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To solve the problem of behavioral re
ection several ap-proaches are currently investigated. Meta-objects, for in-stance, have been proposed in the frame language 3-KRS[Mae87] and then in an actor language [WY88] as well asin a class-based language [Fer89], to represent the behav-ioral properties of objects. Several problems are actuallyopen :1. How can we overcome the potential in�nite regressionwhen using meta-objects?2. What protocol should be used to connect behavioral meta-objects and the evaluator's self-representation?3. How should we represent the evaluator's data structuresand execution?4. What is the relationship between structural and behav-ioral re
ection? Should the behavioral meta-object of anobject be the same as its structural one (e.g., its class)?In this paper, we mainly address the three �rst issues.Our goal is to concentrate on meta-object based behavioralre
ection and to push this idea to its limit. We also use aprototype-based language as testbed in order to avoid theunnecessary complexity of classes before we fully understandbehavioral re
ection. In fact, to concentrate on the centralissues, our proposal is a minimalist one :� We work on a minimal prototype-based language pro-posed in our previous work [DMC92, MCD92].� Structural re
ection is also provided in a minimal way,just to make behavioral re
ection work properly.� We choose to cope with the potential in�nite regressionof meta-objects by providing a basic meta-object whichadmits itself as its own meta-object.To overcome some limitations of our previous protocol[MCD92], we also consider the rei�cation of continuationsas �rst-class objects in our prototype-based language. Con-tinuations give much more control over the current com-putation. By converting our protocol to handle �rst-classcontinuations, we make apply methods capable to examine,modify or otherwise deal with them at run-time. This newlookup � apply re
ective protocol augmented with a rei�ca-tion of continuations matches the object-oriented computa-tional model very well and provides better re
ective capa-bilities. When modifying the lookup for one object or theapplication of a method, we now have control over the rest ofthe computation as in 3-Lisp [Smi84] or in Scheme [IEE91]and its behaviorally re
ective extensions [JF92].In this paper, our main goal is to fully investigate thisnew approach to assess its feasability and to highlight its



properties. Alternatives to this approach are investigated[Fer89, Coi90, WY88]. We believe that our work sheds somenew light on these approaches.The outline of the paper is the following. In the nextsection, we present the prototype-based language we arestarting from and we add it su�cient structural re
ectioncapabilities to study behavioral re
ection. In Section 3, wedescribe our behavioral re
ection model while in Section 4,we de�ne it more systematically to study its feasability andits properties. In Section 5, we discuss the general objectbehavior and the implementation of the resulting re
ectiveprototype-based programming language. We then concludeand discuss future work.2 Re
ective PrototypesIn this section, we describe a minimal prototype-based lan-guage that we extend with structural re
ection capabilities.2.1 A Minimal LanguageIn [DMC92], we have proposed that a prototype-based lan-guage should be implemented on the basis of the followingprinciples :P1 : A prototype is represented as a collection of slots. Aslot can represent either a data value (data slot) or a method(method slot). Slots can be either private or public ; aprivate slot of an prototype P can only be accessed within Por in one of its extensions (see below).P2 : Message passing is the only mean to activate a pro-totype and slots names are used as selectors in messages.No di�erence is made between data slots and method slots,both are accessed through messages.P3 : A prototype is constructed as an extension of an exist-ing prototype using parent-of implicit delegation links ; theprototype called ROOT is used as root of parent-of delegationhierarchies.P4 : The structure of a prototype is immutable, i.e. onecannot add or retract a slot within an object ; this allowencapsulation of objects to be implemented e�ectively bypreventing malicious users from dynamically adding publicaccessors to private information.P5 : newInitials(p,initform) is the �rst primitive function tocreate new objects with a �xed set of slots with initial val-ues ; this primitive is invoked by a message p newInitials:initform where the receiver p is the parent of the new ob-ject.P6 : clone(p) is an alternative primitive function to createnew prototypes by copying existing ones ; this primitive isinvoked by a message p clone where p is the prototype tobe copied.For reasons out of the scope of this paper, the objectROOT is de�ned as a root of implicit delegation hierarchiesand gets as methods all the primitive functions of the lan-guage (newInitials and clone). Again, we refer readers to[DMC92] for more details. Finally, we assume that proto-types have only one parent ; this restriction could be relaxed,but multiple parents adds nothing to our study except anunnecessary complexity.

