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Abstract. In Malenfant et al. [19], we have described a reflective model for a prototype-
based language based on the lookup o apply reflective introspection protocol. In this paper,
we augment our previous protocol by converting it to handle continuations reified as first-class
objects. First-class continuations provide much more control over the current computation; during
the introspection phase fired by message sending, they make it possible not only to change the
behavior of the program for that message but also for the entire future computation. In this
paper, we provide this introspection protocol with a formal semantics. This result is obtained
by exhibiting a mapping A from program configurations to priority rewrite systems (PRS) as
well as a mapping from message expressions to ground first-order terms used to query the PRS.
Other advantages of this approach are: to ensure the termination of the introspection using the
smallest set of formally justified conditions and to provide a clear declarative account of this
reflective protocol. The PRS also appears as a meta-level to the base language, independent of
the implementation, but from which we derive fundamental clues to obtain an efficient language
processor. By our new model, we finally highlight the link between reflection in object-oriented
languages and the one originally proposed by 3-Lisp [24], although object-orientation provides
reusability to reflection, making it easier to use.

Keywords: Procedural reflection, object-oriented programming, reflective towers, priority rewrite
systems, semantics.

1. Introduction

Reflection, understood as the construction of self-aware systems, is a persistent
source of challenge. The tremendous potential for new applications ensure a con-
tinuous quest for understanding its foundations. The goal of this paper is to propose
a minimal model of behavioral reflection for a prototype-based language, to study
it in depth and to provide it with a formal semantics using the theory of priority
rewrite systems (PRS) [2], [21], [5]. We propose a complete prototype-based lan-
guage, but our formal study is restricted to the reflective protocol only; hence our
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results can be applied to other reflective object-oriented programming languages,
provided they use a similar reflective protocol.

Object-oriented programming is dominated by the class and metaclass approach
which provides it with a highly satisfactory solution to the problem of structural
reflection, the complete reification of data structures and programs as first-class
entities. The problem of behavioral reflection, dealing with the reification of objects’
execution, is not yet established on similar firm grounds. The main approach
currently investigated to represent the behavioral properties of objects is based on
meta-objects [17], [27], [9] but several problems are still open:

1. How can we overcome the potential infinite regression when using meta-objects?

2. What protocol should be used to connect behavioral meta-objects and the eval-
uator’s self-representation?

3. How should we represent the evaluator’s data structures and execution?

4. What is the relationship between structural and behavioral reflection? Should
the behavioral meta-object of an object be the same as its structural one (e.g.,
its class)?

We implement reflection in a prototype-based language in order to avoid the un-
necessary complexity of classes and postpone the last question until we fully under-
stand behavioral reflection. We choose to implement meta-object based behavioral
reflection and to reify message passing using the lookup o apply reflective protocol.
Hence, we use and extend existing ideas in order to push them to their limit. To
concentrate on the central issues, our proposal is a minimalist one: we work on a
minimal prototype-based language proposed in our previous work [8], [19], to which
structural reflection is provided in a minimal way, just to make behavioral reflection
work properly.

The goal of behavioral reflection is to give to the user complete control over the
current computation at run-time. To achieve this goal, we augment the reflective
protocol to handle continuations reified as first-class objects. Our new lookup o
apply reflective protocol augmented with a reification of continuations provides a
reflective programming model that matches those of 3-Lisp and reflective exten-
sions of Scheme [12], [13]. Lookup and apply methods are now able to examine,
modify and otherwise deal with continuations at run-time. The outcome is that
we can adapt the language to particular programs, we can adapt programs’ be-
havior to their current execution state and finally, we can perform all sorts of
self-optimizations dynamically.

The outline of the paper is the following. In the next section, we present our
reflective prototype-based language, including sufficient structural reflection capa-
bilities to enable the implementation of behavioral reflection. In Section 3, we give
the formal semantics for the reflective protocol. In Section 4, we discuss the object’s
general behavior, the implementation of the resulting language, and the status of
rewriting according to the implementation. Section 5 compares our approach with
related work. We then conclude and discuss future work.
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2. Reflective Prototypes
2.1. A Minimal Language

In [8], we have proposed that a prototype-based language should be implemented
on the basis of the following principles:

P1: A prototype is represented as a collection of slots. A slot can represent either
a data value (data slot) or a method (method slot).

P2: Message passing is the only means to activate a prototype and slot names are
used as selectors in messages. No difference is made between data slots and method
slots, both are accessed through message passing [25].

P3: A prototype is constructed as an extension of an existing prototype using
parent-of implicit delegation links; the prototype called ROOT is used as root of
parent-of delegation hierarchies.

P4: The structure of a prototype is immutable, i.e. one cannot add or retract a slot
within an object; this allow encapsulation of objects to be implemented effectively
by preventing malicious users from dynamically adding public accessors to private
information.

P5: newlnitials(p,initform) is the first primitive function to create new objects
with a fixed set of slots with initial values; this primitive is invoked by a mes-
sage (p ’new-initials initform)! where the receiver p is the parent of the new
object.

P6: clone(p) is an alternative primitive function to create new prototypes by copy-
ing existing ones; this primitive is invoked by a message (p clone) where p is the
prototype to be copied.

For reasons out of the scope of this paper, the object ROOT is defined as a root
of implicit delegation hierarchies and gets as methods all the primitive functions of
the language (newlnitials and clone, see [8] for more details). Finally, we assume
that prototypes have only one parent; this restriction could be relaxed, but multiple
parents add nothing to our study except an unnecessary complexity.

2.2. Structural Reflection

In class-based languages, classes and metaclasses are first-class objects implement-
ing structural reflection but in prototype-based languages, there are no more classes
to deal with the structure of objects; an alternative must be sought to obtain simi-
lar capabilities. In fact, prototypes are not easily amenable to structural reflection
[18]. To link a prototype to another one that describes its structure goes against
the principles of prototype-based programming in the most fundamental way. How-
ever, prototypes still provide a simple object-oriented model that allows us to study
behavioral reflection in depth.
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Because studying behavioral reflection needs only little structural reflection ca-
pabilities, we use very limited ones: access to the structural information about
individual objects and a reification of methods as objects. We identified [18], [11]
five primitive access functions: size(p) to get the size of a prototype p, nameAt(p,i)
to get the name of its ith slot, contentsAt(p,i) to get the content of its ith slot,
contentsAtPut(p,i,v) to set the content of its ith slot, and isMethodAt(p,i) to
test whether its ith slot is a method slot or a data slot. These primitive func-
tions are represented as methods in the language, themselves reified as the ob-
jects: SizeP, NameAtP, ContentsAtP, ContentsAtPutP, and IsMethodAtP. The ob-
ject ROOT gets these methods, to which it points through its method slots: size,
name-at, contents-at, contents-at-put, and is-method-at respectively.

Note that we do not consider this proposal as a definitive solution to structural
reflection. We simply use it as a working one in order to proceed with behavioral
reflection. For simplicity, we make objects themselves responsible for responding
to the “reflective” messages.

2.3. Behavioral Reflection

A behavioral reflection model must describe the behavior of objects using other
objects and it must provide a method invocation protocol that allows the user to
intervene in the current execution in order to modify the course of events, i.e. to
reflect. To describe the behavior of objects, we associate a meta-object to each of
them. This meta-object defines how its associated object reacts when it receives
a message. Since the object-oriented model of computation is based on message
passing, it is usual to make message sending the vantage point where programs can
shift into a reflecting phase. The standard way to achieve that is by making visible
the two main operations done by the evaluator when a message is sent: the lookup
and the application of the method. This is the traditional equation where message
sending is viewed as the composition (from left to right) of a lookup and an apply:

message execution = lookup o apply

These operations can be implemented by methods reified as objects in the lan-
guage, allowing the user to redefine them in order to perform reflective computa-
tions. Each message passing operation (o ’selector al a2 a3) is replaced by a
reflective introspection in three phases: (1) find the meta-object of the receiver o,
(2) send it a lookup message for the selector ’selector in the receiving object,
which yields a method object (3) to which is sent an apply message to execute in
in the context of the receiving object with the message arguments. Hence, coarsely
speaking, the reflective introspection rule is:

(o ’selector al a2 a3) = (((o* metalObject)
’lookup ’selector ox)
Japply-to o* ’(al* a2* a3*) k)
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where k is the continuation, captured by the evaluator, representing the rest of the
computation at the time the reflective introspection is made. When applying the
reflective introspection rule, the receiver o, and the arguments al, a2 and a3 of
the message may be evaluated. We denote this evaluation by a trailing *. Because
we do not address this issue, we only assume that the respective results of these
evaluations are first-class objects in order to make the reflective introspection rule
work properly. Otherwise, we put no constraints on the way the evaluator treats
the receiver and the selector or on the mode it uses to evaluate arguments. For the
sake of brevity, we will drop the trailing * in the rest of the paper.

