative ways to create a
new object from existing ones as an application scales up. In the future we want to
look at new models and new programming methodologies to help programmers in
choosing the appropriate way to define such new objects, and to insure the reusability
of objects in presence of the complex relationships existing among them. The
methodology of traits [UCCH91] is a first tentative in towards a more disciplined
world of prototypes, but it raises important semantic questions (see §3.2). Whether or
not such methodologies go against the basic assumptions of prototypes is also an
open question.

References
[Born81] A.H. Borning. The Programming Language Aspects of ThingLab, A Constraint-Oriented Simulation

Laboratory. ACM Transaction on Programming Languages and Systems, 3(4):353-387, October 1981.
[Born86] A.H. Borning. Classes versus Prototypes in Object-Oriented Languages. In Proceedings of the IEEE/ACM

Fall Joint Conference, pages 36-40, 1986.
[BoWi85] D.G. Bobrow and T. Winograd. An Overview of KRL, a Knowledge Representation Language. In R.J.

Brachman and H.J. Levesque, editors, Readings in Knowledge Representation, chapter 13, pages 263-285. Morgan
Kaufmann Publishers, 1985. (originally published in Cognitive Science 1, 1 (1977), pp. 3-46).

[ChUn91] C. Chambers and D. Ungar. Making Pure Object-Oriented Languages Practical. Proceedings of
OOPSLA'91, ACM Sigplan Notices, 26(11):1-15, November 1991.

[ChUL89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of Self, a Dynamically-typed
Object-Oriented Language Based on Prototypes. Proceedings of OOPSLA'89, ACM Sigplan Notices, 24(10):49-
70, October 1989.

[CUCH91] C. Chambers, D. Ungar, B.-W. Chang, and U. Hölzle. Parents are Shared Parts of Objects: Inheritance and
Encapsulation in Self. Lisp and Symbolic Computation, (4):207-222, 1991.

[HCCU90] U. Hölzle, B.-W. Chang, C. Chambers, and D. Ungar. The Self Manual, version 1.0. distributed with the
Self software release, from Stanford University, July 1990.

19

[HöCU91] U. Hölze, C. Chambers, and D. Ungar. Optimizing Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches. In Proceedings of ECOOP'91, volume 512 of Lecture Notes in Computer Science,
pages 21-38. Springer-Verlag, July 1991.

[KhAb90] S. Khoshafian and R. Abnous. Object Orientation - Concepts, Languages, Databases, User Interfaces.
Wiley, 1990.

[LaLo89] W.R. LaLonde. Designing Families of Data Types Using Examplars. ACM Trans. on Prog. Languages and
Systems, 11(2):212-248, April 1989.

[Lieberman 81] H.Lieberman :A preview of Act1.AI memo No 625, MIT, June 1981.
[Lieb86] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems.

Proceedings of OOPSLA'86, ACM Sigplan Notices, 21(11):214-223, November 1986.
[Lieb87] H.Lieberman\ : Reversible Object-Oriented Interpreters. in Proceedings of European Conference on Object-

Oriented Programming (ECOOP'87), special issue if BIGRE No 54, pp 13-22, June 1987, Paris.
[LaTP86] W.R. LaLonde, D. Thomas, and J.R. Pugh. An Examplar Based Smalltalk. Proceedings of OOPSLA'86,

ACM Sigplan Notices, 21(11):322-330, November 1986.
[Macl] Macintosh Allegro Commo Lisp Reference Manual, version 1.3.
[MGDV90] B.A. Myers, D.A. Giuse, R.B. Dannenberg, B. Vander Sanden, D.S. Kosbie, E. Pervin, A. Mickish, and P.

Marchal. Garnet, Comprehensive Support for Graphical, Highly Interactive User Interfaces. IEEE Computer,
23(11):71-85, November 1990.

[Naka90] S.Nakajima : Metalevel issues in a Prototype-based Object-Oriented Programming Language. In Informal
Proceedings of the first workshop on reflection and metalevl Architectures in OOPSLA/ECOOP’90, Ottawa,
October 1990.

[Smit86] R.Smith. The Alternate Reality Kit: An Animated Environment for Creating Interactive Simulations. Proc.
of the 1986 IEEE Computer Society Workshop on Visual Languages, Dallas, Texas, pages 99-106, June 1986.

[StLU88] L.A. Stein, H. Lieberman, and D. Ungar. A Shared View of Sharing: The Treaty of Orlando. In W. Kim
and F. Lochovosky, editors, Object-Oriented Concepts, Applications and Databases. Addison-Wesley, 1988.

[Stei87] L.A. Stein. Delegation is Inheritance. Proceedings of OOPSLA'87, ACM Sigplan Notices, 22(12):138-146,
December 1987.

[Stei89] L.A. Stein. Towards a Unified Method of Sharing in Object Oriented Programming. Department of
Computer Science, Brown University, 1989.

[UCCH91] D. Ungar, C. Chambers, B.-W. Chang, and U. Hölzle. Organizing Programs without Classes. Lisp and
Symbolic Computation, (4):223-242, 1991.

[UnSm87] D. Ungar and R. Smith. Self: The Power of Simplicity. Proc. of OOPSLA'87, ACM Sigplan Notices,
22(12):227-242, December 1987.

20

Appendix A

Overview of the Smalltalk-8017 platform for prototype-based languages simulation.

17The platform has been programmed with Objectworks\Smalltalk, releases 2.5 and 4.0; Objectworks\Smalltalk is a trademark of
ParcPlace System, Inc.