2.2 Structural Re
ectionHow can we provide structural re
ection in this basic lan-guage? In class-based languages, classes and metaclassesplay the role of structural re
ection but in prototype-basedlanguages, there is no more classes to deal with the represen-tation of objects ; an alternative must be sought to obtainsimilar capabilities.In fact, prototypes are not easily amenable to structuralre
ection [MCD91]. The simple fact to link a prototypeto another one that describes its structure goes against theprinciples of prototype-based programming in the most fun-damental way. However, prototypes still provide a simpleobject-oriented model that allows us to study behavioral re-
ection in depth.Since studying behavioral re
ection only need little struc-tural re
ection capabilities, we use very limited ones : accessto the structural information about individual objects anda rei�cation of methods as objects. We identi�ed [MCD91,HCCU90] �ve primitive access functions : size(o) to get thesize of an object o, name(o,i) to get the name of its ith in-dividual slot, contentsAt(o,i) to get the value of its ith slots,contentsAtPut(o,i,v) to set the value of its ith slot, and is-MethodAt(o,i) to test whether its ith slot is a method slotor a data slot.These primitive functions are represented as methodsin the language, themselves rei�ed as the objects : Size,NameAt, ContentsAt, ContentsAtPut, and IsMethodAt. Theobject ROOT gets these methods, to which it points throughits method slots : size, nameAt:, contentsAt:, contentsAt:put:, and isMethodAt: respectively.Note that we do not consider this proposal as a de�ni-tive solution to structural re
ection. We simply use it as aworking one in order to proceed with behavioral re
ection.For simplicity, we make objects themselves responsible forresponding to the \re
ective" messages.3 Behavioral Re
ectionIn this section, we �rst describe how the behavior of ob-jects is described, how the user can modify this behavior,and what are the basic objects implementing the standardbehavior.3.1 Method Invocation ProtocolThere are two main aspects in the behavioral re
ection mo-del. First, it must describe the behavior of objects usingother objects. Second, it must provide a method invocationprotocol that will allow the user to intervene on the currentexecution in order to modify the course of events, i.e. tore
ect.To describe the behavior of objects, we associate a meta-object to each of them, whose function is to explicit how theobject reacts when it receives a message. Since the object-oriented model of computation uses message passing as itsfundamental mechanism, it is usual to make message sendsthe vantage points where programs can shift into a re
ect-ing phase. The standard way to achieve that is by makingvisible the two main operations done by the evaluator whena message is sent : the lookup and the application of themethod. This is the traditional equation :message execution = lookup � apply



Hence, these operations can be implemented as meth-ods, themselves rei�ed as objects in the language, allow-ing the user to rede�ne them in order to perform re
ectivecomputations. At �rst look, each message passing operationo sel: a1 ect: a2 or: a3 is replaced by a re
ective intro-spection which has three phases : (1) �nd the meta-object ofthe receiver o, (2) send it a message lookup: (#sel:ect:or:)in: o1 that yields a method object (3) to which is sent amessage applyTo: o withArgs: #(a1 a2 a3) withCont: k.Hence, coarsely speaking, the re
ective introspection rule is :o sel: a1 ect: a2 or: a3 )(((o metaObject)lookup:(#sel:ect:or:) in: o)applyTo: o withArgs: #(a1 a2 a3) withCont: k)Obviously, each of these operations can lead to potentialin�nite meta-regression. Since all three are represented asmessage sends, the same introspection rule can be applied toeach of them ad in�nitum. The evaluator will be responsibleof preventing this to happen, as we will see (x4), and basiccases will be provided to represent its standard behavior.Data slotsBecause data slots and method slots are both accessed usingmessages, the protocol must cope with data as well as meth-ods. In both cases, the lookup phase must return an objectthat is able to answer an apply message in order to makethe re
ective introspection rule working properly. Since dataslots contain only values, we must bridge the gap betweenvalues and the object expected by the re
ective protocol.Representing data as objects able to respond to applymessages is an appealing solution, but it leads immediatelyto an in�nite meta-regression when trying to represent data.Nevertheless, we have decided to force the lookup phase toreturn an object when a message is accessing a data slotbut it must be created on the 
y, in a lazy fashion. Theyanswer apply messages by simply returning the value of theircorresponding data slot. Notice that this property mustalways hold in the system and, as we will see (x3.2), thekernel of the language will insure it through its primitivelookup function.First-class continuationsFirst-class continuations now represent a long tradition, es-pecially in the Lisp and Scheme community [Ste90, IEE91].In our context, continuations are objects, or prototypes, rep-resenting the (default) future of the computation at a givenpoint in the execution of the program. Moreover, most ofthe time, the current computation step will return an objectas its result, and the �rst thing to do after that is to sendthis object a message. Thus, although continuations may berepresented in many di�erent ways, here we simply assumethat they are objects applied by sending them a messageapplyContTo:withArgs: :k applyContTo: o withArgs: #(a1 a2 : : : aj)In the standard case, continuations will have only oneargument, the object o, and the e�ect of this message willbe to send o the message representing the next thing to do1Readers familiar with Smalltalk-80 should recognize its syntaxwhere the special character # is used both to quote symbols andarrays.

