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Abstract

In [MCD92], we have contributed a reflective model for a
prototype-based language based on the lookup o apply re-
flective introspection protocol. Here, we pursue this work by
including a reification of continuations. Hence, we provide
continuations as first-class objects and convert our previous
protocol to handle them. First-class continuations provide
much more control over the current computation. Also, this
new model establishes the clear link between reflection in
object-oriented and reflective towers as examplified by 3-
Lisp [Smi84]. Object-orientedness provides reflection a more
principled and encapsulated programming style, making it
easier to use. In this paper, we establish the correctness
of this new model, namely that any message in the system
will be executed in a finite number of computation steps.
This fact is based on a limited number of hypothesis inde-
pendent from the implementation but from which we derive
fundamental clues to derive an evaluator for the language.

1 Introduction

Reflection, understood as the construction of self-awared
systems, is a persistent source of challenge. The mere feeling
of touching the essence of computing, but also the tremen-
dous potential for new applications insure a continuous quest
for understanding its foundations. The goal of this paper is
to propose and study in depth a minimal model of behav-
ioral reflection for a prototype-based language.

Object-oriented programming is dominated by the class
and metaclass approach that provides it a highly satisfac-
tory solution to the problem of structural reflection, which is
concerned by the complete reification of data structures and
programs as first class entities. The problem of behavioral
reflection, concerned by the reification of objects’ execution,
is not established on similar firm grounds yet.
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To solve the problem of behavioral reflection several ap-
proaches are currently investigated. Meta-objects, for in-
stance, have been proposed in the frame language 3-KRS
[Mae87] and then in an actor language [WY&88] as well as
in a class-based language [Fer89], to represent the behav-
ioral properties of objects. Several problems are actually
open :

1. How can we overcome the potential infinite regression
when using meta-objects?

2. What protocol should be used to connect behavioral meta-
objects and the evaluator’s self-representation?

3. How should we represent the evaluator’s data structures
and execution?

4. What is the relationship between structural and behav-
ioral reflection? Should the behavioral meta-object of an
object be the same as its structural one (e.g., its class)?

In this paper, we mainly address the three first issues.
Our goal is to concentrate on meta-object based behavioral
reflection and to push this idea to its limit. We also use a
prototype-based language as testbed in order to avoid the
unnecessary complexity of classes before we fully understand
behavioral reflection. In fact, to concentrate on the central
issues, our proposal is a minimalist one :

e We work on a minimal prototype-based language pro-
posed in our previous work [DMC92, MCD92].

e Structural reflection is also provided in a minimal way,
just to make behavioral reflection work properly.

o We choose to cope with the potential infinite regression
of meta-objects by providing a basic meta-object which
admits itself as its own meta-object.

To overcome some limitations of our previous protocol
[MCD92], we also consider the reification of continuations
as first-class objects in our prototype-based language. Con-
tinuations give much more control over the current com-
putation. By converting our protocol to handle first-class
continuations, we make apply methods capable to examine,
modify or otherwise deal with them at run-time. This new
lookup o apply reflective protocol augmented with a reifica-
tion of continuations matches the object-oriented computa-
tional model very well and provides better reflective capa-
bilities. When modifying the lookup for one object or the
application of a method, we now have control over the rest of
the computation as in 3-Lisp [Smi84] or in Scheme [IEE91]
and its behaviorally reflective extensions [JF92].

In this paper, our main goal is to fully investigate this
new approach to assess its feasability and to highlight its



properties. Alternatives to this approach are investigated
[Fer89, Coi90, WY88]. We believe that our work sheds some
new light on these approaches.

The outline of the paper is the following. In the next
section, we present the prototype-based language we are
starting from and we add it sufficient structural reflection
capabilities to study behavioral reflection. In Section 3, we
describe our behavioral reflection model while in Section 4,
we define it more systematically to study its feasability and
its properties. In Section 5, we discuss the general object
behavior and the implementation of the resulting reflective
prototype-based programming language. We then conclude
and discuss future work.

2 Reflective Prototypes

In this section, we describe a minimal prototype-based lan-
guage that we extend with structural reflection capabilities.

2.1 A Minimal Language

In [DMC92], we have proposed that a prototype-based lan-
guage should be implemented on the basis of the following
principles :

P1 : A prototype is represented as a collection of slots. A
slot can represent either a data value (data slot) or a method
(method slot). Slots can be either private or public ; a
private slot of an prototype P can only be accessed within P
or in one of its extensions (see below).

P2 : Message passing is the only mean to activate a pro-
totype and slots names are used as selectors in messages.
No difference is made between data slots and method slots,
both are accessed through messages.

P3 : A prototype is constructed as an extension of an exist-
ing prototype using parent-of implicit delegation links ; the
prototype called ROOT is used as root of parent-of delegation
hierarchies.

P4 : The structure of a prototype is immutable, i.e. one
cannot add or retract a slot within an object ; this allow
encapsulation of objects to be implemented effectively by
preventing malicious users from dynamically adding public
accessors to private information.

P5 : newlnitials(p,initform)is the first primitive function to
create new objects with a fixed set of slots with initial val-
ues ; this primitive is invoked by a message p newInitials:
initform where the receiver p is the parent of the new ob-
ject.

P6 : clone(p) is an alternative primitive function to create
new prototypes by copying existing ones ; this primitive is
invoked by a message p clone where p is the prototype to
be copied.