Note that each operation in the reflective protocol can lead to potential infinite
meta-regression. Since all three are represented as message sending, the same in-
trospection rule can be applied to each of them ad infinitum. Section 3 is devoted
to the way the language prevents this from happening.

Data slots

Because data slots and method slots are both accessed using messages, the protocol
must cope with data as well as methods. In both cases, the lookup phase must
return an object able to respond to an apply message. Because data slots contain
only values, we must bridge the gap between values and the object expected by the
reflective protocol. Representing data as objects able to respond to apply messages
is an appealing solution, but it leads immediately to an infinite meta-regression
when trying to represent data. We have decided to force the lookup phase to
return an object when a message accesses a data slot. This object is created on the
fly, in a lazy fashion; it responds to apply messages by simply returning the value
of its corresponding data slot.

First-class continuations

First-class continuations now represent a long tradition, especially in the functional
programming community (Lisp, Scheme, ML, ...). Continuations represent the
(default) future of the computation at a given point in the execution of the program.
Following the Scheme tradition [12], continuations could be represented as method
objects (closures) in our language while in the ML one, we could use first order data
structures [1]. However, we prefer not to deal explicitly with such issues here and to
give as much freedom as possible to implementors. For this reason, we make almost
no assumption about the way continuations are represented and about the way they
are created. We simply assume that they are objects, invoked by sending them an
apply message, such as in (k ’apply-cont-to o) where k is a continuation object
and o is the object resulting from the previous expression.
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Figure 1. Basic objects and their relationships.
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Kernel Prototypes

The impact of the method invocation protocol is summarized by the following
principles added to the prototype-based language:

P7: Every object has a meta-object that is able to respond to lookup messages;
meta-objects can be shared among several objects.

P8: Meta-objects respond to lookup messages by returning method objects that
are able to respond to apply messages.

Meta-objects and the above method invocation protocol raise four fundamental
problems: (1) an infinite regression of meta-objects may arise along the meta-of
link between an object and its meta-object, while (2) a basic lookup method, (3) a
basic apply method as well as (4) a basic method for applying continuations must be
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provided. Our model solves the problem (1) of the potential infinite regression by
introducing a basic meta-object, called BasicMetaObject, which is its own meta-
object, and which defines the standard behavior for objects in the system. This
circularity of the meta-of link closes the meta-regression on BasicMetaObject, in
a similar way as the instance-of link is closed over Class in ObjVLisp [3].

Because of the method invocation protocol, BasicMetaObject, as any other meta-
object in the system, must be able to respond to lookup message. In fact, since it
defines the standard behavior, its lookup method is the primitive lookup function
reified as a method in the language (2), which we call BasicLookup. Reifying the
primitive lookup function as BasicLookup requires the introduction of its apply
method to respect the method invocation protocol. We assume that its apply
method is the primitive apply function also reified as a method in the language (3),
which we call BasicApply and construct it to have itself as its own apply method.
In the same way, reifying continuations require the introduction of a primitive
function to apply them, reified in the language (4), which we call BasicApplyCont,
and construct it to have BasicApply as apply method. These solutions add four
principles to the reflective prototype-based language:

P9: BasicMetaObject is the kernel meta-object of the system; it considers itself as
its own meta-object.

P10: BasicLookup is the kernel lookup method of the system; it represents the
primitive lookup function (bl) reified as a method object in the language.

P11: BasicApply is the kernel apply method of the system; it represents the prim-
itive apply function (baf) reified as a method object in the language.

P12: BasicApplyCont is the kernel method of the system to apply continuations; it
represents the primitive function to apply continuations (bac), reified as a method
object in the language.

The kernel of our model is constructed around six objects: BasicMetaObject,
BasicLookup, BasicApply, BasicApplyCont, IK and ROOT (see §2). IK is an object
playing the role of the identity continuation; it also holds the basic methods for
continuations, such as BasicApplyCont, and can serve as the root of the continua-
tion objects hierarchies. The Figure 1 illustrates the kernel objects as well as their
relationships.

3. A formal semantics for reflective introspection

In this section, we recast our model under the theory of priority rewrite systems
(PRS) in order to give a formal semantics to the lookup o apply reflective intro-
spection protocol. We first recall the basics of PRS and then show how to map a
program configuration C (set of objects) to a PRS A(C) shown to be sound and
complete.
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3.1. Priority Rewrite Systems

Rewrite systems [5] are means to compute by reducing expressions using a set of
rewrite rules. The computation performs rewriting steps beginning with a starting
expression and ending with a reduct, an expression to which no more rewriting step
can be applied. Rewrite systems represent expressions with first-order terms, which
are formally defined as follows:

Definition 1 (Syntax) Given the set F = J,,~qFn of function symbols — called a
(finitary) vocabulary or signature — and a (denumerable) set H of variable symbols,
the set of (first-order) terms T (F,H) is the smallest set containing H such that
flt1,ta, ... tn) € T(F,H) whenever f € F,, and t; € T(F,H) fori=1,...,n.

Givent = f(t1,...,tn), t1,...,tn are called subterms of ¢, and so are their respec-
tive subterms. A term t is viewed as a tree where any of its subterm s is located by
a sequence p of integers specifying the path from the root to the subterm s; we call
p a position in the term ¢. The term obtained by replacing the subterm at position
p in term ¢ by s is denoted t[s],. A context is a term w with a “hole” at position p
where the replacement takes place.

Definition 2 A substitution is a replacement operation that transforms a term
t to a term s by mapping variables in t to terms. This mapping is written out as
{z1 = t1,...,2m = t,} when there are only finitely many variables not mapped
to themselves. More formally, a substitution is a function denoted o from H to
T(F,H) extended to a function from T to itself in such a way that f(t1,...,t,)0 =
fltio,... tyo) for each f € F and for all terms t; € T.

A term t matches (or unifies with) a term s if so = ¢ for some substitution o,
which is then also called a unifier of s and ¢. In general, there exist many unifiers
of two terms. For example, the terms a(z1) and a(z2) will match for all unifiers
that map x; and x5 to the same term. The most general unifier of terms s and ¢ is
the substitution ¢ such that, for all unifiers v of s and ¢, there exists a substitution
o' such that v = 0 o ¢, the composition of ¢ and ¢’.

Definition 3 A rewrite relation — is a binary relation over a set of terms T
closed under context application and under substitution. A rewrite relation is speci-
fied by a set R C (T xT) of rewrite rules of the form t — s, each of which specifies
how a term t can be rewritten to a term s. Closeness under context application
and substitution means that t — s implies u[to], — u[sc],, for all terms s,t € T,
contexts u, positions p and substitutions o.

Each reduction step involves the application of a rewrite rule on the current term
t that is done in two steps 1) find a redex r at position p in ¢ and a rewrite rule
u — v such that r = uo for some substitution ¢, and 2) obtain a new current term
t' = tlvo], by replacing the subterm r in ¢ by vo. In rewrite systems, each step
of a reduction can be faced with choices among several candidate redex (reducible
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expressions) and rewrite rules. PRS [21], [2] impose an order of priority among
rewrite rules and always apply the highest priority rule at each reduction step:

Definition 4 A labeled PRS is a 4-tuple (T (F,H),L,R,>) defining a set R of
labeled rewrite rules over a set T (F,H) of terms, where L is a set of labels and -
is a partial (total) order defined among the set R of rewrite rules. (Labels have two
purposes: to allow convenient reference to rules and to ease the definition of the
order among them.)

Example 1. Let’s define the addition over natural numbers as a labeled PRS. To
model natural numbers, we use the traditional representation: a functor 0 of arity
0, i.e. Fo = {0}, and two functors s and p that mean successor and predecessor
respectively, i.e. F; = {p,s}. The functor plus plays the role of the addition
function, i.e. Fy = {plus}. By definition, F = Fy U F; U Fo. We use two variables,
x and y, i.e. H = {z,y}, and the set of labels £ = IN to define the set of rewrite
rules R as:

{1:p(0) = 0,2 p(s(2)) — 2,3 : plus(a,0) > 2,4 : plus(z,y) — s(plus(z, p(y)))}

The priority relation uses the standard order to give priority to rules through
their labels. Rule 1 has the highest one, followed by rules 2, 3 and 4. O

The operational semantics of reduction in PRS we use here is defined as sequences
of rewrite steps called I-reductions [21].