in the computation. In this case, the array of arguments willbe empty. We maintain the form applyContTo:withArgs:to keep its full generality to our approach.3.2 Kernel PrototypesThe impact of the method invocation protocol is summa-rized by the following principles added to the prototype-based language :P7 : Every object has a meta-object that is able to answerto lookup messages ; meta-objects can be shared amongseveral objects and behave like local interpreters for them.P8 : Meta-objects answer lookup messages by returning me-thod objects that are able to answer apply messages.Meta-objects and the above method invocation protocolraise four fundamental problems : (1) an in�nite regressionof meta-objects may arise along the meta-of link betweenan object and its meta-object, (2) a basic lookup method,(3) a basic apply method as well as (4) a basic method forapplying continuations must be provided.Our model proposes to solve the problem of the potentialin�nite regression by introducing a basic meta-object, calledBasicMetaObject, which is its own meta-object, and whichde�nes the standard behavior for objects in the system. Thiscircularity of the meta-of link closes the meta-regression onBasicMetaObject, in a similar way as the instance-of linkis closed over Class in ObjVLisp [Coi87].Because of the method invocation protocol, BasicMeta-Object, as any other meta-object in the system, must beable to answer lookup:in: message. In fact, since it givesthe standard behavior, its lookup method is the primitivelookup function rei�ed as a method in the language. Wecall this method object BasicLookup. Reifying the primi-tive lookup function as BasicLookup requires the introduc-tion of its apply method to respect the method invocationprotocol. We assume that its apply method is the primitiveapply function also rei�ed as a method in the language. Wecall this method object BasicApply and construct it to haveitself as its own apply method. In the same way, reifyingcontinuation requires the introduction of a primitive func-tion to apply them, rei�ed in the language. We call thismethod object BasicApplyCont, and construct it to haveBasicApply as apply method.These solutions add again four principles to the re
ectiveprototype-based language :P9 : BasicMetaObject is the �rst meta-object in the sys-tem ; it admits itself as its own meta-object.P10 : BasicLookup is the �rst lookup method in the sys-tem ; it represents the primitive lookup function rei�ed as amethod object in the language.P11 : BasicApply is the �rst apply method in the system ;it represents the primitive apply function rei�ed as a methodobject in the language.P12 : BasicApplyCont is the �rst method in the system toapply continuations ; it represents the primitive functionto apply continuations, rei�ed as a method object in thelanguage.The kernel of our model is constructed around six ba-sic objects : BasicMetaObject, BasicLookup, BasicApply,BasicApplyCont, IK and ROOT (see x2). IK is an object rep-resenting the identity continuation whose behavior when ap-plied is to return its �rst argument as result ; it also provides
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IsMethodAtFigure 1: Basic objects and their relationships.the basic methods for continuations. The Figure 1 illustratesthe kernel objects as well as their relationships.4 CorrectnessIn this section, we de�ne our model using some shorthandnotation that we use to establish its correctness and to be-come acquainted with its overall behavior.4.1 The Model and its EvaluatorOur goal in this section is to show that the fundamentalcharacteristics of the model and the necessary conditions towrite a correct evaluator for our re
ective prototype-basedprogramming language can be captured by a limited num-ber of hypothesis. We don't try to give a complete formalproof of this, but only su�cient insights to convince thatthe model is correct. From these, we will gain informationfor the implementation of the language.4.1.1 Model HypothesisIn our language, everything is represented using objects, orprototypes. A running program consists in a set of objects.Some of them are simply end-user objects but others areused by the evaluator to actually run the program : methodobjects, continuation objects, selectors rei�ed as symbol ob-jects, object vectors used to pass arguments to methods,and naturally meta-objects that can be created by users tomodify the behavior of end-user objects.As we have seen above, the method invocation proto-col performs three main operations which are designated bythree message selectors : metaObject to �nd the meta-objectof the receiver, lookup:in: to �nd the method correspond-ing to the selector of the message, and applyTo:withArgs:withCont: to apply this method to the receiver with thearguments of the message. In the rest of the section, we

use the following shorthand notation for these fundamentaloperations :o sel: a1 ect: a2 or: a3 ! o:s(a1; a2; a3)where s = sel:ect:or:o metaObject ! �(o)mo lookup: s in: o ! mo:
(s;o)m applyTo: o withArgs: #(a1,: : : ,aj) withCont: k! m:�(o; [a1; : : : ; aj ]; k)k applyContTo: o withArgs: #(a1,: : : ,aj)! k:�(o; [a1; : : : ; aj])The message sending operator '.' is left-associative. Theprimary goal of this notation is to keep proofs small enoughto be understandable. Using the normal syntax would rapid-ly lead to useless fullpage expressions.Provided with these basic de�nitions and notation, wenow switch on the characteristics of the model. These char-acteristics can be expressed in eight statements that we willcall \model hypothesis". The �rst model hypothesis statesthat for each object, there is an associated meta-object :HM1 Each object has a meta-object, i.e.mx = �(x)where mx is called the meta-object of x.The meta-object of an object is used in the re
ectiveintrospection rule that is stated as follows :HM2 Re
ective introspection. The re
ective introspectionrule is :o:s(a1; : : : ; aj)) �(o):
(s;o):�(o; [a1; : : : ; aj]; k)where k represents the continuation of the computation ap-pearing after the message send. This rule makes no assump-tions about the mechanism used to evaluate the receiver o,the selector s and the arguments a1; : : : ; aj except that theyare rei�ed into objects.



