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Abstract
In this position paper, we investigate structural reflection in prototype-based lan-
guages. The language Self is used as experimental subject because of its complete
implementation and its available documentation. In Self, two entities deal with struc-
tural properties of objects: maps and mirrors. Maps factorize common information
about the format of similar objects; they play the structural role of classes yet they
are not Self objects. Mirrors, on the other hand, are Self objects but they don’t store
information on their own: they give a reading access to internal information about
objects through a set of virtual machine primitives. We look at the properties of maps
and mirrors and actually, the interesting points are the following. First, maps have the
advantage over classes to be managed automatically by the system; reifying them into
the language could lead to the study of the automatic management of shared struc-
tural meta-objects which may be viewed as a high-level storage management. Second,
the use of mirrors raises the question of whether systems that only offer causally con-
nected reading and writing accesses to their internal data structures through system

primitives can be considered as reflective or not.

Résumé

Dans cet article, nous nous penchons sur la réflexion de structure dans les langages
a prototypes. Le langage Self est utilisé comme terain d’expérienmentation en raison
de son implantation complete et de la disponibilité de sa documentation. En Self,
deux entités contiennent des informations sur les propriétés structurelles des objets:
les descripteurs et les miroirs. Les descripteurs factorisent les informations communes
sur le format des objets de méme structure; ils jouent le role structurel des classes sans
étre des objets Self. Les miroirs, par contre, sont des objets Self mais ils ne contien-
nent aucune information en propre; ils donnent un acces en lecture & des informations
internes sur les objets a l’aide d’un ensemble de procédures systeme. L’examen des pro-
priétés des descripteurs et des miroirs, a mis en évidence les points intéressants sont
les suivants. Premierement, les descripteurs ont ’avantage par rapport aux classes
d’étre gérés automatiquement par le systeme; les réifier dans le langage menerait a
I’étude de la gestion automatique de méta-objets de structure partagés, ce qui pourrait
étre considéré comme une forme de gestion de mémoire de haut niveau. Deuxieme-
ment, 'utilisation des miroirs souleve la question de savoir si les systéemes qui offrent
uniquement des acces en lecture et en écriture a leurs structures de données internes,
a l'aide de procédures systeme, tout en respectant la connexion causale, peuvent étre
considérés comme réflexifs ou non.



1 Introduction

Today, many object-oriented systems exhibit some form of reflective capabilities. In
class-based languages for example, classes and metaclasses implement what has been
called structural reflection. The corollary behavioral reflection is concerned with the ex-
ecution of objects: message passing as well as method lookup and invocation. 3-KRS
[Mae87b, Mae87a] has developed these ideas using the concept of meta-object. In the 3-
KRS framework, every object has a one-to-one relation to a meta-object which represents
the explicit information about its referent (e.g about its behavior and its structure). Meta-
objects are themselves objects thus reifying this information into language constructs.
Watanabe and Yonezawa [WY88] have then studied the use of meta-objects in the con-
current reflective language ABCL/R while Ferber [Fer89] has suggested an integration of
meta-objects into a class-based model, namely ObjVLisp [Coi87].

Despite the intrinsic interest of these attempts to capture the essence of reflection, we
actually feel that the extra burden of concurrency as well as the confusion arising between
classes, metaclasses and meta-objects, as in Ferber’s proposal, makes it a lot harder to
reach the fundamental issues of reflection. Hence, we suggest to study reflection in less
elaborated OO models. The underlying conjecture asserts that the study of crucial issues
like the causal connection between the object level and the meta-level should be easier in
such models.

We try to “simplify” the traditional OOP model by restricting ourselves to sequential
objects without classes. At first sight, prototype-based models [Lie86, US87] seem to obey
to these “simplifying” assumptions thus we have chosen them as the basis of our study.
However, the apparent simplicity of prototype-based models is deceptive. Prototype-based
systems proposed since a few years, such as Lieberman’s prototypes [Lie86], Self [US87],
Stein’s Hybrid language [Ste87] and Lalonde’s examplars [Lal89], tend to have fuzzy
semantics. A correlated goal of our research is an attempt to give precise semantics of
prototype-based languages using reflection, eventually leading to a Meta-Object Protocol
[?] for prototypes.