Definition 5 A term u is I-reducible, and I-rewrites (I-reduces) to v using
a PRS PRS if:

o u contains a ground subterm (a redex containing no variables) m at position p,
no proper subterm of which is I-reducible;
o PRS contains a rule s — t, such that,
— m matches s with a matching substitution o (i.e., m = so ),

— v is the result of replacing m in u by to (i.e. v = ufto],), and

— m is not I-reducible by any rule in PRS of higher priority than s — t.

This reduction strategy has two desirable properties: it is decidable and it ensures
closeness under context application and substitution with its innermost-first ground
reduction strategy. The abbreviation for “p I-rewrites to ¢ using the PRS P” is
p —>§3 q. The reflective transitive closure of I-rewriting is noted —>*713. If p —>*7]3 q,
then we say that ¢ is a reduct of p.

3.2. Mapping program configurations and expressions

Basically, the mapping A takes a program configuration C and gives a PRS PRS =
(T(F,H),L,R, ). A message and its current continuation are mapped to a ground
term ¢t € T(F,H) to be reduced by PRS. A program configuration C is a set of
objects including meta-objects, methods, slot names, continuations or end-user
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Table 1. Syntactic identities.

Base language syntax PRS syntax
‘metalbject n

’lookup o1
’apply-to «
’apply-cont-to )

’(al a2 a3) la1,a2,a3]

objects, which comprise the running program at a particular point of its execution.
To perform the reflective introspection phase, we map part of the information in C
into PRS, the one that is really needed by the rewriting process.

We first show how to represent message execution, since this will govern the
way rewrite rules will be laid out concretely. Messages are evaluated in a stan-
dard way, using an interpreter eval with two arguments: the message and the
current continuation?. A message has three components: a receiver, a selector
and an array of arguments. To mimic the eval function, we represent the mes-
sage and continuation to be evaluated as a term with functor eval with four ar-
guments: a term representing the receiver, one representing the selector, one rep-
resenting the array of arguments and one that represents the current continua-
tion. Assume that we have a function ¢ from objects to terms, then the message
(p ’selector al a2 a3) with the current continuation object k are mapped to
the term eval(rec, sel, [a1, as, a3, cont), where rec = p(p), sel = p(’selector), a;,
as and ag are equal to ¢(al), p(a2) and ¢(a3) respectively, and cont = (k).

Now, we must represent the reflective introspection protocol as a rewrite rule.
The protocol makes an intensive use of four selectors: ’metalbject, ’lookup,
’apply-to and ’apply-cont-to. To make our PRS more compact and easier to
read, we map those four selectors to four special functors: u, 7, a and § respectively.
Also, lists of arguments are represented using a standard notation® (see Table 1).
Consider a simplified formulation of the reflective introspection protocol (§2.3):

(o ’s a) = (((o ’metalbject) ’lookup ’s o) ’apply-to o ’(a) k)

The main inconvenience with this formulation is that intermediate continuations
in the sequence of messages don’t appear explicitly. When we apply the intro-
spection rule to the second message (lookup), we need a reification of its own
continuation (which is the above apply message). We formulate the rewrite rule in
continuation-passing style (CPS) to make intermediate continuations immediately
usable. Two continuations are explicitly created by the protocol. The first one
waits for a meta-object to which it sends a lookup message and the second waits
for a method object to which it sends an apply message. We will capture these
as terms of the form c(sel,args, cont). Invoking them on an object o sends o the
message with selector sel and arguments args whose result will be passed to the
continuation cont. This leads to the following reformulation for the introspection
protocol rewrite rule, which is given the lowest priority in our PRS:
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Table 2. Basic priority rewrite system.

Fo = {BMO,BA,BL,ROOT,BAC,IK,pu,~,a,?d,nil,doesNotUnderstand, noSuchObject}
Fa = {coms,blf} Fz = {c} Fs = {eval,baf}

F = FoUFoUF3UFy

H = {M,0,AR,S KK K"}

£ = {nml}

= = {(h,m),(h, 1), (m, 1)}

R = see below

h:eval(BMO,pu,[], K) — eval(K,§,[ BMO],IK) (1)
h:eval(BL,u,[], K) — eval(K,8,[BMO],IK) (2)
h :eval(BA, p,[], K) — eval(K,§,[BMO],IK) (3)
h :eval(c(y, A, K),6,[R], K') — eval(R,~, A, K) (4)
h: eval(e(a, [0, A, K], K'), 6, [R], K") — eval(R, &, [0, A, K], K') (5)
h :eval(BMO,~, [y, BMO],K) — eval(K,§,[BL],IK) (6)
h:eval(BMO,~,|a,BL], K) — eval(K,d, BA],IK) (7)
h :eval(BMO,~,[a,BA],K) — eval(K,d, [ BA],IK) (8)
m : eval(BA,a,[M,[0,A,K]|,K'],K") = baf(M,0,A,K) (9)
h: eval(BA, a,[BL,[BMO,[S, P],K],K'],K") — eval(K, 8, [blf(S, P)],IK) (10)
1:blf(S,P) — doesNotUnderstand (11)
h : eval(doesNotUnderstand, S, R, K) — doesNotUnderstand (12)
m : eval(O, p,[], K) = noSuchObject (13)
L:eval(O, S, A, K) — eval(O, i, [], ¢(7,[5, 0], ¢(a, [0, A, K], I K))) (14)

eval(0, S, A, ) = eval (0, 1, [], ¢(+.[S, 0. ¢(a, [0, A, K], IK)))

Now, we are faced with our first infinite meta-regression. The right-hand side of
this rewrite rule can be reduced again using the same rule. Informally, it means that
if we need the meta-object mo of o to send the message, we must not need mo to
find mo. This forces us to adopt our first important assumption: meta-objects can
be fetched primitively without using the reflective introspection protocol. In the
PRS, for each object o in the program configuration C, we will get a meta-object
fetching rule of the form eval(o, u,[], K) — eval(K,d,[mo], IK) where o = (o)
and mo = p(mo), the meta-object of o. In our PRS, these rules will be given the
highest priority. For the kernel objects of Fig 1, this gives the rewrite rules (1-3)
in Table 2. Because the invocation of the continuation K will discard the current
continuation, for simplicity we chose this one to be 1K, the identity continuation.

Now, we must deal with terms representing the application of continuations, such
as exhibited in the right-hand sides of meta-object fetching rewrite rules. Blindly
using the reflective introspection rewrite rule can lead to another meta-regression
since it introduces more continuations to apply existing ones. Hence, we introduce
the rules (4) and (5), having higher priority than the reflective rule, to apply the
continuations constructed during the reduction.

If we concentrate on the kernel as defined in §2 and illustrated in Fig.1, some other
potential infinite meta-regressions must be prevented in order to make the reflective
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protocol work properly. Recall that applying the reflective rewrite rule calls for
sending three messages. We have dealt with the meta-object fetching messages.
Now, we must examine lookup and apply messages. Infinite meta-regression may
appear when we send a lookup message to the basic meta-object BM O in order to
find its lookup method. Using the reflective rewrite rule would lead to:

eval(BMO,~,[y,BMO],K) —

BMO is its own metaobject, so the next reduction steps (rules 1 and 4) would
send exactly the same lookup message to BMO. We introduce the rules (6-8) to
avoid this as well as two similar problems to find the apply methods of BL and
BA.

The last problem we have to fix is how to relate actions such as sending to the ob-
ject BA an apply message asking for the execution of some method m on an object
o with arguments aq, ..., a, and continuation k, to the rock-bottom implementa-
tion. What we need is a way to jump from the language level of message sending
and reflective protocol to the realm of basic functions that actually implement the
language. In addition to the functions introduced in §2, we rely on the function
baf (m,0,a,k), which executes m on o with arguments a and continuation k. A call
to this function is represented in the PRS as a term baf(m,o0,a,k) and the jump
from message sending to the implementation introduces the rule (9) having higher
priority than the reflective rule.

But we also have another basic function to perform the lookup for objects having
BMO as their meta-object. Instead of using baf to execute BL, we will take ad-
vantage of the function blf. This gives the rule (10) having a higher priority than
(9) to bypass it when the method to be executed is BL. We will assume for now
that there will be rules to define blf in the PRS, but to catch errors, we add the
rule (11) with the lowest priority. Unfortunately, this rule may lead to situations
where we will try to send lookup messages to doesNotUnderstand (apply rule (10)
then (4)). We assume in this case that the rewriting process will stop on the term
doesNotUnderstand, a decision which is implemented by the rule (12). By the
same token, we add the rule (13) to catch the errors when messages are sent to
non-existing objects. This rule mimics a meta-object fetching rule but it has lower
priority than these; hence, it will be fired only when the receiver has no meta-object
and this will only happen when the receiver term does not represent an existing
object.