In fact, we hide things a bit here since the lookup andapply functions are only two subparts of the complete eval-uation process. When applying the re
ective introspectionrule, the receiver, the selector and the arguments of the mes-sage may be evaluated. Because we do not address thisproblem, we only assume that their representation is rei�edinto objects in order to make the re
ective introspection rulework properly. Otherwise, we put no constraints on the waythe evaluator treats the receiver and the selector or on themode it uses to evaluate arguments.The model provides a basic meta-object constructed tobe its own meta-object :HM3 The existence of a basic meta-object. There exists oneobject such that : BMO = �(BMO)This object is called BasicMetaObject, or BMO for short.Since all meta-objects must answer lookup:in: mes-sages, BasicMetaObject gets its own lookup method. Thismethod is a primitive lookup function, rei�ed as a standardmethod in the language :HM4 The existence of a basic lookup. There exists onemethod object such that :BL = BMO:
(
;BMO)This method is called BasicLookup, or BL for short. Fur-thermore, the object BL is constructed to get �(BL) = BMO.Since BasicLookup is a method object, it gets its ownapply method. Again, this method is a primitive apply func-tion, rei�ed as a standard method in the language :HM5 The existence of a basic apply. There exists one me-thod object such that :BA = BMO:
(�;BL)This method is called BasicApply, or BA for short. Further-more, the object BA is constructed to get �(BA) = BMOand BMO:
(�;BA) = BA.Objects are related through parent-of links and there isone root object that holds as its own methods the primitiveof the language :HM6 The existence of a root object. There exists one objectsuch that : ROOT = �(ROOT )The object ROOT is constructed to get �(ROOT ) = BMOand such that its methods represent the primitives of the lan-guage, themselves rei�ed as method objects and constructedin such a way that BMO is their meta-object and BA theirapply method.The primitive lookup function takes advantage of the factthat ROOT is its own parent to stop looking for a parent whenencountering it. We de�ne ROOT like this because we assumethat any object in the system can anwer a message parentwithout raising an error. The usual alternative to this is tomake nil the parent of the root object, but since we arecommitted to being re
ective, this would force to representnil as an object and to go back to the similar problem,namely what is the parent of nil?Finally, the kernel provides a �rst continuation object,the identity continuation exhibiting the primitive behaviorof continuations :

HM7 The existence of an identity continuation. There ex-ists one object such that :o = IK:�(o; [])This continuation object represents the simplest continua-tion which merely returns the object to which it is applied.IK is used by the re
ective introspection rule if nothing hasto be done after the current message send (see HM2).Since continuations must be applied, the kernel also pro-vides a basic apply method for continuations :HM8 The existence of a basic apply for continuations. Thereexists method one object such that :BAC = BMO:
(�; IK)This method object is called BasicApplyCont, or BAC forshort. Furthermore, the object BAC is constructed to get�(BAC) = BMO and BMO:
(�;BAC) = BA.4.1.2 Evaluator HypothesisAt this point, the above hypothesis are su�cient to describethe kernel objects of Figure 1. However, they are insu�-cient to build a correct evaluator for the language. In orderto get an operationally meaningful language, we need fourmore hypothesis. Since they have nothing to do with themodel itself but rather with its operational semantics, wecall them \evaluator hypothesis". Each of them cope withone particular problem with the execution of the model.The �rst problem that comes up is the meta-regressionin accessing an object's meta-object. Since now, we haveassumed the object to have a slot called metaObjectpointingto its meta-object. A natural way to access this meta-objectis to send a message metaObject to the object, as suggestedby the re
ective introspection rule.We must notice immediately that since this is a message,the method invocation protocol applies and ask again forthe meta-object of the receiver. Hence, we are in a typicalmeta-regression. To get out of this, we make the access tothe meta-object a primitive operation instead of a normalmessage :HE1 Primitivity of �. The meta-object accessing rule is :�(o)) metaof(o) =mowhere mo is the meta-object of o. Hence, �nding the meta-object of an object is a primitive function of the system calledmetaof. For the sake of brievity, we will use the followingnotation: �(�(: : : �| {z }n times (o) : : :)) = mnoThe second problem is how to connect the method ob-ject BasicApply and the primitive apply function ba. Inthe kernel, BasicApply gets itself as its own apply method.To be operational, the evaluator must use this property to�nd out when the function ba must be applied. The secondevaluator hypothesis copes with this :HE2 The BasicApply apply rule is :BA:�(m; [o;args; k0]; k1)) k1:�(ba(m; o;args; k0); [])Applying the apply method of BA to BA with the argumentsm, o, args, k0 and k1 is equivalent to applying the evaluatorprimitive apply function ba to m, o, args and k0 and applythe continuation k1 to its result.



The next problem is how to relate the method objectBasicLookup and the primitive lookup function bl . The fol-lowing hypothesis can be seen as an implementation con-straint that must hold to get a correct behavior :HE3 BasicLookup applying. The lookup method BL and theprimitive lookup function bl are equivalent :ba(BL;BMO; [s;o]; k)) k:�(bl(s; o); [])Applying the evaluator ba function to the method object Ba-sicLookup in the context of BMO with arguments s, o and kis equivalent to applying the evaluator primitive lookup func-tion bl to s and o and applying k to its result.Applying continuations is the last problem where a po-tential in�nite regression must be prevented. A continuationobject K is applied by sending it a message applyContTo:withArgs:. If we blindly use the re
ective introspection ruleto execute this message, it will create more continuations tobe applied, which will need again other continuations to beapplied, and so on. To prevent such a situation, we assumethat continuations created by the basic evaluator, such asthose introduced by the re
ective introspection rule, are di-rectly recognizable and executable :HE4 Application of primitive continuations. A primitivecontinuation K, such as those created by the application ofthe re
ective introspection rule (see HM2), is directly exe-cutable by the evaluator :K:�(o; []) = o:KIn fact, we simplify a bit again here. K is an objectreifying a continuation, and continuations created by theevaluator when applying the re
ective introspection rule areall of the same kind, i.e. they accept only one argument : anobject to which a message is sent. For the sake of brievity,we will assimilate the continuation K and the message itsends to its object argument o.4.2 Lemmas and TheoremsWe now show that the above hypothesis are su�cient to geta correct evaluator for the language. A side goal of thissection is to master how computation are actually made inthis model.4.2.1 Fundamental LemmasCorrectness corresponds here to the ability of an evaluatorto execute any message in the language obtained from themodel using a �nite number of steps, that is a �nite num-ber of applications of de�ned rules and a �nite number ofcomputational steps by the evaluator.To establish that, we �rst consider the kernel objectsand show that any message to one of them is executed in a�nite number of steps. Indeed, we assume that the primi-tive functions ba and bl are executed in a �nite number ofcomputation steps. Hence, it su�ces to establish that anymessage to one of the objects in the kernel involves only a�nite number of steps.We proceed in four lemmas, followed by a �rst theoremestablishing the correctness of the kernel under its basic hy-pothesis. The �rst lemma shows that an apply message sentto the method object BasicLookup is rewritten in a �nitenumber of steps into a call to the primitive lookup func-tion :

