ARES, Adding a class and REStructuring Inheritance Hierarchy

H. Dicky, C. Dony, M. Huchard, T. Libourel
LIRMM,
161 rue Ada, 34392 Montpellier Cedex 5, France,
email: name@lirmm.fr

June 9, 1995

Abstract

In object-oriented databases, schema design or evolution [BKKK87] should benefit as
much as possible from automatic tools.

In this paper, we focus on the automatic insertion of classes into inheritance hierarchies,
while preserving a “maximal factorizing” of class properties.

We describe an incremental algorithm which factors properties, approaches the overload-
ing problem, and can be used to build, reorganize or maintain a hierarchy.

Our algorithm works with a model of hierarchies based on what we call the ”Galois
SubHierarchy” recently introduced by [GM93] and which is a particular suborder of the
Galois lattice.

This algorithm maintains a Galois SubHierarchy without building the whole Galois lat-
tice.

Résumé

Dans les bases de données orientées objet, certaines phases de la conception ou de
I'évolution de schéma [BKKK87] pourraient bénéficier d’une automatisation partielle.

Nous nous intéressons plus particulierement au probleme de 'insertion d’une classe dans
une hiérarchie existante, en respectant un critere de “factorisation maximale”.

Nous proposons un algorithme incrémental qui factorise les propriétés, aborde le probleme
de la surcharge, et permet de construire, réorganiser ou maintenir une hiérarchie.

Notre méthode s’appuie sur la notion de “sous-hiérarchie de Galois” introduite récemment
par [GM93], et qui est un sous-ordre particulier du treillis de Galois.

Notre algorithme permet de maintenir une sous-hiérarchie de Galois sans construire le
treillis de Galois tout entier.

Key words : Database schema, Inheritance hierarchy, Schema design, Schema evolution,
Galois lattice, Restructuring, Factorizing

1 Introduction

In object-oriented systems, inheritance hierarchies are generally built “by hand” by a designer
or a group of designers after an analysis step. The underlying construction methods are mostly
informal and empirical.

It seems very difficult to completely automatize the construction of hierarchies because of
the number of criteria to take into account and of the difficulty in defining what is a “good”
hierarchy independently of a context.

However the structuring process should benefit from a partial automation, especially when
the classes to be structured become more intricate and numerous. Some parts of the task are
repetitive, (as for example building classes to factorize properties common to several classes)
and human work does not ensure that the same situation will systematically be handled in the
same way.

Hierarchy design may be done in a global way, given a set of unrelated classes to be organized.
A contrario, incremental methods can be used during the design step of database schema in order

to:
e insert a new class defined by the designer
e insert a class from another database schema (“integration problem”).
e insert a virtual class, computed on other classes (“view class”)

One of the main interests of inheritance hierarchies is to share descriptions and behavior
common to several classes. In this paper, we focus on one essential activity when we build
inheritance hierarchies: point out common properties and create classes to store them (“factor
common properties”). We propose an incremental algorithm which performs maximal factoriz-
ing of properties defined on the classes, and offers a first solution to the problem of property
overloading.

We extend different methods proposed in existing systems [Cas92, LBSL91, LBSLY0, Ber91]
to solve that factorizing problem. We approach property overloading, and produce a simple
polynomial algorithm, whose results are well specified.

To describe the algorithm, we use Galois lattices, already much used in other domains (e.
g., machine learning, information retrieval, knowledge representation), which provide, as noted
in [GM93], a nice point of view on the factorizing problem.

Section 2 introduces various definitions and notations. Section 3 explains what Galois lattices

can bring to inheritance hierarchy building. Section 4 details the incremental algorithm and

its main properties. The paper ends with a general discussion about the application of the

algorithm.

2 Definitions and Notations

We give here the notations used in the rest of the paper.

2.1 Database Schema and Inheritance Hierarchy

In the object-oriented database framework, a database is roughly a pair (S, 1) where S is the
schema, and I the persistent object instances.

The schema S is an inheritance hierarchy H, that is, a directed acyclic graph (C,T') where C
is a set of classes, and ' a set of inheritance directed edges. H induces a partial order, which we
note as <y, and owns a “root” (maximal vertex) Q. Given a class C, SuperClasses(C) (resp.
SubClasses(C)) is the set of C ancestors (resp. descendants), considering <py. Immediate-
SuperClasses(C) (resp. ImmediateSubClasses(C)) is the set of the minimal ancestors (resp.
descendants) of C.

H may contain transitivity edges, i. e. edges (Cj, C;) such that there is a path between C;
and Cj; besides the edge (C;j, C;). In order to simplify the presentation, we do not discuss here

how we handle transitivity edges.

2.2 Classes and their Properties

A class is defined by a set of properties. Properties are attributes and methods described, for
instance, by a name, a signature, a domain, a value ... We now give notations for two frameworks:
a naive approach without overloading and another approach in which overloading is handled.