This completes the set of rewrite rules which are necessary to model the essential
features of the kernel. We need three different priorities to cope with the previous
requirements. The Table 2 uses labels [, m, h to suggest lower, medium and higher
priority respectively. We now give a simple example of the rewriting process where
the current program configuration contains an object o that has a method m, which
only uses the standard behavior implemented by the kernel.
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Table 3. Complete reduction for the example 2. Each rewriting step is labeled with the rule
number used to rewrite the preceding term (to shorten the process and to make it easier to
read we have combined the steps consisting only of applying continuations with the following one
whenever it was possible). The first part (before the horizontal line) is the lookup phase while
the second part is the apply phase.

Rewriting steps Rules

eval(o, s,[al, k)

— eval(o, p, [], ¢(v, [s, 0], ¢(a, [0, [a], k], TK))) (14)
— eval(BMO, v, [s, 0], c¢(a [ ,[a], k], IK)) (16+4)
— eval(BMO, u, [}, (v, [, BMO), c(a, [BMO, [s, 0], c(a o, [a], K], T K], TK)) (14)
— eval(BMO, 7, [y, BMO), c(a, [BMO, [s, o], (a [0, la]. k], TK)], TK)) (1+4)
— eval(BL, a,[BMO,[s,0],c(a,[o,[a], k], IK)], IK) (6+5)
— eval(BL, . [], (7, o, BL], (o, [BL, [BMO, |3, o], c(ax, [0, a], K], TK)], I K], TK))) (14)
—+ eval(BMO, 7, [a, BL], cla, [BL, [BMO, [s,0], (@ [o, ] K], 1K), K], TK)) (2-44)
— eval(BA, o, [BL, [BMO [s,0],c(a,]o,[a],k],IK)],IK],IK) (7+5)
— eval(c(a [o, [a], K, TK), 8, [bL] (5, o)}, TK) (10)

— eval(c(a, [0, a], k], TK), 6, [m], T K) (18)
— eval(m, a, |o, [a], k], [K) (5)

— eval(m, u, [], ¢(y, [a, m], c(a, [m, [0, [a], k], IK], I K))) (14)
- eval(BMO,%[Oé m], c(a, [m, [0, [a], k], T K], I K)) (16+4)
— eval(BMO, , [],¢(v, [y, BMO], c(a, [BM O, [a, m],

c(a,[m, o, [a], k], IK], IK)], IK))) (14)
- eval(BLy Q, [BMO [a,m},c(a, [m7 [07 [G‘LkLIK]aIK)]’IK) (6+5)
— eval(BL, p, ], ¢(v, [a; BL], e(a, [ BL, [ BMO, [, m],
c(a,[m,[o,[a], k], IK], IK)], I K], 1 K))) (14)
— eval(BMO,~,|a, BL],c¢(a,[BL,[BMO, [a, m],

c(a,[m, [o,[a], k], IK], IK)], IK], 1 K)) (2+4)
— eval(BA, o, [BL, [BMO, o, m], ( ,[m, o, ]a], k], IK],IK)],IK],IK) (7+5)
— eval(c(a, [m, o, ]a], k], IK],IK),d,[blf(a,m)], IK) (10)
—)eval(BA,a, [m,[o,[a],k],IK},IK) (1745)
— baf(m, o, |a], k) (9)

Example 2. Consider a program configuration consisting of the kernel objects
plus an object o with a slot named ’s pointing to a method object m of one ar-
gument. Assume that BMO is the meta-object of o and BA, the apply method of m.
This configuration can be mapped to a PRS where the set of rewrite rules contains
the fourteen rules for the kernel plus the four rules below describing the two new
objects, where 0 = ¢(0), m = p(m) and s = ¢(’s).

s eval(o, i, [], K) = eval(K,§,[BMO], IK) (15)
ceval(m, p, [|, K) — eval(K, 6, [ BMO],IK) (16)
:blf(a,m) - BA (17)
:blf(s,0) > m (18)

>

The Table 3 illustrates the complete reduction process for a message (o ’s al)
and current continuation k. The evaluation of the message is represented as the
term eval(o, s, [a], k) where a = ¢(al) and k = p(k). ad
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3.3. Formal semantics and termination
3.8.1. Sound and complete priority rewrite systems

By itself, the operational semantics of PRS, as defined in Definition 5, doesn’t ensure
termination of reductions. The formal semantics [21] of a PRS is defined by mapping
it to the logical theory (a set of equational first-order formulas) that characterizes it
and whose logical consequences are computed via the PRS. A PRS is then sound iff
all the reductions it computes are logical consequences of the corresponding theory
and complete iff all logical consequences of the theory correspond to reductions in
the PRS. The necessary conditions to ensure the soundness and completeness of
PRS are based upon the notion of definitional PRS defined as follows [21]:

Definition 6 Given a PRS PRS, let’s partition the set F of functors (function
symbols) into defined functions, i.e. whose functors appears as outermost symbol in
left-hand sides of rewrite rules, and constructor ones. A constructor term is one
where no functors corresponding to defined functions appear. PRS is a defini-
tional priority rewrite system (DPRS) if the left-hand side of each rule is of
the form “f(r)”, where f corresponds to a defined function (by definition) and T is
a tuple of constructor terms.

The soundness and completeness of a PRS ensure that each ground term has
a unique constructor term reduct. They are shown in three parts: termination of
ground reduction (reduction limited to ground subterms, see 3.1), ground confluence
and reducibility of every non-ground constructor term. Termination means that
there is no infinite chain of rewrites. Proving termination is one of the hardest
problems in rewriting systems.

The following proposition gives conditions under which ground confluence (the
second requirement) holds for DPRS ([21], proposition 4):

Proposition 1 A DPRS is ground confluent if the following conditions are sat-
isfied: for every pair of rules r1 : f(11) — t1 and ro : f(72) — t2 whose left-hand
sides unify with most general unifier o, one of the following holds:

e one of the rules r1 or ro has a higher priority that the other;

o f(m1)o is an instance of the left-hand side of another rule of higher priority than
ry (orre);

o {10 and tyo are identical.

The final requirement is that every ground non-constructor term must be re-
ducible. The easiest way to achieve this condition is to provide catch-all rewrite
rules for all defined functions (i.e. for all functors f of defined functions, provide
a rule whose left-hand side is of the form f(z1,...,z,) where x1, ..., z, are
variables). Such a strategy is easy to implement without disturbing the other re-
quirements simply by assigning those catch-all rules the lowest priority.
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3.3.2.  Mapping program configurations to sound and complete PRS

Program configurations in our reflective language can be mapped to sound and
complete PRS. But before proving this assertion, we must define the mapping A
from program configurations to PRS. First, we represent objects and slot names as
terms in the PRS. Basically, a program configuration is a set C of objects existing
in the program at a certain point in its execution. To manipulate these objects
within the PRS, we map them into 0-arity terms.

Proposition 2 For any program configuration C, there exists a set F of 0-arity
terms and a function ¢ : C — F such that C and F have_equal cardinality, i.e.
#C = #F, and for all c € C, there is one and only one f € F such that o(c) = f.

Proof: Straightforward by construction. The set F can be any set of O-arity
functors whose cardinality equals the one of C. ¢ is then defined as a one to one
mapping from C to F. [ ]

For readability, it is more convenient to assume that F is constructed in a more
disciplined way. We distinguish two subsets in C: S is the set of objects representing
slot names and @ = C\S contains the remaining objects. F should first contain
the predefined functors used as the set Fy in Table 2. For all other objects 0o € O
and s € S not represented in Fy, F can be completed with functors such as ol,
02, ...and sl, s2, ...respectively. F is then the set of O-arity functors in the set
T(F,H) of first-order terms in our PRS. ¢ maps BMO, BL, BA, etc. to the functors
BMO, BL, BA, ..., as well as selectors (slot names) ’metalObject, ’Lookup, etc.
to the functors u, 7, ... Otherwise, it simply maps objects and selectors to terms
of the form on and sm, n,m > 0.