For reasons out of the scope of this paper, the object
ROOT is defined as a root of implicit delegation hierarchies
and gets as methods all the primitive functions of the lan-
guage (newlnitials and clone). Again, we refer readers to
[DMC92] for more details. Finally, we assume that proto-
types have only one parent ; this restriction could be relaxed,
but multiple parents adds nothing to our study except an
unnecessary complexity.

2.2 Structural Reflection

How can we provide structural reflection in this basic lan-
guage? In class-based languages, classes and metaclasses
play the role of structural reflection but in prototype-based
languages, there is no more classes to deal with the represen-
tation of objects ; an alternative must be sought to obtain
similar capabilities.

In fact, prototypes are not easily amenable to structural
reflection [MCD91]. The simple fact to link a prototype
to another one that describes its structure goes against the
principles of prototype-based programming in the most fun-
damental way. However, prototypes still provide a simple
object-oriented model that allows us to study behavioral re-
flection in depth.

Since studying behavioral reflection only need little struc-
tural reflection capabilities, we use very limited ones : access
to the structural information about individual objects and
a reification of methods as objects. We identified [MCD91,
HCCU90] five primitive access functions : size(0) to get the
size of an object o, name(o,i) to get the name of its ith in-
dividual slot, contentsAt(o,1) to get the value of its ith slots,
contentsAtPut(o,i,v) to set the value of its ith slot, and is-
MethodAt(o,1) to test whether its ith slot is a method slot
or a data slot.

These primitive functions are represented as methods
in the language, themselves reified as the objects : Size,
NameAt, ContentsAt, ContentsAtPut, and IsMethodAt. The
object ROOT gets these methods, to which it points through
its method slots : size, nameAt:, contentsAt:, contentsAt:
put:, and isMethodAt: respectively.

Note that we do not consider this proposal as a defini-
tive solution to structural reflection. We simply use it as a
working one in order to proceed with behavioral reflection.
For simplicity, we make objects themselves responsible for
responding to the “reflective” messages.

3 Behavioral Reflection

In this section, we first describe how the behavior of ob-
jects is described, how the user can modify this behavior,
and what are the basic objects implementing the standard
behavior.

3.1 Method Invocation Protocol

There are two main aspects in the behavioral reflection mo-
del. First, it must describe the behavior of objects using
other objects. Second, it must provide a method invocation
protocol that will allow the user to intervene on the current
execution in order to modify the course of events, i.e. to
reflect.

To describe the behavior of objects, we associate a meta-
object to each of them, whose function is to explicit how the
object reacts when it receives a message. Since the object-
oriented model of computation uses message passing as its
fundamental mechanism, it is usual to make message sends
the vantage points where programs can shift into a reflect-
ing phase. The standard way to achieve that is by making
visible the two main operations done by the evaluator when
a message is sent : the lookup and the application of the
method. This is the traditional equation :

message execution = lookup o apply



Hence, these operations can be implemented as meth-
ods, themselves reified as objects in the language, allow-
ing the user to redefine them in order to perform reflective
computations. At first look, each message passing operation
o sel: al ect: a2 or: a3isreplaced by a reflective intro-
spection which has three phases : (1) find the meta-object of
the receiver o, (2) send it a message lookup: (f#sel:ect:or:)
in: o' that yields a method object (3) to which is sent a
message applyTo: o withArgs: #(al a2 a3) withCont: k.
Hence, coarsely speaking, the reflective introspection rule is :

o sel: al ect: a2 or: a3 =
(((o metalbject)
lookup: (#sel:ect:or:) in: o)
applyTo: o withArgs: #(al a2 a3) withCont: k)

Obviously, each of these operations can lead to potential
infinite meta-regression. Since all three are represented as
message sends, the same introspection rule can be applied to
each of them ad infinitum. The evaluator will be responsible
of preventing this to happen, as we will see (§4), and basic
cases will be provided to represent its standard behavior.

Data slots

Because data slots and method slots are both accessed using
messages, the protocol must cope with data as well as meth-
ods. In both cases, the lookup phase must return an object
that is able to answer an apply message in order to make
the reflective introspection rule working properly. Since data
slots contain only values, we must bridge the gap between
values and the object expected by the reflective protocol.

Representing data as objects able to respond to apply
messages is an appealing solution, but it leads immediately
to an infinite meta-regression when trying to represent data.
Nevertheless, we have decided to force the lookup phase to
return an object when a message is accessing a data slot
but it must be created on the fly, in a lazy fashion. They
answer apply messages by simply returning the value of their
corresponding data slot. Notice that this property must
always hold in the system and, as we will see (§3.2), the
kernel of the language will insure it through its primitive
lookup function.

First-class continuations

First-class continuations now represent a long tradition, es-
pecially in the Lisp and Scheme community [Ste90, IEE91].
In our context, continuations are objects, or prototypes, rep-
resenting the (default) future of the computation at a given
point in the execution of the program. Moreover, most of
the time, the current computation step will return an object
as its result, and the first thing to do after that is to send
this object a message. Thus, although continuations may be
represented in many different ways, here we simply assume
that they are objects applied by sending them a message
applyContTo:withArgs: :

k applyContTo: o withArgs: #(al a2 ...aj)

In the standard case, continuations will have only one
argument, the object o, and the effect of this message will
be to send o the message representing the next thing to do

I Readers familiar with Smalltalk-80 should recognize its syntax
where the special character # is used both to quote symbols and
arrays.

in the computation. In this case, the array of arguments will
be empty. We maintain the form applyContTo:withArgs:
to keep its full generality to our approach.