Then we show that the second approach can be reduced to the first one.
e The Naive Approach

We consider a set P of properties (27 is the set of P subsets) and a set C of classes. To
each class, the function Properties : C — 27 associates a set of properties. For a given class C,
Declared(C) is the set of properties declared in C, while Inherited(C) is the set of properties
declared in C’s superclasses '

The partial order <y is included into the inclusion relationship between sets of properties.

In Figure 8, P is {name, university, nb_students, admin_unit, laboratory} U {degree;, 0 <

i <4} U{salary;,0 <i<3}.

! Imherited(C Properties(C;).

) = UCiESupev‘classes(C)

e The Approach with Querloading

Let us consider again the set of properties P and the functions Properties, Declared and
Inherited.
In the above example, semantics leads to group together {degree;,0 < i < 4} (and also

{salary;,0 < i < 3}). We will call a generic property a set of properties that we want to group.

Generic property
P is partitioned into generic 2 properties and we shall call G the set of the generic

properties.

In Figure 8, G = {N,U,Nb,A,L,D,S} where N = {name}, U = {university}, Nb =
{nb_students}, A = {admin_unit}, L = {laboratory}, D = {degree;,0 < i < 4}, § =
{salary;,0 <i < 3}.

We denote by p; an occurrence of the generic property P.

For a given class C, we define Gen Properties(C) = {P € G s.t. 3p; € Properties(C) and p; €
P}. GenDeclared(C) and GenInherited(C) are defined the same way.

Furthermore, semantics partially orders each generic property P 3; we shall denote by <p
this partial order. Figures 1 and 2 give examples of such given partial orders. For instance,
salarys <g salary; because the code of the method salarys may reuse the code of the method

salary;. In the same way, the type of degrees may be a subtype of the type of degree; and

=

degree | degree 5 degree 5
allowing to teach allowing to do research works technical diploma

degrees.

degree 4
for teachers and researchers

Figure 1: Example of partial order on property “Degree”

Given two different occurrences p; and p; of a generic property P, we call LGB (p;,p;) (Least
Greater Bounds) the set of the smallest elements which are above p; and p; in the partial order

<p.

2This term is inherited from CLOS system, and not from Ada, and C++ !
*In Casais’s work [Cas92], the height of the partial orders is limited to only one level

saary

e slary,
{return index*ratio} sdary,
~ {return nbdays *day_ratio}

(salary 5
{return index*ratio + bonus}
-

Figure 2: Example of partial order on property “Salary”

Overloading
We talk of overloading when several occurrences of a generic property P belong to

one or more classes of the inheritance hierarchy.

Overriding
Overriding is a particular case of overloading where two occurrences of a generic

property P belong to two distinct comparable classes in the inheritance hierarchy.
e From the approach with overloading to the naive approach

In order to reduce the approach with overloading to the naive approach, we will consider that,
when a class C has a property p;, C de facto owns all the properties that p; specializes (and over-
rides), i. e. all p;, with p; <p p;. Let us now consider a class C and Propertieso(C) the set of C
properties in the “overloading” approach. One needs only to build Propertiesy(C') (the set of C
properties in the naive approach) as follows : Propertiesy(C) = {p; s.t. Ip; € Propertieso(C),
pi <p pj, with p;,p; € P, P € G}, Declaredy(C) and Inheritedy(C) being defined as previ-
ously: Inheritedn(C) = Ue,csuperciasses(c) Propertiesn(C;), and Declaredn (C) = Propertiesn(C)\
4Inheritedy (C).

2.3 Meaningful Classes

Among classes, we shall set apart a subset Careqn of meaningful classes. Meaningful classes are
the ones the existence of which is demanded by the designer, and that the algorithm will keep.
Those are, for instance, the concrete (instantiable) classes. Other classes are factorizing classes.
In the OOD framework, if we suppose that all classes having persistent instances are meaningful,

the database schema can be modified during the exploitation since the instances need not to

*\ being the set difference

migrate. We shall use the function SetMeaningful(C) to insert C into Careqn, as well as the

predicate IsMeaningful(C).

2.4 Maximal factorizing

For an inheritance hierarchy H, let us express what we mean by “maximal factorizing”.

e Naive approach: let p € P, we cannot find two classes C; and C5 such that p belongs to
both Declared(Cy) and Declared(Cs).

This means that, whenever two classes C1 and Cy own the same property, there always
exists in the inheritance hierarchy a single common superclass (which can be C; or Cb)

that declares this property.

e “Querloading” approach: When a class C' owns a property p;, it implicitly owns all the
properties p; that p; specializes, thus such that p; <p p;. If p; is not inherited by C, we

call p; a “potential property” of C'. Such a p; is nowhere declared in the hierarchy.
Potential Prop(C) = {p; s.t. Ip; € Properties(C), p; <p p;} \ Inherited(C)
Potential Decl(C) = Potential Prop(C) \ U, e superciasses(c) Potential Prop(C;).

The notion of maximal factorizing becomes : let p € P, we cannot find two classes C; and
(5 such that p belongs to both Potential Decl(C1)UDeclared(Cy) and Potential Decl(Ca)U
Declared(Cy).