Actually, Self is certainly the most documented and the most thoroughly implemented
prototype-based language. As reflection asks for the reification of entities realizing the
implementation, it seems reasonable to begin our study by looking at Self and at its
implementation. Reflection in Self is also appealing since it is in the tradition of Lisp
and Smalltalk, two languages in which reflection has been studied extensively [?]. The
rest of this paper is organized as follows. The second section introduces Self from a
programmer point of view. The third section succintly presents the Self implementation.
The fourth section discusses in a structural reflection point of view two entities that form
the cornerstone of the Self implementation and kernel facilities: maps and mirrors. We
then conclude on some issues raised by the study of maps and mirrors.

2 Self: a programmer point of view

In this section, we examine the Self model of computation as well as the programming
methodology proposed by the Self group in several papers [CUCH91, UCCH91, HCCU90].
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Figure 1: Cartesian points in Self [US87].

2.1 Basics

The Self model of computation is based on standalone objects using delegation [Lie86] to
share properties. A Self object is a collection of slots, keyed by slot names. Self’s design
omit classes but also “instance” variables which are implemented as “methods” returning
a constant value, accessible through message passing [US87]. Each object can serve as
prototype for the cloning operation which is the basic operation to create new objects.
Arbitrary Self objects can inherit from one another through parent slots. Message passing
is the fundamental computation mechanism in Self. Self also owes to Smalltalk [GR83]
much of its basic syntax as well as its treatment of control structures using blocks and
message passing.

As an example of Self programming, the Figure 1 shows two cartesian point objects
which inherit the >+’ method from a common parent which, in turn, inherits the print
and clone methods from its own parent. Basically, sending a message to a Self object
involves first a lookup to find a slot corresponding to the message selector and, second,
the application of the slot contents in the scope of the receiving object. The lookup first
searches a matching slot in the receiving object and if it fails to find one, it explores the
parent hierarchy [CUCH91]. For example, assume that we send a print message to the
object o1 in Figure 1. The lookup first searches a print slot in o1 and fails to find one;
it then searches in the parent of o1, fails again and finally finds one in the parent of the
parent. The contents of the print slot is a method object which is applied in the context of
ol to retrieve the appropriate slots and slot values to be printed out. More programming
examples can be found in [US87, CUCH91, UCCH91].

2.2 Traits: a programming methodology

Prototype-based languages emphasize flexibility against rigid organizations. Lieberman
[Lie86] pointed out that prototypes allow creating individuals prior abstractions while
class-based systems force the definition of the abstractions (classes) before individual in-



stances. However, the lack in organizational constraints can lead to unreadable programs
which, in turn, can drastically reduces reusability (even though prototype model are de-
signed to make sharing easier than in the class-instance model [Lie86]). To fill the organi-
zational gap, Self proposes a programming discipline based on traits objects [UCCHI1]:

. data types may be defined in a classless language by dividing the definition
of the type into two objects: the prototypical instance of the type and the shared
traits object. The prototype defines the instance-specific aspects of the type, such as
the representation of the type, while the traits object defines common aspects of all
instances of the type. No special language features need to be added to support traits
objects and thus user-defined data types—a traits object is a reqular object shared
by all instances of the type using normal object inheritance. Since traits objects are
reqular objects, they may contain assignable data slots which are then shared by all
instances of the data type, providing the equivalent of class variables [UCCHY1].

Hence, traits objects are shared repository for common behaviors and state. Let’s
illustrate this traits-based design methodology using the cartesian point example. The
traits-based methodology developes this example in three steps:

1. The first step is to create the cartesian point traits with the shared behavior for
cartesian points (here a slot named ’+’ which associates the selector >+’ with the
method code to add cartesian points). The cartesian point traits can inherit less
specific shared traits, like here a general traits which holds the slots print and
clone which associates the selectors print and clone to the method code that
respectively prints and clone any object.

2. The second step creates the first prototype of cartesian point which will examplify
their representation, here two assignable slots named x and y. The first prototype,
called prototypical instance in the Self terminology, initializes the “parent-of” link
to the cartesian point traits in a slot called parent*!.

3. The last step is the normal use of cartesian points. New points can be created by
cloning the prototypical instance of cartesian point and by initializing the x and
y slots to appropriate values (by sending x: and y: messages). For example, the
point 02 in Figure 2 is created by sending the message cascade (clone x:10) y:20
to the prototypical instance of points o1.

This design methodology establishes a clear distinction between the data type design
and its use, with respect to the way the objects are created. In general, when a new data
type is created, the traits and the prototypical instance of the type must be created ez
nihilo, not by cloning existing objects. An alternative mean to create these “first-of-a-
kind” objects must be provided. In Self, two approaches are proposed. The first is code
elaboration where a textual representation of the objects (in a file) is read and where
the parser create the corresponding objects. The second approach is to build the objects
slot-by-slot using the primitives _AddSlots: and _DefineSlots: [HCCU90]. After the
cartesian point data type has been created (traits object and prototypical instance), the
cloning operation is sufficient to create new points.