3.2 Kernel Prototypes

The impact of the method invocation protocol is summa-
rized by the following principles added to the prototype-
based language :

P7 . Every object has a meta-object that is able to answer
to lookup messages ; meta-objects can be shared among
several objects and behave like local interpreters for them.

P8 : Meta-objects answer lookup messages by returning me-
thod objects that are able to answer apply messages.

Meta-objects and the above method invocation protocol
raise four fundamental problems : (1) an infinite regression
of meta-objects may arise along the meta-of link between
an object and its meta-object, (2) a basic lookup method,
(3) a basic apply method as well as (4) a basic method for
applying continuations must be provided.

Our model proposes to solve the problem of the potential
infinite regression by introducing a basic meta-object, called
BasicMetaObject, which is its own meta-object, and which
defines the standard behavior for objects in the system. This
circularity of the meta-of link closes the meta-regression on
BasicMetaObject, in a similar way as the instance-of link
is closed over Class in ObjVLisp [Coi87].

Because of the method invocation protocol, BasicMeta-
Object, as any other meta-object in the system, must be
able to answer lookup:in: message. In fact, since it gives
the standard behavior, its lookup method is the primitive
lookup function reified as a method in the language. We
call this method object BasicLookup. Reifying the primi-
tive lookup function as BasicLookup requires the introduc-
tion of its apply method to respect the method invocation
protocol. We assume that its apply method is the primitive
apply function also reified as a method in the language. We
call this method object BagicApply and construct it to have
itself as its own apply method. In the same way, reifying
continuation requires the introduction of a primitive func-
tion to apply them, reified in the language. We call this
method object BasicApplyCont, and construct it to have
BasicApply as apply method.

These solutions add again four principles to the reflective
prototype-based language :

P9 : BasicMetaObject is the first meta-object in the sys-
tem ; it admits itself as its own meta-object.

P10 : BasicLookup is the first lookup method in the sys-
tem ; it represents the primitive lookup function reified as a
method object in the language.

P11 : BasicApplyis the first apply method in the system ;
it represents the primitive apply function reified as a method
object in the language.

P12 : BasicApplyCont is the first method in the system to
apply continuations ; it represents the primitive function
to apply continuations, reified as a method object in the
language.

The kernel of our model is constructed around six ba-
sic objects : BasicMetalObject, BasicLookup, BasicApply,
BasicApplyCont, IK and ROOT (see §2). IK is an object rep-
resenting the identity continuation whose behavior when ap-
plied is to return its first argument as result ; it also provides
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Figure 1: Basic objects and their relationships.

the basic methods for continuations. The Figure 1 illustrates
the kernel objects as well as their relationships.

4 Correctness

In this section, we define our model using some shorthand
notation that we use to establish its correctness and to be-
come acquainted with its overall behavior.

4.1 The Model and its Evaluator

Our goal in this section is to show that the fundamental
characteristics of the model and the necessary conditions to
write a correct evaluator for our reflective prototype-based
programming language can be captured by a limited num-
ber of hypothesis. We don’t try to give a complete formal
proof of this, but only sufficient insights to convince that
the model is correct. From these, we will gain information
for the implementation of the language.

4.1.1 Model Hypothesis

In our language, everything is represented using objects, or
prototypes. A running program consists in a set of objects.
Some of them are simply end-user objects but others are
used by the evaluator to actually run the program : method
objects, continuation objects, selectors reified as symbol ob-
jects, object vectors used to pass arguments to methods,
and naturally meta-objects that can be created by users to
modify the behavior of end-user objects.

As we have seen above, the method invocation proto-
col performs three main operations which are designated by
three message selectors : metaObject to find the meta-object
of the receiver, lookup:in: to find the method correspond-
ing to the selector of the message, and applyTo:withArgs:
withCont: to apply this method to the receiver with the
arguments of the message. In the rest of the section, we

use the following shorthand notation for these fundamental
operations :

o sel: al ect: a2 or: a3 — o.s(a1,az,as)

where s = sel:ect:or:
— (o)

— mo.v(s,0)

,aj) withCont: k
.761]]7]6)

ag])

The message sending operator ’.” is left-associative. The
primary goal of this notation is to keep proofs small enough
to be understandable. Using the normal syntax would rapid-
ly lead to useless fullpage expressions.

Provided with these basic definitions and notation, we
now switch on the characteristics of the model. These char-
acteristics can be expressed in eight statements that we will
call “model hypothesis”. The first model hypothesis states
that for each object, there is an associated meta-object :

HM1 Fach object has a meta-object, i.e.

o metalbject

mo lookup: s in: o

m applyTo: o withArgs: #(al,...
= m.a(o,[ai, ..

k applyContTo: o withArgs: #(al,...,aj)
— k.50, a1, ..

El

mz = p(z)
where mx 15 called the meta-object of x.

The meta-object of an object is used in the reflective
introspection rule that is stated as follows :

HM2 Reflective introspection. The reflective introspection
rule is :

., a5],k)

where k represents the continuation of the computation ap-
pearing after the message send. This rule makes no assump-
tions about the mechanism used to evaluate the receiver o,
the selector s and the arguments a1, ...,a; except that they
are reified into objects.

o.s(ay,...,a;) = p(o).7(s,0).a(o,lai,..



In fact, we hide things a bit here since the lookup and
apply functions are only two subparts of the complete eval-
uation process. When applying the reflective introspection
rule, the receiver, the selector and the arguments of the mes-
sage may be evaluated. Because we do not address this
problem, we only assume that their representation is reified
into objects in order to make the reflective introspection rule
work properly. Otherwise, we put no constraints on the way
the evaluator treats the receiver and the selector or on the
mode it uses to evaluate arguments.