Lemma 1 Applying the BasicLookupmethod object is equiv-alent to executing the evaluator lookup function bl, i.e.BL:�(BMO; [s;o]; k) = k:�(bl(s; o); [])Proof 2.BL:�(BMO; [s; o]; k)(HM2) ) �(BL):
(�;BL):�(BL; [BMO; [s;o]k]; IK)(HM4) = BMO:
(�;BL):�(BL; [BMO; [s; o]; k]; IK)(HM5) = BA:�(BL; [BMO; [s; o]; k]; IK)(HM2) = IK:�(ba(BL;BMO; [s; o]; k); [])(HM7) = ba(BL;BMO; [s; o]; k)(HE3) = k:�(bl(s; o); []) 2Second, we establish that an apply message sent to themethod object BasicApply is rewritten in a �nite numberof steps into a call to the primitive apply function :Lemma 2 Applying the BasicApply method is equivalent toexecuting the evaluator apply function ba, i.e.BA:�(m; [o;a; k]; IK) = ba(m;o; a; k)Proof. BA:�(m; [o; a; k]; IK)(HE2) = IK:�(ba(m;o; a; k); [])(HM7) = ba(m; o;a; k) 2Given these two �rst lemmas, we know that BasicLookupan BasicApply, two of the six objects in the kernel be-have correctly when they are sent their standard messages.Now, let's look at BasicMetaObject, which mainly answerslookup:in: messages. The following lemma shows that alookup message sent to BMO is also rewritten in a call to theprimitive lookup function in a �nite number of steps :Lemma 3 Sending BasicMetaObject the lookup message isequivalent to applying the evaluator's primitive lookup func-tion bl : BMO:
(s; o) = bl(s; o)Proof. BMO:
(s; o)(HM2) ) �(BMO):
(
;BMO):�(BMO; [s;o]; IK)(HM3) = BMO:
(
;BMO):�(BMO; [s;o]; IK)(HM4) = BL:�(BMO; [s;o]; IK)(L1) = IK:�(bl(s;o); [])(HM7) = bl(s; o) 2At this point, we have established that BL, BA and BMObehave correctly when they are sent the messages used bythe method invocation protocol. Now, we turn to the othermethod objects in the kernel. All method objects in thekernel are standard methods. A standard method object mis characterized by the two following statements :2Proofs are all based on a similar pattern and are quite simple.They consist in applying the right rule or one of the basic cases toderive the conclusion from the premises. Each step is labelled witheither the hypothesis or the lemma used to transform the above ex-pression into a new expression.
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(�;m):�(m; [o; [a1; : : : ; aj ]; k]; IK)(S1) = BMO:
(�;m):�(m; [o; [a1; : : : ; aj]; k]; IK)(L3) = bl(�;m):�(m; [o; [a1; : : : ; aj ]; k]; IK)(S2) = BA:�(m; [o; [a1; : : : ; aj]; k]; IK)(L2) = ba(m; o; [a1; : : : ; aj ]; k) 2Recall that messages that access data slots are also an-swered through the same method invocation protocol (seex3). We simply assume that, in this case, the primitivelookup function returns standard methods that themselvesreturn the value of the corresponding slot when applied.Thus, accessing a data slot is also done in a �nite num-ber of steps. Indeed, this property must be maintained inany extension of the kernel to build applications.Theorem 1 Sending a message to any object in the kernelis equivalent to applying the primitive apply function ba :o:s(a1; : : : ; aj) = ba(m; o; [a1; : : : ; aj ]; k)where m = bl(s,o), the method object corresponding to theselector s in o, and k represents the rest of the computationafter o:s(a1; : : : ; aj).Proof. o:s(a1; : : : ; aj)(HM2) ) �(o):
(s;o):�(o; [a1; : : : ; aj ]; k)