We note here that, in contrast with class-based languages, all “instances” of a type
are not created in the same way: the first is constructed ez nihilo using more complex
operations while the following ones are created by the simpler cloning procedure. On the

!Slot names with trailing asterisks denote parent slots used by the lookup procedure; the number of
asterisks determine the slot priority (the less asterisks is the higher priority) when there is more than one
parent.



other hand, a complete discussion on whether this programming discipline goes against
the advocated advantages and raison d’étre of prototypes is well beyond the scope of this
position paper.

3 Self: an implementor point of view

In this section, we look at two main Self entities: maps and mirrors. The first is used in
the implementation of the virtual machine while the second is used in the language kernel.

3.1 Maps

One of the major problem when implementing prototype-based systems is how to optimize
the storage management when a large number of similar objects are created. For instance,
in a naive implementation of Self, each object must hold the names of all its slots as well
as their associated values. Hence, such a naive implementation would waste space by
repeating thousands times the same information [CUL89]. To solve this problem, maps
were introduced:

. as an implementation technique to efficiently represent members of a clone
family?. In our Self object storage system, objects are represented by the values of
their assignable slots, if any, and o pointer to the object’s map; the map is shared by
all members of the same clone family. ... From the implementation point of view,
maps look much like classes, and achieve the same sorts of space savings for shared
data. But maps are totally transparent at the Self language level ... [CULSY).

Maps factorize information that is constant for all objects in its clone family. This
information is the slot names as well as the value of constant slots (a constant slot is
a slot which has no corresponding assignment slot). The Figure 2 shows the cartesian
point example of Figure 1 but represented using maps. Maps are created according to the
following rules. A map is created whenever a new object is created without cloning an
existing object (i.e. through code elaboration) or when an existing object is modified by
one of the primitives _AddSlots:, DefineSlots:, RemoveSlot:, etc®. This map contains
the slot names of the corresponding object. The map also relates slot names to two kinds
of information: for constant slots, the map stores directly the value associated to the slot
while for assignable slots, it stores an offset which indicates where to find the value of the
slot in objects of its clone family. For example, in Figure 2, the map for cartesian points
contains the slot names parent*, x, x:, y and y:. For x and y, it stores their respective
offsets in the object while for parent*, because it is a constant slot, it directly stores the
pointer to the parent of a point which is the cartersian point traits?.

It is important to notice that map-of links and maps are invisible to the Self program-
mer: maps are created and managed automatically by Self. Therefore, the Self world is
divided in two parts: an external part which is visible from the Self language and an hid-
den part which contains maps. Moreover, the visible part of the world works as if objects
contain slot names and values even if their real implementation relies on maps.

2A clone family is: “a prototype and the objects cloned from it, identical in every way except for the
values of their assignable slots” [CULS9].

3 Actually, _AddSlots: and DefineSlots: do both: they modify the structure of the receiving object
and create new objects by parsing their argument.

4This view of maps is an external view which shows the sharing properties of maps. Maps also contains
other information about the structure of objects in their clone family such as their physical length and the
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Figure 2: Self objects represented using maps [CULS89].




3.2 Mirrors

Another important entity in Self which provides an interface between the language and
the implementation levels are the mirrors:

A mirror on an object x is obtained by sending the message reflect:x, which
is defined in default behaviors to invoke the Mirror primitive on x. Mirrors make
their reflectees look like collections of slots, keyed by slot names, with values that are
mirrors on the slot contents. A mirror permits queries to be made about the object
it reflects, such as the number of slots, the name of each slot, whether a slot is a
parent, the visibility of a slot, etc. Operations on mirrors also include retrieving a
marror on the contents of a slot and returning mirrors on all references to an object.
Asking a mirror for the name of the reflected object gives the string returned by the
name inferencer.

There are eleven kinds of mirrors, one for each kind of object known to the virtual
machine: the assignment object, blocks, byte vectors, integers, floats, strings, object
vectors, methods, mirrors, and plain objects.

Iterating through a mirror returns objects representing each slot of the reflected
object. The prototypes for these objects are: slots plain, representing an ordinary
slot; slots parent, representing a parent slot; slots argument, representing an argu-
ment slot; and slots method, representing a slot with code. “Fake” slots are objects
representing code (for a method), reflectee (for a mirror), and vector elements (for
an object vector of byte vector) [HCCUY90, p. II-15].