Definition 7 For any program configuration C, given:

e a set F of 0-arity functors such that #F = #C),

e a set T(F,H) of first-order terms defined by the following: Fo = F, Fo =
{eval,cons,blf}, F5 = {c}, Fy = {baf}, F = FoUFoUF3UF, and H =
{M,0,A,R,S,K,K' K"},

o a function ¢ : C — Fo C T(F,H)

o and a set of labels L = {h,m,l} with an order relation >= {(h,m), (h,1), (m,l)}.

we define the mapping A : C — (T(F,H),L, R, =) where = is isomorphic to >,
and R contains the rules obtained by the following:

1. For any o € C with meta-object mo, add a rule: h : eval(o,u,[],K) —
eval(K, 6,[mo], IK), where o = ¢(0) and mo = ¢ (mo).

2. For any o € O whose meta-object is BMO and for all selectors s € S such that
blf(s,0) = method, add a rule: h : blf(s,0) = m, where 0 = p(o0), s = ¢(s)
and m = ¢ (method)

3. Add the rewrite rules (4) to (14) already defined in Table 2.
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Figure 2. Program configuration (Example 3): and object o has a specialized lookup method 1mo
while the method m has its own apply method ma.

I
I
I
° m ma value-of
I L (P -
| ! < parent-of
______________ | <- - - meta-of

The PRS obtained by the above mapping is consistent with the one presented in
63.2. The mapping A generates slightly more rules since it will generate a meta-
object fetching rule for all objects in the configuration (in O) and many rules with
left-hand sides of the form bl f (s, 0) for the kernel objects, which were not necessary
in the example. But these additional rules do not change the fundamental properties
of the resulting PRS. Using the PRS, a message is mapped to a term which is then
used as a query (to reduce it by rewriting):

Definition 8 A message with receiver p € C, selector s € S, arguments al,
.., an € C, and current continuation object k € O is mapped to the term t =

eval(rec, sel,[ay, .. .,an],cont) (€ T(F,H) as defined in Def. 7) where rec = ¢(p),

sel =p(s), a1 = ¢(al), ..., a, = p(an) and cont = ¢ (k).

Proposition 3 For any program configuration C which respects the principles P1
to P12, the PRS A(C) is sound and complete.

Proof: Follows immediately from propositions 4, 5 and 6 in the appendix [ |

4. Discussion

Interesting outcomes of characterizing our reflective protocol as priority rewrite
systems lie in a better understanding of reflection and of its implementation.

4.1. General object behavior

In general, an object o has n levels of meta-objects, i.e. o has a meta-object mo,
which itself has a meta-meta-object, and so on until BMO is reached. As requested



BEHAVIORAL REFLECTION IN A PROTOTYPE-BASED LANGUAGE 169

by the reflective protocol, each of these meta-objects has a lookup method. The
purpose of creating such a hierarchy of meta-objects is to have specialized lookup
methods. Similarly, a method object m has its own apply method ma, which itself
has its own apply method and so on until BA is reached. To make things more
concrete, consider the following example where an object has its own specialized
lookup and where the method to be executed has its own apply method.

Example 3 (Part I). Consider the program configuration depicted in Figure 2.
The following table gives the rewrite rules added to the one of Table 2 by A (we
omit certain rules which are not used for the moment).

ceval(o, i, [], K) — eval(K, §, [mo),ik) (19)
: eval(mo, p, [|, K) — eval(K, §,[BMO],ik) (20)
ceval(lmo, p, [], K) — eval(K, §, [ BMO],ik) (21)
:blf(7y, mo) — lmo (22)
:blf(a,lmo) — BA (23)

S>>

The Table 4 illustrates the reduction process for the lookup phase assuming a
message (o ’s a) and current continuation k. |

The lookup phase can be split in two major parts and several sub-parts. In the
first part (Table 4, above the twin lines), the reduction process finds the lookup
method associated with mo. This is done in three subparts. First, it dives into
the meta-object hierarchy until it finds BMO. Next, it retrieves BL, the lookup
method of BMO. And finally, it applies BL to mo in order to find its lookup
method Imo. The second part (under the twin horizontal lines) applies Imo to o
in order to find the method corresponding to the selector s. This is done in four
subparts: it dives in the meta-object hierarchy of imo until BMO, it finds the
lookup method BL of BMO, it applies BL to Imo to find its apply method BA
and, finally, it applies BA to lmo.

This ends with the reduct baf(lmo,mo,[s, o], c(a, [0, [a], k], ik)). Contrary to Ex-
ample 2, the rewrite system ignores the semantics of lmo. In Example 2, the rewrite
system was able to find the appropriate method to respond to the message because
the semantics of BL is known to it. Here, the reduction process ends with a term in-
terpreted as a request to the language processor to find the method associated with
selector s in o using the lookup method Imo. To do that, the reduct is transformed
back into a call to the function baf.

Hence, we must perform the inverse of the mapping described in Definition 8,
a task for which we assume that we have a function ¢ ~! from terms to objects.
The only problem is to transform the continuation ¢(«, [0, [a], k], ik)) built during
the reduction into a continuation object. Hold on to this problem for the moment,
we will come back to it shortly. Assume we transform the term into a call to
baf. Applying lmo finds the method m which is then passed to the continuation
c(a, [o,[a], k],ik)) by sending it the message with selector § (’apply-cont-to) and
with argument m. This message invokes again the rewriting system, as it is now
described:
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Table 4. Complete reduction for the example 3 (lookup phase).

Rewriting steps Rules
eval(o, s,[al, k)
— eval(o, p, [], ¢(7, [s, 0], c(a, [0, [a], k], ik))) (14)
— eval(mo, v, [s, 0], c(a, |0, [a], k], ik)) (19+4)
— eval(mo, , [}, e(7, [v, mol, (@, [mo, s, ], c(a, [0, [a], K] #k)], k))) (14)
— eval(BMO, v, [y,mo], ¢(a, [mo,[s, 0], c(a, [0, [a], k], k)], ik)) (20+4)
— eval(BMO, u,[],c(v, [y, BMO], c¢(a, [ BMO, [y, mo], c(a, [mo, [s, 0],

c(e, [o, [a], k], ik)], ik)], ik))) (14)
— eval(BMO,~, [y, BMO],c(a,  BMO, [y, mo], ¢(a, [mo, s, 0],

c(a, o, [al], k],ik)],ik)],ik)) (1+4)
— eval(BL, a,[BMO, |y, mo], c¢(a, [mo, [s, 0], c(a, [0, [a], k], k)], ik)], ik) (6+5)
— eval(BL, p, [], ¢(v, [a, BL], ¢(a, [BL,[BM O, [y, mo], ¢(e, [mo, [s, 0],

c(a, o, [al], k], ik)],ik)],ik],ik))) (14)
— eval(BMO,~,|a, BL],c(a,[BL,[BMO, [y, mo], ¢(c, [mo, s, 0],

c(a, o, [al], k], ik)],ik)],ik],ik)) (2+4)
— eval(BA, o, [BL, [BMO, [y, mo], ¢(a, [mo, [s, o], c(a, [0, [a], k], ik)], ik)], ik], ik) (7+5)
— eval(c(a, [mo, [s, 0], c(a, [0, [a], k], ik)],ik), d, [bl f (v, mo)], ik) (10)
— eval(lmo, a, [mo, [s, 0], c(a, [0, [a], k], ik)], ik) (23+5)
— eval(lmo, u, [], ¢(y, [, Imo], c(a, [lmo, [mo, [s, o], c(a, [0, [a], k], ik)], ik], ik))) (14)
— eval(BMO, 7, [a,lmo], ¢(a, [Imo, [mo, [s,0], c(a, [0, [a], k], ik)], ik], ik)) (21+4)
— eval(BMO, p, ], ¢(v, [y, BMO], c(a, [BMO, [a, Imo], ¢(e, [Imo, [mo, [s, o],

c(a, o, [al], k], ik)],ik],ik)], ik))) (14)
— eval(BMO,~,[y,BMO],c(a,[BMO,[a,lmo], ¢(a, [lmo, [mo, s, o],

c(a, o, [al], k], ik)],ik],ik)], ik)) (1+4)
— eval(BL, a,[BMO,|a,lmo], ¢(a, [lmo, [mo,[s, o], c(e, [0, [a], k], k)], ik], k)], ik) (6+5)
— eval(BL, p,[], ¢(v, [, BL], c(a, [BL, [BM O, [, Imo], c( e, [Imo, [mo, [s, o],

c(a, o, [al], k], ik)], ik],ik)], ik], ik))) (14)
— eval(BMO, v, |a, BL],c(a, [BL,[BMO, [a,lmo], ¢(e, [lmo, [mo, [s, o],

(e, [0, [a], k], ik)], ik], ik)], ik], ik)) (2+4)
— eval(BA, a,[BL, [BMO,|[a, lmo], ¢(a, [lmo, [mo, s, 0],

c(e, [o, [a], k], ik)], ik], ik)], ik], ik) (7+5)
— eval(c(a, [lmo, [mo, [s, 0], c(a, [0, [a], k], ik)], ik], ik), 8, [bl f (r, Imo)], ik) (10)
— eval(BA, a, [lmo, [mo, [s, 0], c(a, [0, |a], k], ik)], ik], ik) (2445)
— baf(lmo,mo, [s,0]. ¢(a, [0, [a], k], ik)) (9)

Example 3 (Part II). Consider again the program configuration depicted in
Figure 2. The rewrite rules added by the mapping A for the application of the

method m (we still omit rules not used in the reduction) are:

ceval(m, p, [], K) = eval(K, §, [BM O], ik)
: eval(ma, p, [], K) = eval(K,§, [ BMO],ik)
:blf(s,0) > m

2blf(a,m) = ma

:blf(a,ma) — BA

ISaliS S S S
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Table 5. Complete reduction for the example 3 (apply phase).