The model provides a basic meta-object constructed to
be its own meta-object :

HMS3 The existence of a basic meta-object. There exists one
object such that :

BMO = u(BMO)
This object 1s called BasicMetaObject, or BMO for short.

Since all meta-objects must answer lookup:in: mes-
sages, BasicMetaObject gets its own lookup method. This
method 1s a primitive lookup function, reified as a standard
method in the language :

HM4 The existence of a basic lookup. There exists one
method object such that :

BL =BMO.4(~,BMO)
This method is called BasicLookup, or BL for short. Fur-

thermore, the object BL is constructed to get u(BL) = BMO.

Since BasicLookup is a method object, it gets its own
apply method. Again, this method is a primitive apply func-
tion, reified as a standard method in the language :

HMS5 The existence of a basic apply. There exists one me-
thod object such that :

BA = BMO.v(a,BL)

This method is called BasicApply, or BA for short. Further-
more, the object BA is constructed to get u(BA) = BMO
and BMO.v(a, BA) = BA.

Objects are related through parent-of links and there is
one root object that holds as its own methods the primitive
of the language :

HMG6 The existence of a root object. There exists one object
such that :
ROOT = =(ROOT)

The object ROOT is constructed to get u( ROOT) = BMO
and such that its methods represent the primitives of the lan-
guage, themselves reified as method objects and constructed
in such a way that BMO s their meta-object and BA thewr
apply method.

The primitive lookup function takes advantage of the fact
that ROOT is its own parent to stop looking for a parent when
encountering it. We define ROOT like this because we assume
that any object in the system can anwer a message parent
without raising an error. The usual alternative to this is to
make nil the parent of the root object, but since we are
committed to being reflective, this would force to represent
nil as an object and to go back to the similar problem,
namely what is the parent of nil?

Finally, the kernel provides a first continuation object,
the identity continuation exhibiting the primitive behavior
of continuations :

HM7 The existence of an tdentity continuation. There ex-
1sts one object such that :

o=1K.6(0,]])

This continuation object represents the simplest continua-
tion which merely returns the object to which it is applied.
1K is used by the reflective introspection rule if nothing has
to be done after the current message send (see HM2).

Since continuations must be applied, the kernel also pro-
vides a basic apply method for continuations :

HMS8 The existence of a basic apply for continuations. There
exists method one object such that :

BAC = BMO.~(6, 1K)

This method object s called BasicApplyCont, or BAC for
short. Furthermore, the object BAC 1s constructed to get
u(BAC) = BMO and BMO.y(a, BAC) = BA.

4.1.2 Evaluator Hypothesis

At this point, the above hypothesis are sufficient to describe
the kernel objects of Figure 1. However, they are insuffi-
cient to build a correct evaluator for the language. In order
to get an operationally meaningful language, we need four
more hypothesis. Since they have nothing to do with the
model itself but rather with its operational semantics, we
call them “evaluator hypothesis”. Each of them cope with
one particular problem with the execution of the model.

The first problem that comes up is the meta-regression
in accessing an object’s meta-object. Since now, we have
assumed the object to have a slot called metaObject pointing
to its meta-object. A natural way to access this meta-object
is to send a message metaObject to the object, as suggested
by the reflective introspection rule.

We must notice immediately that since this is a message,
the method invocation protocol applies and ask again for
the meta-object of the receiver. Hence, we are in a typical
meta-regression. To get out of this, we make the access to
the meta-object a primitive operation instead of a normal
message :

HE1 Primativity of u. The meta-object accessing rule s :
u(o) = metaof(o) = mo

where mo s the meta-object of 0. Hence, finding the meta-
object of an object 1s a primitive function of the system called
metaof. For the sake of brievity, we will use the following
notation:

n times

The second problem is how to connect the method ob-
ject BasicApply and the primitive apply function ba. In
the kernel, BagicApply gets itself as its own apply method.
To be operational, the evaluator must use this property to
find out when the function ba must be applied. The second
evaluator hypothesis copes with this :

HE2 The BasicApply apply rule is :
BA.a(m,[o,args, ko], k1) = ki.0(ba(m, 0,args, ko), [])

Applying the apply method of BA to BA with the arguments
m, o, args, ko and k1 is equivalent to applying the evaluator
primitive apply function ba to m, o, args and ko and apply
the continuation k1 to its result.



The next problem is how to relate the method object
BasicLookup and the primitive lookup function bl. The fol-
lowing hypothesis can be seen as an implementation con-
straint that must hold to get a correct behavior :

HE3 BasicLookup applying. The lookup method BL and the
primitive lookup function bl are equivalent :

ba(BL,BMO, [s,0],k) = k.6(bl(s,0),[])

Applying the evaluator ba function to the method object Ba-
stcLookup in the context of BMO with arguments s, o and k
18 equivalent to applying the evaluator primitive lookup func-
tion bl to s and o and applying k to its result.

Applying continuations is the last problem where a po-
tential infinite regression must be prevented. A continuation
object K is applied by sending it a message applyContTo:
withArgs:. If we blindly use the reflective introspection rule
to execute this message, it will create more continuations to
be applied, which will need again other continuations to be
applied, and so on. To prevent such a situation, we assume
that continuations created by the basic evaluator, such as
those introduced by the reflective introspection rule, are di-
rectly recognizable and executable :

HE4 Application of primitive continuations. A primitive
continuation K, such as those created by the application of
the reflective introspection rule (see HM2), is directly ezxe-
cutable by the evaluator :

K.6(0,[]) =0.K

In fact, we simplify a bit again here. K is an object
reifying a continuation, and continuations created by the
evaluator when applying the reflective introspection rule are
all of the same kind, i.e. they accept only one argument : an
object to which a message is sent. For the sake of brievity,
we will assimilate the continuation K and the message it
sends to its object argument o.