The Figure 3 shows the relationships between a cartesian point object o1, its mirror
mol and the contents of the slot x of 01. A mirror mol on a point ol is created by sending
ol the message Mirror (a Self primitive). The mirror inherits from traits collection the
behavior of collections. Thus, the protocol to access individual slots of the reflectee (o1) is
by sending the mirror messages such as at:i, where 1 is the index of the slot to be observe
in the reflectee (0 <4 < n—1). The answer of the message at:1 to mo1l is a slot descriptor
object sdl which defines the properties of the corresponding slot in ol. Messages such
as visibility, isAssignable, isParent, etc. can be sent to this slot descriptor object
sdl. When sdl receives a message value, it returns a mirror on the contents of the
corresponding slot of the reflectee. For example, in the Figure 3, the message value to
sd1 returns a mirror on the contents of the slot named x of ol. Thus, the object mv1
which is the result of the message value to sdl appears to be the same as the result of a
message Mirror sent to the value v1 of the slot x. This Mirror message is implicit in
the Figure 3 since nothing says how mv1 is actually created in Self>.

Examples of mirrors utilization

Mirrors are thoroughly used in Self source code to access internal information about ob-
jects. For example, the read-eval-print loop in Self is implemented by the slots named
doIt and printIt of the lobby®. First, the expression is read, parsed and stored in the
slot doIt; then the message printIt is called resulting in the execution of the following
code:

number of their slots [CUL89].

"The message value to sd1 actually sends the message contentsAt:1 to the mirror mo1, which is defined
in traits mirror as calling the primitive MirrorContentsAt:1 on mol.

®The 1lobby is an elected object in Self which gives a comprehensive context for the evaluation of Self
expressions. It is used as the top-level context for the read-eval-print loop.
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Figure 3: Relationships between mirrors and their reflectees [HCCU90].

printIt = ( (reflect: dolt) name printLine. self )

This method operates as follows. The lobby first sends itself the message doIt”. The
result of doIt, which is the result of the evaluation of the top-level expression, is used as
argument of the message reflect: returning a mirror on this result. The mirror is sent
the message name, which results in a string representing the name of the object which
would be inferenced by the name inferencer®. This string is printed out by the message
printLine and self is returned as the result of the printIt method.

A second example of the use of mirrors is the method inspect:, used to inspect the
contents of an object:

inspect: obj = ( inspectReflectee: ( reflect: obj). obj )

Again, the receiver of the message inspect: first get a mirror on the argument obj by
sending itself the message reflect:obj and then invoke the method inspectReflectee:
on this mirror:

inspectReflectee: aMirror = (
> |’ print.
aMirror doFirst: [| :slot | ’> ’ print. slot print. ’.’ print. ]
MiddleLast: [| :slot | ’\n > print. slot print. ’.’ print. ]
IfEmpty: nil.
aMirror isReflecteelMethod
ifTrue: [ ’ |’ printLine.
(aMirror code source asParagraph asCodePad: 2) print.
’)? printLine. ]
False: [ aMirror hiddenDo: [| :fake |
’\n > print. fake print. ’.’ print. ].
> | )’ printLine. ].
aMirror )

inspectReflectee: merely prints the reflectee’s slots and, if the reflectee is a method,
then it also prints its source code. Finally, if the object contains “fake slots”, they are

"the implicit receiver in the Self terminology [HCCU90].

8 “The name inferencer is invoked by sending the message name to a mirror on an object. If the object
contains a slot called thisObjectPrints, indicating that the object knows how to print itself intelligently,
the name inferencer sends printString to the object and returns the result as the name. If there is no
such slot, the name inferencer consults the path cache to infer a name (see section II-1.3). If the object is
not in the path cache (is not well known) the generic name <an object> is returned” [HCCU90].



printed last.

4 Structural reflection

Structural reflection aims at giving a self-representation of structural aspects of objects
which can be manipulated in a causally connected fashion within the language. In Self,
two entities deal with the representation of objects: maps and mirrors. We discuss both
in turn in a structural reflection point of view.

4.1 Maps

As we have seen in the previous section, maps describe the format of all objects in their
clone family in a way which resembles what classes do for their instances. Maps hold the
name of the slots, pointers to the value of constant slots and offsets where to find the
value of assignable slots in the clones. Accordingly, objects in their clone family are like
object vectors where the first entry is a pointer to the map followed by the value of their
assignable slots. Maps play the structural role of classes. The main difference is that
maps are created and managed automatically by the system. But, in the structural point
of view, the map-of link from an object to its map is of the same nature as the class-of
link in class-based languages.