Rewriting steps Rules

eval(c(a, [o, [a], k},ik)}, d,[m], ik)

— eval(m, a, [0, [a], k ,z;c) (5)
— eval(m, . [], c(7, [, m], c(a, [m, [0, [a], k], ik], ik))) (14)
— eval(BMO, 7, [a, m], c(a, [m, [0, [a], k], ik],ik)) (24+4)
— eval(BMO,~,[y,BMO],c(a,[BMO,[a,m], c(a, [m,[o, [a], k], ik],ik)], ik)) (1+4)
- eval(BLy Q, [BMO [Oé, mL C(Oé, [m7 [07 [G‘L k}alk]’ 1k)}7 Zk) (6+5)
*> eval(BL7 u’ []7 C(’y7 [a’ BLj|7 C(a7 [BL7 [BMO7 [a7 mj|7

(e, [m, lo, [a], k], ik, ik)], ik], ik))) (14)
— eval(BMO, v, [a, BL), c(a, [BL, [BMO, [a, m], c(a, [m, [o, a], K], k], ik ] ik], ik)) (2+4)
— eval(BA, o, [BL,[BMO, [a,m], c(a, [m, [0, [a], k], ik], ik)], ik], ik) (7+5)
— eval(c(a, [m, [o, [a], k], ik], ik), d, [bl f (o, m)], ik) (10)
— eval(ma, o, [m, [0, [a], k], ik],ik) (27+5)
— eval(ma, g, [}, (7, [ay mal, (e, [ma, [m, [0, [a], K], ik], k], ik))) (14)
- eval(BMO7 s [Oé, ma]’ C(a7 [maa [m7 [07 [G‘L k}alk]’ 1k]a Zk)) (25+4)
5 eval(BMO, i, [}, e(v, [, BMO). c(a, [BMO, [a, mal,

c(a, [ma, [m, [0, [a], K], ik}, k], k)] ik))) (14)
- eval(BMO7 Vs [77 BMOL C((I, [BMO, [aamaL C(Oé, [ma7 [m7 [O’ [a]a k]’lk]’ZkLZk)]’,Lk)) (1+4)
— eval(BL, a,[BMO, [, ma], ¢(a, [ma, [m, [0, [a], k], ik], k], ik)],ik) (6+5)
- eval(BL7 H, [] C(’Y! [Oé, BLL C(a7 [BL7 [BMO, [a,ma],

c(a, [ma, [m, [o, [a], k], ik], ik], ik)], ik], ik))) (14)
— eval(BMO, v, |a, BL], ¢(a, [BL,[BMO, [a, mal],

c(a, [ma, [m,|o, [a], k], ik],ik],ik)], k], ik)) (2+4)
— eval(BA, a, [BL, [BMO, [a, ma], c(a, [ma, [m, [0, [a], k], ik], ik, ik)], ik], ik) (7+5)
— eval(c(e, [ma, [m, [o, a], K], k], ik], ik), &, [bLf (a, ma)], ik) (10)
— eval(BA, a, [ma,|m, [o,|a], k], ik],ik], ik) (28+5)
— baf(ma, m,[o,[a], k], ik) (9)

The Table 5 illustrates the reduction process after the lookup phase has found
the method m associated with selector s in o. a

The apply phase can be split in three parts. In the first part, the rewrite system
finds ma, the apply method of m, a task that launches a short (because the meta-
object of m is BMO) lookup phase. The second part finds the apply method of
ma, which turns out to be BA. The last part applies BA to ma and ends with
a term baf(ma,m,[o,[a], k], ik), which again represents a call to the basic apply
function. To execute the rest of the program, this term is transformed back into a
call to baf, as we discussed after the lookup phase.

The Example 3 just gives a glimpse of the complexity arising from a systematic
use of reflection. For instance, assume the lookup method Imo does not have BA as
its apply method but another one called ImoApp. If the apply method of ImoApp
is BA, then the result of the reduction process yields the following term:

baf(lmoApp,lmo, [mo,|s, o, c(a, [o,[a], k], ik)], ik)
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This term represents the execution of the method ImoApp on Imo which is itself
a method. ImoApp acts as a local interpreter for Imo which is executed on mo to
find the method associated with selector s in 0. The same kind of behavior may
happen during the apply phase where, in general, we could have several more levels
of apply methods than in Example 3. Assume, for instance, that the apply method
ma has its own apply method ma? and so on until an apply method ma™ is reached
whose apply method is BA. The result of a reduction process would then be:

baf(mana manilv [ B [ma7 [ma [07 [a]7 k]/ Zk]v Zk]a e ']7 Zk)

This reduct requires the execution of baf, which applies the method ma™ to the
object ma™ 1. But, ma™ is an apply method that executes the method ma™~!,
which itself executes the method ma™ 2, and so on until the method m is executed
on o. In the field of reflection, we recognize that we are in the presence of a
reflective tower such as the one presented by Smith [24]: a tower of evaluators
where the nth level evaluator executes the (n-1)th level evaluator and so on. In
3-Lisp, an expression of the current tower similar to the above (we’ll compare these
to ours in the next section) would appear as:

... (reduce 'reduce (... '"(reduce m '(a) en kyn) ...) €q ko). ..

where eq, ...,e, and ko, ..., k, are respectively the environments and the continua-
tions of each level. 3-Lisp’s towers are theoretically infinite, but when the behavior
of a level doesn’t deviate from the standard one, this level and all the levels above it
can be eliminated and replaced by a basic evaluator. Also, a good implementation
of 3-Lisp [7] detects and eliminates as soon as possible a level becoming flat during
the execution. Hence, in theory, 3-Lisp should rarely execute a tower of more than
two levels. Notice as mentioned earlier the similar flexibility between 3-Lisp and

our protocol obtained by the use of explicit continuations.

4.2. Efficiency Concerns

A major concern about reflective languages is efficiency. We now briefly come back
to the lookup and apply phases to identify the potential sources of inefficiency and
to discuss their implementation. The reflective introspection rule is at the heart of
our language but should the language processor use it blindly? Gains in efficiency
generally call for compiling message sending and applying optimizations in much
the same way as Kiczales suggested in [14].

For the lookup phase, the computation is essentially additive, a lookup method
is found which itself is used to find the next one and so on. Hence, it can be rather
easily optimized. In practice, the hierarchy of meta-objects of an object may not
change very often. Standard caching techniques can be used to keep around the
current lookup method applying to o. We just need to compute lookup methods
associated with each object upon reception of their first message and when changes
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are made to their meta-object hierarchy. Hence, the resulting efficiency should
equal the one of current object-oriented languages.

For the apply phase, things are a little more complicated since we have this
reflective tower of apply methods, one executing the next one below until the apply
method ma executes m. This process is essentially multiplicative, and thus harder
to implement efficiently. Actually, each of these apply methods acts as a language
processor that defines the semantics of a (new) language in which the method
under it is written. Such language processors can be defined either as compilers
or interpreters. In the first case, the method ma'~' would be compiled using
the “compiling” apply method ma', into code that can again be compiled by the
“compiling” apply method ma®*!. Applying this process n times would compile
the method m into code interpreted by the language processor directly (baf), which
could be kept within the method object itself. (This kind of behavior is implied
by the specification of the function make-method-lambda in the CLOS MOP [15]).
The main problem we face with this approach is how to provide end-users with
a suitable abstract way of specifying “compiling” apply methods, although users
driven by performance should be interested in such an approach even if it looks
more complicated. Premises of this approach appear in Lamping et al. [16].