4.2 Lemmas and Theorems

We now show that the above hypothesis are sufficient to get
a correct evaluator for the language. A side goal of this
section is to master how computation are actually made in
this model.

4.2.1 Fundamental Lemmas

Correctness corresponds here to the ability of an evaluator
to execute any message in the language obtained from the
model using a finite number of steps, that is a finite num-
ber of applications of defined rules and a finite number of
computational steps by the evaluator.

To establish that, we first consider the kernel objects
and show that any message to one of them is executed in a
finite number of steps. Indeed, we assume that the primi-
tive functions ba and bl are executed in a finite number of
computation steps. Hence, it suffices to establish that any
message to one of the objects in the kernel involves only a
finite number of steps.

We proceed in four lemmas, followed by a first theorem
establishing the correctness of the kernel under its basic hy-
pothesis. The first lemma shows that an apply message sent
to the method object BasicLookup is rewritten in a finite
number of steps into a call to the primitive lookup func-
tion :

Lemma 1 Applying the BasicLookup method object is equiv-
alent to executing the evaluator lookup function bl, i.e.

BL.a(BMO,[s,0],k) = k.5(bl(s,0),[])

Proof 2.
BL.a(BMO,[s,0],k)

(HM?2) = u(BL).v(a,BL).a(BL,[BMO,[s,0lk],IK)
(HM4) = BMO.y(a,BL).a(BL,[BMO,]|s,0],k], [K)
(HM5) = BA.«a(BL,[BMO,][s,o0)k],[K)

(HM?2) = IK.5(ba(BL,BMO,]s,0l,k),[])

(HM7) = ba(BL,BMO,[s,o)k)

(HE3) = k.d(bl(s,0),[]) O

Second, we establish that an apply message sent to the
method object BasicApply is rewritten in a finite number
of steps into a call to the primitive apply function :

Lemma 2 Applying the BasicApply method is equivalent to
executing the evaluator apply function ba, i.e.

BA.a(m,[o,a,k],[K) = ba(m,o,a,k)

Proof.
BA.a(m,[o,a,k], [K)
(HE2) = IK.5(ba(m,o0,a,k),[])
(HM7) = ba(m,o0,a,k) O

Given these two first lemmas, we know that BasicLookup
an BasicApply, two of the six objects in the kernel be-
have correctly when they are sent their standard messages.
Now, let’s look at BasicMetaObject, which mainly answers
lookup:in: messages. The following lemma shows that a
lookup message sent to BMO is also rewritten in a call to the
primitive lookup function in a finite number of steps :

Lemma 3 Sending BasicMetaObject the lookup message is
equivalent to applying the evaluator’s primitive lookup func-
tion bl :

BMO.~(s,0) =bl(s,0)

Proof.
BMO.~(s,0)
(HM?2) = u(BMO).y(y,BMO).a(BMO,]s,0],IK)
(HM3) = BMO.vy(y,BMO).a(BMO,]s,0],IK)
(HM4) = BL.a(BMO,]s,0],IK)
(L1) = IK.5(bl(s,0),[])
(HM7) = Ubl(s,0) O

At this point, we have established that BL, BA and BMO
behave correctly when they are sent the messages used by
the method invocation protocol. Now, we turn to the other
method objects in the kernel. All method objects in the
kernel are standard methods. A standard method object m
is characterized by the two following statements :

2Proofs are all based on a similar pattern and are quite simple.
They consist in applying the right rule or one of the basic cases to
derive the conclusion from the premises. Each step is labelled with
either the hypothesis or the lemma used to transform the above ex-
pression into a new expression.
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Figure 2: General object description.

S1. p(m) = BMO, i.e. its meta-object is the basic meta-
object.

S2. bl(a,m) = BA, i.e.its apply method is the basic apply
method.

In the following lemma, we show that a standard method
answers an apply message in a finite number of steps :

Lemma 4 Sending an apply message to a standard method
18 equivalent to executing this method using the primitive
apply function :

m.a(o,[ay, ...

7aJ]7k)

,a;],k) = ba(m,o,[ay,...

where j is the number of arguments of m.

Proof.
m.a(o,[a1, ..., a;], k)

(HM?2) = p(m).y(a,m).a(m,lo,]a,...,a;],k], 1K)
(51) = BMO.y(a,m).a(m,lo,]ai,...,qa],k],[K)
(L3) = bl(a,m).a(m,[o,[ai,...,a;],k], [K)

(52) = BA.a(m,[o]a1,...,q;],k], 1K)
(L2) = ba(m,o,[a1,...,a;],k) O

Recall that messages that access data slots are also an-
swered through the same method invocation protocol (see
§3). We simply assume that, in this case, the primitive
lookup function returns standard methods that themselves
return the value of the corresponding slot when applied.
Thus, accessing a data slot is also done in a finite num-
ber of steps. Indeed, this property must be maintained in
any extension of the kernel to build applications.

Theorem 1 Sending a message to any object in the kernel
18 equivalent to applying the primitive apply function ba :

7aJ]7k)

where m = bl(s,0), the method object corresponding to the
selector s in o, and k represents the rest of the computation
after o.s(ai, ..., a;).