Even though maps were introduced in Self for the very reason of space savings, an
interesting question is whether they can serve as the basis for structural reflection in
prototype-based languages. The two main interests in this are, first, to see if automati-
cally generated structural meta-objects is a feasible approach to structural reflection and,
second, to reify maps in order to modify the strategy used to generate them. Maps have
the advantage over classes to be induced by the system; they don’t force the programmer
to create an abstraction prior individual objects. Hence, they preserve the prototype way
of thinking while achieving the space savings of classes when many similar objects are
created. The actual Self strategy for creating maps is efficient in time but it fails to fully
optimize space in many cases. For “one-of-a-kind” objects, creating a map is a loss of
space. Also, the Self system will recognize two objects as sharing the same map only if the
are in the same clone family i.e. if one has been created by cloning the other or if they have
both been created by cloning objects which are in the same clone family. More appropriate
strategies may be implemented such as creating a map for a clone family only when it
contains more than one individual. Also, a process similar to garbage collection could be
invoked from time to time to reorganize the memory and to match structurally equal clone
families into one clone family sharing a unique map. Implementing such strategies could
be done by modifying the Self virtual machine but a more interesting approach would be
to reify maps in order to implement new strategies in the language itself.

Actually, maps are not Self objects, they only exist at the implementation level. Also,
objects in the base level hide their map-of link to the user (one cannot send a message to
an object to get its map-of pointer). A first approach to make maps visible at the base
level would be:

1. To make maps true Self objects.

2. To represent the map-of link as a parent-of link (the only link which has a predefined

semantics in Self and which is used by the lookup algorithm).

Just doing this does not work. For example, sending a message x to a cartesian point
in Figure 2 would then retrieve an offset from the map, not the value of x. To get the



value of x, the offset must be re-interpreted as a structural meta-information showing
where to find the desired value in the context of the receiver. A simple alternative is
to replace the offsets stored in the map by a method which can retrieve the appropriate
value in the base-level object. This means that instead of storing a declarative information
about the structure of the object?, it would store a procedural information which would
freeze the operational meta-level semantics. In other terms, the offset would become an
explicit accessor function melding the meta-level interpretation and and the base level
offset information.

We draw two preliminary conclusion here. First, it is not so easy to unify the class-of
relationship (represented here by the map-of link) and the inheritance relationship (repre-
sented by parent-of links) despite claims made in many papers [US87, for example]. There
is a meta-interpretation of the information which differs in a structural reflection point of
view and which collapses here. The second preliminary conclusion follows immediately: if
you want to represent and manipulate some kind of structural meta-object in a language
which only supports an inheritance relationship, you will need to invent a new relationship
(close to an instance-of relationship), and the semantics of the language must be changed
to force the lookup and apply procedures to interpret correctly this new relationship. A
reason why maps are invisible in Self is probably the fact that it would have infringed
many of the language’s basic assumptions, such as the presence of only one explicit shar-
ing link between objects. Naturally, in an hypothetical behaviorally reflective Self, these
changes in the operational semantics could be implemented — and eventually modified —
in the language itself.

4.2 Mirrors

The mirror is the second entity which explicitely deals with the representation of objects.
In contrast with maps, mirrors are Self objects directly accessible from the language. This
property is important to achieve true structural reflection. But mirrors are quite elusive
entities. At first sight, they seem to be entities that hold much information about there
“reflectee”, as we would expect from a self-representation of objects. This is not the case
in the actual Self implementation. In fact, mirrors contain no visible information on their
own. A careful examination of the Self source code defining mirrors shows that the only
visible information in a typical mirror are a parent slot which points'® to the traits mirror
object (which defines the common bahavior for mirrors), and a slot thisObjectPrints set
to true and used by the Self name inferencer. Even the pointer to their reflectee is hidden
in the implementation of the mirror, as it is shown in the following cloning experiment on
a mirror:

> _AddSlots: (| mirrorPoint = point _Mirror |)
> mirrorPoint _Print

mirror <reflectee = <2>> <13>: ( | ~ parent* = <14>.

_ thisObjectPrints = true. | )
> mirrorPoint clone _Print
mirror <reflectee = <2>> <13>: ( | ~ parent* = <14>.

_ thisObjectPrints = true. | )

> mirrorPoint _Clone _Print

here an explicit offset and an implicit assumption that base-level objects are represented as object
vectors.