= BMO:
(s; o):�(o; [a1; : : : ; aj ]; k)(L3) = bl(s; o):�(o; [a1; : : : ; aj]; k)= m:�(o; [a1; : : : ; aj ]; k)(L4) = ba(m; o; [a1; : : : ; aj ]; k) 2The second step uses the fact that all objects in the kernelhave BMO as meta-object while the �fth step uses the factthat all methods in the kernel are standard ones.4.2.2 General CaseBeing done with the kernel prototypes, we now attack thegeneral case, when new objects are added to the kernel tobuild applications. The next theorem establishes the cor-rectness of the resulting system. We assume that the pro-tocol underlying the kernel is respected by the programmerand that the extensions are correct.For example, we assume that user methods are well-behaved, e.g. they do not get into in�nite loops. Andby correct extension of the kernel, we mean that it fol-lows the principles established by the model, e.g. everynew object must have a meta-object capable of answeringlookup:in: messages, and that method objects are able toanswer applyTo:withArgs:withCont: messages.Given that these assumptions are true, any message toany object in the system is executed in a �nite number ofsteps.Theorem 2 A message sent to any object in a system ex-tending correctly the kernel is executed in a �nite number ofsteps.Proof. The proof proceeds by induction. The Theorem 1establishes the basic case, i.e. the statement is true for ker-nel objects. Suppose it true for a system consisting of Nobjects, then if we add a (N+1)th object o, and send it amessage o:s(a1; : : : ; aj). Then, the re
ective introspectionrule apply, and we get �(o):
(s;o):�(o; [a1; : : : ; aj ]; k). Bythe evaluator hypothesis HE1, we get �(o) in one step. Butthe meta-object of o exists and by the induction hypothesis,the message 
(s; o) yields the method object m, correspond-ing to the selector s in o, in a �nite number of steps. Again,this method object exists and by the induction hypothesis,the message �(o; [a1; : : : ; aj]; k) is also executed in a �nitenumber of steps before proceeding with the continuation k.2



o:s(a1; : : : ; aj) (1)(HM2) ) �(o):
(s;o):�(o; [a1; : : : ; aj]; k) (2)(HE1) ) mo:
(s;o):�(o; [a1; : : : ; aj]; k) (3)(HM2) ) �(mo):
(
;mo):�(mo; [s;o]; �(o; [a1; : : : ; aj ]; k)) (4)(HE1) ) m2o:
(
;mo):�(mo; [s; o];�(o; [a1; : : : ; aj]; k)) (5):::(HM2) ) �(mno):
(
;mno):�(mno; [
;mn�1o]; : : : �(m2o; [
;mo];�(mo; [s; o];�(o; [a1; : : : ; aj ]; k))) : : :) (6)(HP1) = BMO:
(
;mno):�(mno; [
;mn�1o]; : : : �(m2o; [
;mo];�(mo; [s;o]; �(o; [a1; : : : ; aj]; k))) : : :) (7)(L3) = bl(
;mno):�(mno; [
;mn�1o];�(mn�1o; [
;mn�2o]; : : : �(m2o; [
;mo]; (8)�(mo; [s;o]; �(o; [a1; : : : ; aj ]; k))) : : :))(HP2) = lmno:�(mno; [
;mn�1o]; �(mn�1o; [
;mn�2o]; : : : �(m2o; [
;mo];�(mo; [s;o]; �(o; [a1; : : : ; aj]; k))) : : :)) (9)(HP3) = lmn�1o:�(mn�1o; [
;mn�2o]; : : : �(m2o; [
;mo];�(mo; [s; o];�(o; [a1; : : : ; aj ]; k))) : : :) (10):::(HP3) = lmo:�(mo; [s;o]; �(o; [a1; : : : ; aj]; k)) (11)(HP4) = m:�(o; [a1; : : : ; aj ]; k) (12)Figure 3: General case for o:s(a1; : : : ; aj) (lookup phase).Hence, if the basic rules of this system and its behavioralre
ection protocol are followed in building applications, wewill get a correct system. Over this basic result, let's goback to the operational behavior of the system and look athow to implement it.5 Implementation ConcernsAlthough it is important to establish the correctness of themodel, this gives little hints about the general behavior ofthe system. An interesting outcome of the above exerciselies in its implications on the implementation of the languageevaluator. We now have a look at these issues.5.1 General object behaviorA major concern about meta-level and re
ective architec-tures is e�ciency. Hence, before looking at the implementa-tion of the kernel, let's consider the behavior of our modelwhen a message is sent to some general object, to identifythe potential sources of ine�ciency and to discuss their im-plementation.First, generally speaking, an object has a meta-object,which itself has a meta-meta-object, and so on until BMOis reached. We assume there are n levels of meta-objectsbefore BMO. As requested by the method invocation proto-col, each of these meta-objects has a lookup method. Themeta-object of the deepest meta-object mno is BMO, thus theprimitive lookup applies to it, and if we ask for its lookupmethod, we �nd a method object lmno.The other n�1 meta-objects also have their own lookupmethods, called respectively lmo, lm2o, : : : , lmn�1o thatwe can �nd by applying to them the lookup method of theirrespective meta-objects.For the purpose of this study, assume that we send themessage s to o and that the correponding method object ism. The Figure 2 illustrates a possible con�guration for sucha general object o, its related meta-objects as well as theirrespective lookup methods.