Proof.

o.s(ai,...,a;) =ba(m,o,[ay,...

o.s(a,...,ay)

(HM2) = p(o).v(s,0).a(o,[a,...

= BMO.y(s,0).a(o,[a1,...,a;],k)
(L3) = bl(s,0).a(o,[a1,...,a;],k)

= m.a(o,a1,...,a;],k)
(L4) ba(m,o,[a1,...,a;],k) O

The second step uses the fact that all objects in the kernel
have BMO as meta-object while the fifth step uses the fact
that all methods in the kernel are standard ones.

4.2.2 General Case

Being done with the kernel prototypes, we now attack the
general case, when new objects are added to the kernel to
build applications. The next theorem establishes the cor-
rectness of the resulting system. We assume that the pro-
tocol underlying the kernel is respected by the programmer
and that the extensions are correct.

For example, we assume that user methods are well-
behaved, e.g. they do not get into infinite loops. And
by correct extension of the kernel, we mean that it fol-
lows the principles established by the model, e.g. every
new object must have a meta-object capable of answering
lookup:in: messages, and that method objects are able to
answer applyTo:withArgs:withCont: messages.

Given that these assumptions are true, any message to
any object in the system is executed in a finite number of
steps.

Theorem 2 A message sent to any object in a system ex-
tending correctly the kernel is executed in a finite number of
steps.

Proof. The proof proceeds by induction. The Theorem 1
establishes the basic case, i.e. the statement is true for ker-
nel objects. Suppose it true for a system consisting of N
objects, then if we add a (N+1)th object o, and send it a
message o.s(ai,...,a;). Then, the reflective introspection
rule apply, and we get p(o).v(s,0).a(o,[a1,...,a;],k). By
the evaluator hypothesis HE1, we get pu(o) in one step. But
the meta-object of o exists and by the induction hypothesis,
the message ~(s,0) yields the method object m, correspond-
ing to the selector s in o, in a finite number of steps. Again,
this method object exists and by the induction hypothesis,
the message a(o,[ai, ..., a;],k) is also executed in a finite

number of steps before proceeding with the continuation k.
O



o.s(a,...,ay) (1)
(HM?2) = p(o).v(s,0).a(o,lai,...,a;],k) (2)
(HE1) = mo.y(s,0).a(o,fal,...,a;],k) (3)
(HM?2) = p(mo).v(y,mo).a(mo,[s,o],alo,[ai,...,a;],k)) (4
(HE1) = m2o.'y('y,mo).oz(mo,[s,o],oz(o,[al,...,a]],k)) (5)
(HM?2) = u(m"o).’y(’y,m"o).oz(m"o,['y,m"_lo],...oz(m2o,['y,mo],oz(mo,[s,o],oz(o,[al,...,a]],k)))...) (6)
(HP1) = BMO.y(y,m"0).a(m"o, ['y,mn_lo],...oz(m2o7 [v, mo],a(mo,[s,0],a(o,[a1, ..., a;5],k)))...) (7)

(L3) = bl(y,m"0).a(m"o,[y, m" o], oz(m"_lo7 [v,m"%0],... oz(m2o7 [, mo], (8)
a(mo,[s,o],a(o,[ai,...,a;],k)))...))

(HP2) = Im"o.a(m”o,[y,m" " o],a(m” "o, [v,m"?0],...a(m’0, [y, mo],a(mo,[s,0], a(o,[a,...,a;],k)))...)) (9)

(HP3) = lmn_lo.oz(m"_lo7 ['y,m"_2o],...oz(m2o7 [v,mo],a(mo,[s,0],a(o,[a1,...,a;],k)))...) (10)

(HP3) Imo.a(mo,[s,0],a(o,[a1,...,qa5],k)) (11)

(HP4) m.a(o,[a, ..., a;],k) (12)

Figure 3: General case for o.s(al7 ..

Hence, if the basic rules of this system and its behavioral
reflection protocol are followed in building applications, we
will get a correct system. Over this basic result, let’s go
back to the operational behavior of the system and look at
how to implement it.

5 Implementation Concerns

Although it 1s important to establish the correctness of the
model, this gives little hints about the general behavior of
the system. An interesting outcome of the above exercise
lies in its implications on the implementation of the language
evaluator. We now have a look at these issues.

5.1 General object behavior

A major concern about meta-level and reflective architec-
tures is efficiency. Hence, before looking at the implementa-
tion of the kernel, let’s consider the behavior of our model
when a message i1s sent to some general object, to identify
the potential sources of inefficiency and to discuss their im-
plementation.

First, generally speaking, an object has a meta-object,
which itself has a meta-meta-object, and so on until BMO
is reached. We assume there are n levels of meta-objects
before BMO. As requested by the method invocation proto-
col, each of these meta-objects has a lookup method. The
meta-object of the deepest meta-object m™o is BMO, thus the
primitive lookup applies to it, and if we ask for its lookup
method, we find a method object Im™o.

The other n — 1 meta-objects also have their own lookup
methods, called respectively lmo, Im?o, ..., Im" o that
we can find by applying to them the lookup method of their
respective meta-objects.

For the purpose of this study, assume that we send the
message s to o and that the correponding method object is
n. The Figure 2 illustrates a possible configuration for such
a general object o, its related meta-objects as well as their
respective lookup methods.

,a;) (lookup phase).