0This is actually a little oversimplified since different kinds of mirror may have specific behaviors, but
yet they will inherit the basic behavior of mirrors accross a more specific traits object [HCCU90].
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mirror <reflectee = -33555526> <16>: ( | ~ parent* = <14>.
- thisObjectPrints = true. | )

In this simple session, we create a mirror on the prototypical instance of cartesian
points and add it to the lobby in a slot called mirrorPoint. We print mirrorPoint and
see that the reflectee’s identifier is <2> (an object reference in Self is printed as an integer
surrounded by angle brackets, [HCCU90]). We then send mirrorPoint the message clone
and print the resulting clone. The clone is exactly the same object as mirrorPoint, simply
because the clone method is redefined in traits mirror to return the receiver. Next we send
mirrorPoint the primitive _Clone which cannot be redefined, and print the result. We the
see that the reflectee identifier is no longer valid. The reflectee slot is what Self calls a
“fake slot” (see on page 7 the quotation on mirrors).

Since a mirror contains no information about its reflectee (except a “fake slot” which
points back to it), what does the bulk of the job is a set of language primitives to which mir-
rors are able to respond: _MirrorNameAt:, MirrorContentsAt:, MirrorIsParentAt:,

. [HCCU90]. Hence, mirrors are faking objects which give a reading access to infor-
mation which are, for some of them, in the map of the object, like slot names and slot
privacy attributes, and for the others, in the object itself, the slots values for mutable
slots. Following the same pattern, slot descriptor objects (see Figure 3) we retrieve from
a mirror by sending message at:i are also faking objects in the sense that they contain
no information on their own. The protocol defined to access information on slots, with
the messages visibility, isAssignable, etc. (see Section 3.2), also call primitives of
the virtual machine. Consequently, mirrors are not really reflective entities but a mean to
access — and not modify — system information through system primitives.

So, why Self has mirrors? A reasonable answer actually is linked to the above remarks
on maps. It appears that maps are difficult to reify as Self objects. Nevertheless, an access
to the information they store is often needed, for example when inspecting an object.
Mirrors are closing the gap between the external Self language world of objects and the
internal Self implementation world of maps by giving a reading access to this information.
But, are mirrors really implementing structural reflection? Given the requirements to
achieve structural reflection, i.e. a causally connected representation of program entities
in the language itself, the answer is no. Mirrors are merely interfaces to system information
but neither writing accesses nor the corollary causal connection are supported.

An open question is the following: if Self had provided a causally connected writing
access to the implementation data structures representing objects, would we consider
that as structural reflection? Or, stated in more general terms, are causally connected
reading and writing accesses to system information through system primitives sufficient
to implement structural reflection? Is a representation of system data structures in the
language a requisite that cannot be bypassed?

4.3 What about traits?

Traits objects are shared repository for common behaviors (methods) and state thus they
play the behavioral role of classes. But traits objects play no role in structural reflection;
even though the methods they provide may assume some structural properties about the
objects on which they can be applied, traits objects put absolutely no constraints on the
structure of their inheriting objects. The lack of space refrains us from drawing a complete
analysis of the role of traits in Self, but they still deserve a more comprehensive treatment.
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5 Conclusion

An implicit conjecture in the litterature on reflective languages and systems is that classes
and metaclasses elegantly solve the structural reflection problem. But, prototype-based
systems throw away classes thus reintroducing them, such as in [?], is not a satisfactory
answer. Prototypes also give the opportunity to reassess the question whether some new
entities may do a better job at structural reflection than classes and metaclasses. In
Self, maps have the interesting property to be created inductively and automatically from
individuals but the actual map management strategy is rather limited. Reifying maps
would have two objectives: to study automatically generated shared structural meta-
objects and to experiment with alternative management strategy for them. Unfortunately,
the reification of maps in Self is not so simple; it requires a modification of the virtual
machine to take into account map-of links at the base language level. We could also modify
the Self virtual machine to introduce behavioral reflection: this approach would ease the
experimentation with alternative management strategies.

At this time, more research is still needed to firmly conclude about the relative ad-
vantages and disadvantages of the inductive approach of maps compared to the deductive
approach of classes from both application design and structural reflection standpoints.

The second entity we studied are the mirrors. In contrast with maps, mirrors are Self
objects but we have shown that they contain no information on their own. They are
merely reading interfaces between the external world of Self objects an the internal world
of the implementation. An open question is whether systems that offer causally connected
reading and writing accesses to their internal data structures through system primitives
can be considered as reflective systems or not.
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