An alternative, and more traditional, approach would be to have “interpreting”
apply methods, which would essentially be variants of the basic meta-interpreter of
the core language. This approach is well-known to be very inefficient if naively im-
plemented. To obtain the level of efficiency expected from compiling apply methods,
some sort of background automatic compilation would be needed. Techniques such
as partial evaluation and semantics-based program transformations should play a
role, but they are not well mastered yet, especially in object-oriented and impera-
tive languages. In reflection, their use is still in its infancy. Should it be possible
to use them, caching techniques could track the result of these transformations and
of the optimized code from one application of a method to the other.

4.3. The status of the rewriting system

In the actual execution of a program, each message sending triggers a rewriting
process, which in the best case (the meta-object of the receiver is BMO and the
apply method used by the method to be applied is BA) yields a term representing
the call to be made to the basic apply function to execute the method corresponding
to the message. As we have seen in the last example, the rewriting process can stop
short of this ideal situation if the receiver has its own specialized lookup method. In
this case, rewriting cannot proceed further and it needs to go back to the program
in order to execute the lookup method.

Beyond implementation concerns, a striking fundamental question at this point
is the status of these rewriting systems versus the current object world. Until now,
we have used them to prove the correctness of the lookup o apply protocol and have
suggested that they must be part of the execution of programs. In fact, we can
envision three possible implementations, each of which should be investigated since
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at present none appears to have an edge over the others: (1) absorb the rewriting
system within the evaluation process, (2) absorb the evaluation and application
processes into the rewriting system, or (3) keep the evaluation process and the
rewriting system independent of each other.

The first two alternatives simplify the coordination between method execution
and rewriting by unifying them into a single framework. Because the rewriting
system is composed of a fixed set of rewriting rules, except for very simple rules
that encode meta-object fetching in general and the lookup process for objects
that have BMO as their meta-object, it is conceivable to embody them into the
evaluation process, companion of the apply. This approach appears more amenable
to efficient implementation (see the above comments on apply methods), since it
draws on more traditional implementation technologies. However, it would blur
evaluation, application and rewriting into one complex language processor where
some interesting characteristics of the rewriting system would be lost.

The PRS is obviously a faithful, although incomplete, representation of the cur-
rent program configuration. In fact, the PRS is a declarative meta-level for the
introspection part of the object world, in the sense that it can be given a formal
semantics in terms of an equational theory without dealing with the operational
semantics of the reflective protocol. Declarative reflection is an area where little has
been done, and our model appears to be a good testbed for further research on this
subject. The second implementation alternative, which builds the whole language
around priority rewriting, is appealing, especially to provide a formal account of the
full language in terms of an equational theory. However, it raises several practical
issues such as efficiency.

The third alternative could provide the best of both worlds. Both evaluation and
the priority rewriting system for introspection would be kept independent of each
other. We currently have an interpreter for our language implemented along this
line. The major shortcoming of this approach is the cost of alternating between the
core language processor and the rewriting system, since it happens at each method
call. A good coordination between the object world and the PRS would be essential
to the system, but this coordination is essentially what is called causal connection
in reflection. The immediate consequence of preserving the rewrite system is that
we could make it a first-class entity. This would have several concrete outcomes
in terms of efficiency. First, causal connection would avoid reconstruction of the
whole PRS each time a message is executed or each time an object is created or
destroyed by simply updating the existing PRS. Second, rewriting rules could be
used to implement optimizations. A cache for lookup methods could be viewed as
a set of rewrite rules. In the Example 3, optimizing rewrite rules would have the
form: eval(mo, u,[], c(v, [y, mo], K)) — eval(K,§, [lmo],ik). Such rules are simply
shortcuts that bypass a chain of rewriting steps of a finite length. Thanks to pri-
ority rewrite systems, it would suffice to give them higher priority over conflicting
rules to avoid ambiguities. The chief advantage of this approach would be to intro-
duce optimizations without obscuring the implementation with details that can be
expressed much more elegantly with rewrite rules.
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5. Related Work

Behavioral reflection in object-oriented programming has been popularized by Maes
in 3-KRS [17]. Watanabe and Yonezawa [27] have then studied the use of meta-
objects in the concurrent reflective language ABCL/R, a work that initiated several
others in that domain. Ferber [9] has suggested an integration of meta-objects into
a class-based model, namely ObjVLisp [3].

Our approach shares with these the idea of implementing reflection in OOP by
introducing a reflective introspection protocol on message passing. Maes and Fer-
ber approaches to the potential infinite meta-regression are similar to ours; they
impose explicitly in the language basic cases to fall back on the implementation
language. Maes uses explicit calls to the implementation language through “Form”
expressions that essentially quote Lisp expressions in 3-KRS. Ferber uses execution
modes (reflect versus normal) and tests them explicitly to decide whether or not to
reflect. Our approach proposes not to hard-code such tests into the language but
to provide them as declarative knowledge in the priority rewrite system. We claim
that this will prove to be easier to understand, and to modify.

Watanabe and Yonezawa [27], as most of the other work on actor-based reflection
and also 3-Lisp, create meta-levels in a lazy fashion. In this approach, reflective
computation is fired by an explicit call upon the meta-level, which is created on
demand. If the meta-level is never accessed, it won'’t be created, hence stopping the
meta-regression. This approach concurs with the original idea of reflection, which
avoids to put an a priori limit on the degree of introspection [7] (a number of tower
levels they need to be run), but it appears less amenable to efficient implementation.
Work should be pursued in both directions in order to be able to fairly compare
them after the emergence of a deeper understanding of behavioral reflection. We
also believe that our work sheds some new light on these approaches.

Reflective towers are the cornerstone of behavioral reflection. 3-Lisp [7] makes
them explicit, while 3-KRS [17] and CLOS [6] exhibits a similar characteristic.
Our study has made explicit the link between object-oriented reflection and the
functional one, first introduced by 3-Lisp but also studied in Scheme [26], [4]. The
main differences between our approach and these are the following;:

1. First, towers in our model appear in a method per method fashion and they
are finite, giving them statically a fixed degree of introspection. This locality
of effects ensures that only those methods that use a particular tower will be
affected by the execution at the corresponding degree of introspection. This
locality also suggests that optimizations may be easier.

2. Second, we don’t make the single-threading assumption that enabled the work
on meta-continuations [26], [4]. In those approaches, authors assume that only
one level in the tower is executing at any time and then concentrate on level-
shifting operations in potentially infinite towers. However, this prevents higher
levels in the tower from making side-effects. Since we don’t make this assump-
tion, the control in our model cannot be captured by meta-continuations.



176 MALENFANT, DONY AND COINTE

3. Third, reflective computations are not fired by climbing the tower through re-
flective functions but by making changes on apply methods themselves. We
claim that this is dual to the 3-Lisp approach.

Notice also that the work on meta-continuations was driven by the goal of giving
a formal account of reflection using denotational semantics. Even if it played an
important role in the understanding of reflection, this approach finally failed be-
cause reflection impairs the compositionality assumption of denotational semantics
[4]. Further work is still needed to achieve the goal of formalizing reflection and
rewriting systems should play a role in such an attempt.

For instance, Mendhekar and Friedman [20] develop a programming logic based on
the A,-calculus for a language in the line of 3-Lisp, Brown [26], and Zx [13]. Reifi-
cation is noted () VU, and the rewrite system that defines the language semantics
reduces an applicative context C[() VU] to C[VV'], where V' is a representation
of the current context C' whose redex is represented by U. Informally, V' can be
viewed as a reflective function that is passed a representation of the current exe-
cution context. Coarsely speaking, our scheme could be rephrased in a functional
programming style by attaching an apply function F to each abstraction A in
a term (A;F). Neglecting issues such as the order of evaluation, the application
((A; F) x) would then be preceded by an unfolding operation where the apply func-
tion would be extracted from (A; F) and applied to the representation of A and z,
e.g. (F fr(A) fr(z)) where fg is a suitable representation function [22], [20]. The
apply function would itself be an abstraction, and to stop the unfolding, one could
provide a basic apply function, as in our model. The unfolding process could be
expressed as a PRS with one rule to do the unfolding and a higher priority one to
stop the unfolding on the basic apply function. A complete comparison of both sys-
tems, as well as with the generic functions implementation of Queinnec and Cointe
[23], should be pursued in the next future.