To make the problem tractable, we describe these charac-
teristics using again hypothesis that we call problem hypoth-
ests. The first four hypothesis formalize the construction
illustrated in Figure 2 :

HP1 The object o has has a meta-object mo that in turn has
a meta-object m*o0, and so on for n level, while the meta-
object at the (n+1)th level is BMO, i.e.

u(o) = mo
u(mio) = m'tlo, 1<i<n-—1
u(m"o) = BMO

HP2 The lookup method of the nth level meta-object is called
Im"o, i.e.
bl(v,m"0) =Ilm"0o

HP3 The lookup method Imio associated to the ith level
meta-object m*o is found when applying the lookup method
Im'to associated to the (i+1)th level meta-object m'*'o,
i.e.

lmi-l'1o.oz(mi+1o7 [, mio],k) = k.5(lmio7 0,1<i<n-1

and if k is a continuation created by the application of HM2,
then k.5(Im'o,[]) = Im'o.k by HE/.

HP4 m is the method object found when applying the lookup
method lmo to the selector s and the object o, i.e.

Imo.a(mo,[s,o],k) = k.6(m,[])

and if k 1s a continuation created by the application of HM2,
then k.5(Imo,[]) = lmo.k by HE/.

These four hypothesis are sufficient to consider what hap-
pens in the lookup phase of the message execution. The Fig-
ure 3 develops the reflective equations for this first phase.

When the method object m has been found, we send it the
message applyTo:withArgs:withCont:. Before addressing
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Figure 4: General method application description.

m.a(o,[a, ..., a;],k)
(HM?2) = p(m).y(a,m).a(m,o,]ay,...
(HP5) = mal.oz(m,[o7 [a,...
(HM?2) = u(mal).'y
(HP5) = ma2.oz(mal,[m,[o,[al,...7
(HP5) =
(L2) = ba(mar,mar_l,[...,[mal,[m,[o7 [a,...

Figure 5: General case for o.s(al7 ..

the behavior of the system, let’s again illustrate the general
configuration of a method object m. As an object, m also
has a meta-object, but this meta-object is mainly used to
retrieve the apply method of m through the execution of a
lookup method. Hence, the observations we made on the
lookup phase also apply to the problem of finding the apply
method of m.

But, once found, the apply method of m is also a method,
having is own apply method and so on until BA is reached.
Hence, there is a sequence of apply method objects ending
with BA. The Figure 4 illustrates this construction. Again,
to be able to follow the behavior of the system, we formalize
this in the following problem hypothesis :

HP5 The apply method of the method object m is ma ; ma
has itself an apply method called ma®, and so on for r levels
where the rth level apply method has the basic apply method
BA as its apply method, i.e.

ma = p(m).y(a,m)
ma' = p(ma).y(a, ma)
ma® = u(mal).'y(oz,mal)
ma’ = p(ma ")y (a, mar_l)
BA = p(ma").v(a,ma")

The Figure 5 develops the equations for the second phase
of the message execution, namely the application of the
method object m found during the lookup phase. Again in
this case, the evaluator dives into the apply method sequence
until it reaches the basic apply method that, by the evalu-
ator hypothesis HE2, it executes using the primitive apply
function to run the code of the previous method.

(13)

sa5], k], 1K) (14)
a5, k), TK) (15)
(oz,mal).oz(mal,[m,[o7 [a,... (16)
(17)

a]]7 k]7 ][(]7 ][()

761]],]6],][(],][()

BA.a(ma”,[ma" " [...,[ma",[m,[o,[a1, ..., a;],k], K], IK]..], [ K]) (18)

Ja,), k], IK), IK)..], IK) (19)

,a;) (apply phase).

5.2 Discussion

Let’s come back on each phases and assess their respec-
tive implementation. Let’s also come back on the impact
of model’s and evaluator’s hypothesis but also lemmas and
theorems on the implementation of the language’s evaluator.

5.2.1 Implementing the lookup phase

A careful examination leads us to split the lookup process
in two subparts. First, the primitivity of the meta-object
fetch makes the evaluator dive into the meta-object hierar-
chy down to BMO, as shown in lines (2) to (7). During this
subpart, the evaluator accumulates apply continuations that
makes the second subpart, which essentially climbs back
from BMO to the meta-object of o, as shown in lines (8) to
(12). At each step of this subpart, the lookup method of
one meta-object is applied to find the lookup method of the
following one, until it reaches the meta-object of o where it
finds the method object m.

Although this lookup process can be very long, there
is a large potential source for optimizations. In practice,
the hierarchy of meta-objects of an object may not change
very often. Standard caching techniques can be used to
keep around the current lookup method applying to o. We
just need to compute lookup methods associated to each
object upon the first message receiving and when changes
are made to their respective meta-object hierarchy. Hence,
the resulting efficiency can be near to the one of current
object-oriented languages.

Notice, the great flexibility obtained by the use of explicit
continuations. When providing a lookup method L to an
object, it is possible, by supplying a specific apply method
for L, to modify the current continuation of the message send
operation. Normally, this continuation will contain a chain



of lookup method applications ending with the application
of the method to answer the message itself. Hence, the user
can deeply modify not only the lookup for an object but
also the way it is applied and even the future computation.
We will shortly discuss the efficiency problems appearing
because of this flexibility.

5.2.2 Implementing the apply phase

During the apply phase, the evaluator accumulates the apply
methods it encounters in the form of arguments to their next
level apply method, leading to the expression ba(ma", ma" !
[...,[ma', [m,[o0,[a1,...,q;], k], IK],IK]...], I K), which is di-
rectly executable under HE2. What does represent this ex-
pression? It executes the primitive apply function, which
applies the method object ma” to the object ma™ . But,
ma” is an apply method that executes the method object
ma” !, which itself executes the method object ma™ 2, and
so on until the method object m is executed on o. Each level
has its own (default) continuation, which is initialized to the
identity continuation but, thanks again to the flexibility of
the continuation-passing style, that may be changed to fit
applications’ needs.