To make the problem tractable, we describe these charac-teristics using again hypothesis that we call problem hypoth-esis. The �rst four hypothesis formalize the constructionillustrated in Figure 2 :HP1 The object o has has a meta-object mo that in turn hasa meta-object m2o, and so on for n level, while the meta-object at the (n+1)th level is BMO, i.e.�(o) = mo�(mio) = mi+1o; 1 � i < n � 1�(mno) = BMOHP2 The lookup method of the nth level meta-object is calledlmno, i.e. bl(
;mno) = lmnoHP3 The lookup method lmio associated to the ith levelmeta-object mio is found when applying the lookup methodlmi+1o associated to the (i+1)th level meta-object mi+1o,i.e.lmi+1o:�(mi+1o; [
;mio]; k) = k:�(lmio; []); 1 � i � n� 1and if k is a continuation created by the application of HM2,then k:�(lmio; []) = lmio:k by HE4.HP4 m is the method object found when applying the lookupmethod lmo to the selector s and the object o, i.e.lmo:�(mo; [s;o]; k) = k:�(m; [])and if k is a continuation created by the application of HM2,then k:�(lmo; []) = lmo:k by HE4.These four hypothesis are su�cient to consider what hap-pens in the lookup phase of the message execution. The Fig-ure 3 develops the re
ective equations for this �rst phase.When the method object m has been found, we send it themessage applyTo:withArgs:withCont:. Before addressing
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applyTo:wA:wC: applyTo:wA:wC: applyTo:wA:wC:Figure 4: General method application description.m:�(o; [a1; : : : ; aj ]; k) (13)(HM2) ) �(m):
(�;m):�(m; [o; [a1; : : : ; aj]; k]; IK) (14)(HP5) = ma1:�(m; [o; [a1; : : : ; aj ]; k]; IK) (15)(HM2) ) �(ma1):
(�;ma1):�(ma1; [m; [o; [a1; : : : ; aj ]; k]; IK]; IK) (16)(HP5) = ma2:�(ma1; [m; [o; [a1; : : : ; aj]; k]; IK];IK) (17):::(HP5) = BA:�(mar; [mar�1; [:::; [ma1; [m; [o; [a1; : : : ; aj ]; k]; IK]; IK]:::];IK]) (18)(L2) = ba(mar ;mar�1; [:::; [ma1; [m; [o; [a1; : : : ; aj ]; k]; IK]; IK]:::];IK) (19)Figure 5: General case for o:s(a1; : : : ; aj) (apply phase).the behavior of the system, let's again illustrate the generalcon�guration of a method object m. As an object, m alsohas a meta-object, but this meta-object is mainly used toretrieve the apply method of m through the execution of alookup method. Hence, the observations we made on thelookup phase also apply to the problem of �nding the applymethod of m.But, once found, the apply method of m is also a method,having is own apply method and so on until BA is reached.Hence, there is a sequence of apply method objects endingwith BA. The Figure 4 illustrates this construction. Again,to be able to follow the behavior of the system, we formalizethis in the following problem hypothesis :HP5 The apply method of the method object m is ma ; mahas itself an apply method called ma1, and so on for r levelswhere the rth level apply method has the basic apply methodBA as its apply method, i.e.ma = �(m):
(�;m)ma1 = �(ma):
(�;ma)ma2 = �(ma1):
(�;ma1)::: :::mar = �(mar�1):
(�;mar�1)BA = �(mar):
(�;mar)The Figure 5 develops the equations for the second phaseof the message execution, namely the application of themethod object m found during the lookup phase. Again inthis case, the evaluator dives into the apply method sequenceuntil it reaches the basic apply method that, by the evalu-ator hypothesis HE2, it executes using the primitive applyfunction to run the code of the previous method.

5.2 DiscussionLet's come back on each phases and assess their respec-tive implementation. Let's also come back on the impactof model's and evaluator's hypothesis but also lemmas andtheorems on the implementation of the language's evaluator.5.2.1 Implementing the lookup phaseA careful examination leads us to split the lookup processin two subparts. First, the primitivity of the meta-objectfetch makes the evaluator dive into the meta-object hierar-chy down to BMO, as shown in lines (2) to (7). During thissubpart, the evaluator accumulates apply continuations thatmakes the second subpart, which essentially climbs backfrom BMO to the meta-object of o, as shown in lines (8) to(12). At each step of this subpart, the lookup method ofone meta-object is applied to �nd the lookup method of thefollowing one, until it reaches the meta-object of o where it�nds the method object m.Although this lookup process can be very long, thereis a large potential source for optimizations. In practice,the hierarchy of meta-objects of an object may not changevery often. Standard caching techniques can be used tokeep around the current lookup method applying to o. Wejust need to compute lookup methods associated to eachobject upon the �rst message receiving and when changesare made to their respective meta-object hierarchy. Hence,the resulting e�ciency can be near to the one of currentobject-oriented languages.Notice, the great 
exibility obtained by the use of explicitcontinuations. When providing a lookup method L to anobject, it is possible, by supplying a speci�c apply methodfor L, to modify the current continuation of the message sendoperation. Normally, this continuation will contain a chain