6. Conclusion and Future Work

In this paper, we have studied a new model for behavioral reflection based on
meta-objects in a prototype-based programming language. A new method invo-
cation protocol, using the standard equation message execution = lookup o apply
augmented with first-class continuations, is the cornerstone of this model. We have
given a formal semantics to this protocol using the theory of priority rewrite sys-
tems. We have then discussed the behavior of objects in the language by examining
step by step the execution of a message. Not only does this study give a fine-grained
understanding of behavioral reflection in our model, it also leads to two important
conclusions concerning behavioral reflection in OOP.

First, our study confirms that the reification of the lookup does not cause fun-
damental problems and we can reasonably expect to implement it efficiently. Since
it has many interesting applications in practice [10], this should be part of most
object-oriented languages. Second, the reification of the apply methods leads to
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reflective towers 4 la 3-Lisp, which confirms again the central role they play in
behavioral reflection. Object orientation changes the perspectives by making tow-
ers local to each method and our model makes them finite. Nevertheless, this
result suggests that no gain in efficiency can be obtained without deepening our
understanding of reflective towers. Such gains will necessitate either a high-level
and portable model for “compiling” apply methods or, if apply methods are def-
initional interpreters, the application of semantics-based program transformations
techniques to be adapted to reflective towers.

While priority rewriting systems proved to be a successful approach to give a
formal account of reflection in OOP, they can also provide a declarative meta-
level to be reified and causally connected with the base language, leading to a
new dimension of reflection. Priority rewrite systems are also highly successful in
providing both a better understanding of reflection and a new framework for the
efficient implementation of object-oriented reflective language.

This work points at several research directions. We still need to build libraries
of examples using the reflective facilities discussed here, as well as developing a
methodology for reflective software construction. An interpreter for our language
is now available but efficient implementations are, in our view, one of the main
research direction in the near future to make behavioral reflection an effective tool.
Much work yet remains to obtain an implementation that would cope with this
ambitious requirement, yet it is crucial for the future of reflective languages. Other
directions of interest concern the use of priority rewrite systems. The research
agenda includes work to be done to give a complete formal account of reflection
where PRS could play a role. Including a rewriting meta-level and reflecting over it
promises to be fruitful, both to include optimization rules and to be able to reflect
on the reflective protocol itself.
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Appendix

Proposition 4 For any program configuration C which respects the principles P1
to P12, the PRS A(C) is terminating.

Proof: The proof proceeds by induction on the number of objects in the program
configuration C.

Basic case: Consider the program configuration C corresponding to the ker-
nel and any term t € T (F,H) to be I-reduced. Only ground terms of the form
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eval(o,s,a, k) and blf(s,0) will be I-reduced. Terms of the form blf(s,0) are I-
reduced either to a term m representing a method if o represents an object in
C, or to the term doesNotUnderstand, and in both cases no further I-reduction
is possible. Terms of the form eval(o,s,a,k) can match many rules in A(C),
but in the most general case, they are I-reduced using rule (14) (Table 2) to
eval (o, u, [], c(v, [s,0], c(a, [0,a, k], IK))). Since o is an object in the kernel, by
definition its meta-object is BMO and by Def.7.1 A(C) contains a rule that I-
reduces this term to eval(c(y,[s, 0], c(a,[o,a, k], IK)),d,[BMO],IK). Applying
successively rules (14,1,4,6,5,14,2,4,7,5,10) as in Table 3 yields eval(c(«, [0, a, k], I K),
3, [blf(s,0)],IK). By Def.7.2, A(C) contains a rule of the form bl f(s,0) — m where
m represents a method in the kernel, which I-reduces this term to eval(c(a, [0, a, k],
IK),0,[m],IK), then I-reduced to eval(m,«,[o,a,k],IK) by rule (5). Rule (14)
applies and yields eval(m, u,[], c(v, [a,m], c(a, [m, [o,a, k], IK],IK))) Because m
represents a kernel method, by Def.7.1, A(C) contains a rule eval(m, u,[], K) —
eval (K, 6,[BM O], I K') which I-reduces this term to eval(c(y, [a, m], c(a, [m, [0, a, k],
IK],IK)),0,[BMO], IK) This term is I-reduced to eval(c(a, [m, [0, a, k], IK], IK),
0, [blf (e, m)], IK) by rules (4,14,1,4,6,5,14,2,4,7.5,10) as in Table 3. Because m is a
method in the kernel, its apply method is BA and by Def.7.2, A(C) contains a rule
blf(a,m) — BA that I-reduces the term to eval(c(a, [m, [o,a, k], IK],IK),d,[BA],
IK). This last one I-reduces to baf(m,o0,a, k) by rules (5) and (9), and no further
I-reduction is possible. This prove the proposition for the basic case.

Induction step: Assume now that the proposition is true for a program config-
uration C, containing n objects. Consider a configuration C,y; adding a n + 1th
object 0,41 to Cp. A(Cphy1) is the same as A(C,) (up to an isomorphism on F
and @), except that there will be a new rule of the form eval(oni1, i, [, K) —
eval (K, 0, [mon41], I K) and possibly new rules of the form bl f(s, 0,41) for all slots
with name s in 0,41 if mop11 = BMO. If a message with selector s', arguments a’
and current continuation k' is sent to 0,41, then rule (14) applies and I-reduces the
term eval(0n+17 5’7 ala kl) to eval(0n+1a Hy []7 C('Y-, [5/-, On+1]7 c(a, [On+1 ) ala kl]'/ IK)))
If 0,11 does not correspond to an existing object, rule (13) will immediately I-reduce
this term to its reduct noSuchObject. Otherwise, it is I-reduced by the meta-
object fetching rule to eval(c(v,[s', ont1], c(@, [ont1,a’, k'], IK)), 0, [mony1], [K).
By the induction hypothesis, the meta-object mo,1, its lookup method as well
as the method m’ used to respond to the message already exist, so sending them
messages yields terms that can be reduced in a finite number of I-reductions.

|

Proposition 5 For any program configuration C which respects the principles P1
to P12, the PRS A(C) is ground confluent.

Proof: The proof proceeds by induction on the number of objects in the program
configuration C.

Basic case: A applied to the kernel produces a PRS whose rewrite rules are rules
(4) to (14) in Table 2 augmented with meta-object fetching rules and rules whose
left-hand sides (lhs) are of the form bl f (s, 0). It is definitional, since the only defined
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functions correspond to functors eval and blf and, in the lhs of all rewrite rules,
those functors never appear within arguments. The PRS is thus ground confluent
by Proposition 1 because (1) there is no pair of rewrite rules with labels & whose
lhs unify, (2) all pairs of rewrite rules whose lhs unify contain one rule of higher
priority than the others:

e All rules with label h have their lhs unifying with either the lhs of rule (12) or
the lhs of rule (14), but these two rules have lower priority.

e Rules (9) and (10) have their lhs unify, but (10) has higher priority.

e Rules (9) and (10) also have their lhs unify with the lhs of rule (14), but again
rule (14) has lower priority.

e The lhs of rule (13) unifies with the meta-object fetching rules and with rule (14)
but in each case conflicting rules don’t have the same priority.

3

Induction: Assume the proposition true for a program configuration C,, with n
objects. If we add an n+1th object o to C, to obtain a new configuration C,, 1,
A(Cpy1) is the same as A(C,,) (up to an isomorphism on F, and ¢), except that it
adds one meta-object fetching rule if o € O and rewrite rules whose lhs are of the
form blf(s,0) if the metaobject of 0 is BMO. These new rules don’t violate the
conditions for A(C,+1) to be definitional. They have priority h and their lhs can
only unify with the lhs of rules (12,13,14) having lower priority. [ ]

Proposition 6 For any program configuration C which respects the principles P1
to P12, in the PRS A(C), every ground non-constructor term is reducible.

Proof: The only two defined functions of the PRS, eval and bl f, have “catch-all”
rules that ensure the reducibility of every non-constructor term. [ |

Notes

1. Throughout the text, we use a Scheme-like syntax for the code. Message sending expressions
are noted (<receiver> <selector> <argl> ...<argn>), where the subexpressions <receiver>,
<argl>, ...<argn> reduces to objects while <selector> reduces to a symbol.

2. There should also be an environment, but since here we don’t want to deal with evaluation of
the receiver and the arguments, the environment doesn’t need to be represented at this point.

3. A standard representation of list as first-order term uses the functor cons which mimics a
cons with two arguments: the car and the cdr of the list. The 0-arity functor nil de-
notes an empty list. To lighten the text, we use the Prolog syntax for lists, i.e. a list
cons(1, cons(2, cons(3,nil))) is written out as [1,2, 3].
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