Obviously, we are in presence of a reflective tower such
as the ones explicited by Smith [Smi84] : a tower of evalua-
tors where the nth level evaluator executes the (n-1)th level
evaluator and so on. Reflective towers are the cornerstone
of behavioral reflection. 3-Lisp [dRS84] made them explicit,
while 3-KRS [Mae87] gets its own and CLOS exhibits a sim-
ilar characteristic [dR90]. So what is the difference between
our approach and these?

First, the tower is finite and has a concrete representation
in the language : apply method objects are the levels of the
tower linked through their applyTo:withArgs:withCont:
method slot. Second, and most important, towers appear in
a method per method fashion, giving them statically a degree
of introspection [dRS84], a mumber of levels they need to be
run. Hence, we get a locality of effects insuring that only
those methods that use a particular tower will be affected
by the execution at the corresponding degree of introspec-
tion. The fact that we grasp the particular expression of
the tower for one method at a time also suggests that opti-
mizations may be easier. Third, climbing the tower is not
made through reflective operations but by making changes
directly on apply methods themselves. We claim that this
is dual to the 3-Lisp approach.

Partial evaluation, semantics-based program transforma-
tions and advanced compilation techniques should be used
to flatten the reflective tower associated with m in order to
obtain more efficient equivalent code. Again, caching tech-
niques can be used to keep track of these transformations
and of the resulting optimized code from one application of
a method to the other.

5.2.3 The evaluator

Some important clues about the implementation reside in
the model and evaluator hypothesis, lemmas and theorems.
Most model hypothesis are essentially constructive state-
ments : they give an alternative view on the kernel of the
model or they declare properties that must hold anywhere
in a well-constructed application. This is the case of model
hypothesis HM1, HM3, HM4, HM5, and HM6.

The hypothesis HM2, as well as evaluator hypothesis,
have a different flavour. The reflective introspection rule is

)

at the heart of the primitive evaluator behavior. How should
the evaluator implement this introspection rule? As we have
seen (85.1), efficiency suggests that the eager development
of reflective expressions is more amenable to optimizations.
Hence, the primitive apply should not use it blindly, but
rather implement an equivalent behavior, which would open
the door to optimizations in much the same way as Kiczales
suggested in [Kic90].

The second evaluator hypothesis, HE2 stops the intro-
spection made by the reflective rule. Hence, it has a tremen-
dous importance. The key idea of closing the infinite meta-
regression at some definite point boils down in our model
to the fact that BA represents the primitive apply’s behav-
ior. HE2 states the point where the execution can step from
message passing among objects to the primitive apply, in a
sort of dereification.

The solution to this, suggested by making BA its own ap-
ply method, is to have a primitive apply function ba written
outside the object world and to code directly this dereifica-
tion step, either by dynamically testing the hypothesis pre-
conditions and switching levels appropriately, or by compil-
ing methods in such a way that the system completely avoids
sending apply messages to BA but executes the function ba
in place. We also investigate other solutions.

The evaluator hypothesis HE3, about the representation
of the method object BL, as well as lemmas, provide es-
sentially opportunities for optimizations in the execution of
the system. Having a fixed kernel would allow shortcuts
to be used instead of repeatedly sending lookup:in: and
applyTo:withArgs:withCont: messages among kernel ob-
jects. The same applies to Theorem 1 that generalizes all
the preceding lemmas.

6 Conclusion and Future Work

In this paper, we have studied a new model for behavioral
reflection based on meta-objects in a prototype-based pro-
gramming language. A new method invocation protocol,
using the standard equation message execution = lookup o
apply augmented with first-class continuations, is the cor-
nerstone of our behavioral reflection model. An important
characteristic of this model is the way it manages the infi-
nite meta-regression of the meta-oflink by supplying a basic
meta-object that admits itself as its own meta-object.

We have given the necessary conditions to establish the
correctness of this model. The main outcome of this ex-
ercise is that we obtain an abstract characterization of the
conditions that must be respected by the language evalu-
ator, which is independent of the exact representation of
methods and of the implementation of the primitive apply
function. Hence, it can be adapted to many different com-
puting models.

We have then discussed the general behavior of the re-
sulting language by examining step by step the execution
of a message. Not only does this study gives a fine-grained
understanding of behavioral reflection in our model, it also
leads to two important conclusions.

First, our study confirms that the reification of the lookup
does not cause fundamental problems and we can reasonably
expect to implement it efficiently. Since it has many inter-
esting applications in practice [FJ89], this should be part of
most object-oriented languages.

Second, the reification of the apply methods leads to a
form of reflective towers ¢ la 3-Lisp [dRS84], which con-



firms again the central role they are playing in behavioral
reflection. Object orientation changes the perspectives by
making towers local to each methods and our model made
them finite. Nevertheless, this result suggests that no gain
in efficiency can be obtained without deepening our under-
standing of reflective towers. Such gains will necessitate the
application of semantics-based program transformations as
well as advanced compilation techniques to be adapted to
reflective towers.

This 1s, in our view, the main research direction to be
pursued in the near future in order to make behavioral re-
flection an effective tool. We are actually working on these
problems and we are just beginning a large project to im-
plement efficiently a new reflective object-oriented program-
ming language based on this model. Indeed, much work has
still to be done to obtain a system that would be able to
cope with these ambitious implementation requirements.
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