of lookup method applications ending with the applicationof the method to answer the message itself. Hence, the usercan deeply modify not only the lookup for an object butalso the way it is applied and even the future computation.We will shortly discuss the e�ciency problems appearingbecause of this 
exibility.5.2.2 Implementing the apply phaseDuring the apply phase, the evaluator accumulates the applymethods it encounters in the form of arguments to their nextlevel apply method, leading to the expression ba(mar ;mar�1;[:::; [ma1; [m; [o; [a1; : : : ; aj]; k]; IK];IK]:::];IK), which is di-rectly executable under HE2. What does represent this ex-pression? It executes the primitive apply function, whichapplies the method object mar to the object mar�1. But,mar is an apply method that executes the method objectmar�1, which itself executes the method object mar�2, andso on until the method object m is executed on o. Each levelhas its own (default) continuation, which is initialized to theidentity continuation but, thanks again to the 
exibility ofthe continuation-passing style, that may be changed to �tapplications' needs.Obviously, we are in presence of a re
ective tower suchas the ones explicited by Smith [Smi84] : a tower of evalua-tors where the nth level evaluator executes the (n-1)th levelevaluator and so on. Re
ective towers are the cornerstoneof behavioral re
ection. 3-Lisp [dRS84] made them explicit,while 3-KRS [Mae87] gets its own and CLOS exhibits a sim-ilar characteristic [dR90]. So what is the di�erence betweenour approach and these?First, the tower is �nite and has a concrete representationin the language : apply method objects are the levels of thetower linked through their applyTo:withArgs:withCont:method slot. Second, and most important, towers appear ina method per method fashion, giving them statically a degreeof introspection [dRS84], a number of levels they need to berun. Hence, we get a locality of e�ects insuring that onlythose methods that use a particular tower will be a�ectedby the execution at the corresponding degree of introspec-tion. The fact that we grasp the particular expression ofthe tower for one method at a time also suggests that opti-mizations may be easier. Third, climbing the tower is notmade through re
ective operations but by making changesdirectly on apply methods themselves. We claim that thisis dual to the 3-Lisp approach.Partial evaluation, semantics-based program transforma-tions and advanced compilation techniques should be usedto 
atten the re
ective tower associated with m in order toobtain more e�cient equivalent code. Again, caching tech-niques can be used to keep track of these transformationsand of the resulting optimized code from one application ofa method to the other.5.2.3 The evaluatorSome important clues about the implementation reside inthe model and evaluator hypothesis, lemmas and theorems.Most model hypothesis are essentially constructive state-ments : they give an alternative view on the kernel of themodel or they declare properties that must hold anywherein a well-constructed application. This is the case of modelhypothesis HM1, HM3, HM4, HM5, and HM6.The hypothesis HM2, as well as evaluator hypothesis,have a di�erent 
avour. The re
ective introspection rule is

at the heart of the primitive evaluator behavior. How shouldthe evaluator implement this introspection rule? As we haveseen (x5.1), e�ciency suggests that the eager developmentof re
ective expressions is more amenable to optimizations.Hence, the primitive apply should not use it blindly, butrather implement an equivalent behavior, which would openthe door to optimizations in much the same way as Kiczalessuggested in [Kic90].The second evaluator hypothesis, HE2 stops the intro-spection made by the re
ective rule. Hence, it has a tremen-dous importance. The key idea of closing the in�nite meta-regression at some de�nite point boils down in our modelto the fact that BA represents the primitive apply's behav-ior. HE2 states the point where the execution can step frommessage passing among objects to the primitive apply, in asort of derei�cation.The solution to this, suggested by making BA its own ap-ply method, is to have a primitive apply function ba writtenoutside the object world and to code directly this derei�ca-tion step, either by dynamically testing the hypothesis pre-conditions and switching levels appropriately, or by compil-ing methods in such a way that the system completely avoidssending apply messages to BA but executes the function bain place. We also investigate other solutions.The evaluator hypothesis HE3, about the representationof the method object BL, as well as lemmas, provide es-sentially opportunities for optimizations in the execution ofthe system. Having a �xed kernel would allow shortcutsto be used instead of repeatedly sending lookup:in: andapplyTo:withArgs:withCont: messages among kernel ob-jects. The same applies to Theorem 1 that generalizes allthe preceding lemmas.6 Conclusion and Future WorkIn this paper, we have studied a new model for behavioralre
ection based on meta-objects in a prototype-based pro-gramming language. A new method invocation protocol,using the standard equation message execution = lookup �apply augmented with �rst-class continuations, is the cor-nerstone of our behavioral re
ection model. An importantcharacteristic of this model is the way it manages the in�-nite meta-regression of the meta-of link by supplying a basicmeta-object that admits itself as its own meta-object.We have given the necessary conditions to establish thecorrectness of this model. The main outcome of this ex-ercise is that we obtain an abstract characterization of theconditions that must be respected by the language evalu-ator, which is independent of the exact representation ofmethods and of the implementation of the primitive applyfunction. Hence, it can be adapted to many di�erent com-puting models.We have then discussed the general behavior of the re-sulting language by examining step by step the executionof a message. Not only does this study gives a �ne-grainedunderstanding of behavioral re
ection in our model, it alsoleads to two important conclusions.First, our study con�rms that the rei�cation of the lookupdoes not cause fundamental problems and we can reasonablyexpect to implement it e�ciently. Since it has many inter-esting applications in practice [FJ89], this should be part ofmost object-oriented languages.Second, the rei�cation of the apply methods leads to aform of re
ective towers �a la 3-Lisp [dRS84], which con-



�rms again the central role they are playing in behavioralre
ection. Object orientation changes the perspectives bymaking towers local to each methods and our model madethem �nite. Nevertheless, this result suggests that no gainin e�ciency can be obtained without deepening our under-standing of re
ective towers. Such gains will necessitate theapplication of semantics-based program transformations aswell as advanced compilation techniques to be adapted tore
ective towers.This is, in our view, the main research direction to bepursued in the near future in order to make behavioral re-
ection an e�ective tool. We are actually working on theseproblems and we are just beginning a large project to im-plement e�ciently a new re
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