This means that, whenever two classes C and Cy own, respectively, two different occur-
rences p; and p; of the generic property P, for each property p; of LGB(p;,p;), there
always exists in the inheritance hierarchy a common superclass of C; and Cy that declares

pr (see Figure 3).

3 What hierarchy building has to do with Galois lattices

Galois lattices [Aig79] are used in knowledge representation, under the name of “concepts lattice”
[Wil89, Wil92] and also by some of the most recent studies on the organization of a hierarchy
of classes [GM93, DDHL94a].

Given a set of classes (provided with their properties) to be organized, the “maximal fac-
torizing” property is not sufficient to ensure an unique resulting hierarchy. Among the different
possible results, some are more compact (properties are better regrouped) than other. Galois

lattice is a structure which shows all non empty intersections between class property sets, thus

ay
f
2

C1
N
g TG
e partial order
O
C2 C3 C4 C3
H H"

Figure 3: H’ is not maximally factorized, H” is.

making explicit all the classes share, as we shall state after the definition of Galois lattice. As a
consequence, it is possible to build from Galois lattice the unique more compact hierarchy where
properties are maximally factored.

We define these notions in the following.

Galois lattice (from [Bor92]). Let C and P be two finite sets and R a binary
relation upon C ® P. Within the inheritance framework, C will be the set of classes,
P the set of properties, and R the binary relation "owns as a property”. The Galois

lattice GL(R) is defined as follows:

e members of GL(R) are Cartesian products £ ® F with
1) KCC, FCP,and VC € K, VP € F, we have R(C, P)
2) K ® F is maximal under inclusion for property 1 °.
e the members of GL(R) are totally ordered by the relation denoted by < and

defined as follows :

K®F <K' ®F < K c K' (which is equivalent to F D F')

Figures 4 and 5 % show a binary relationship and its Galois lattice.
This lattice is isomorphic to the lattice built upon the intersections between sets of prop-
erties of C classes, lattice in which those intersections are ordered by inclusion. We build the

isomorphism when we change the label vertices and keep only the right member of the Cartesian

5K ® F satisfying prop. 1 is maximal under inclusion for prop. 1 if there is no K' ® F' satisfying prop. 1, and
such that, K F£K' @ F', K C K" and F C F'

6Usually, only Hasse diagram (also called transitive reduction) is drawn to represent orders and especially
lattices.

P
b d
c a C e
1 X X
9 X
3 X X X
4 X X x

Figure 4: a binary relation R "owns as a property” upon C ® P with C = {1,2,3,4} and
P ={a,b,c.d, e}

{1234} ® 0

{134} ® {a} {234} ® {c}

{34} ® {ac}
{1} @ {ab}

{3} ® {acd} {4} ® {ace}

0 ® {abede}

Figure 5: Galois lattice built from Figure 4 example

product.

Another labelling will get rid of redundant information, in order to get something looking more
like an inheritance hierarchy. A vertex v, labeled by K ® F will thus be labeled by K, ® F,,
where IC, is the subset of those classes of K that do not appear below v in the lattice, and F,

the subset of those properties of F that do not appear above v (see Figure 6).

Galois inheritance lattice

Galois inheritance lattice GIL(R) is isomorphic with Galois lattice. To V = £ ®
F € GL(R) one associates in GIL(R) the member V, = K, ® F, with £, = K —
Uvresubciasses(v) K's and Fr = F — Uvrcsuperciasses(vy F'» where we note V' =

K'e F.

GL(R) and GIL(R) are just two different labellings of the same structure. Such a structure

has an important size, exponential in min(number of classes, number of properties); one can

0®{a} {2} ® {c}
N
{1} ® {b}

{3t @ {d} {4} 0 {e}

D0

Figure 6: Galois Inheritance Lattice built from Figure 4 example

0 {a

e (b} (3} @ Y4} (4% (e}

Figure 7: Galois SubHierarchy built from Figure 4 example

store only a part of it in a structure [GM93] which is defined below. This last structure (see
Figure 7) seems to be the relevant one to build inheritance hierarchies when property factorizing

is emphasized.

Galois SubHierarchy
The Galois SubHierarchy GSH(R) is the order deduced from GIL(R) by removing

“empty” vertices, i. e. vertices such that V, = 0 ® (.

Vertices can be deleted because they do not help to declare properties, all their properties
appear in the labels of higher vertices and because no class of C owns exactly their set of
properties. Due to the difference of size between Galois lattice GL(R) and Galois SubHierarchy
GSH(R), algorithms that build directly GSH (R) seem more suitable than algorithms that build
GL(R) and then reduce GL(R) to GSH(R). In adapting the algorithm of [MGGY90], one gets
a “global” algorithm, that builds the whole GSH(R) from the class descriptions, here the R

1? 7

matrix. In Section 4, we give the “incrementa algorithm, that inserts a class in an already

built GSH(R).

"This term may have several senses, it is used here to express the fact that classes are inserted one after the
other

4 The ARFES algorithm

This section describes the ARES algorithm that inserts a class in a class hierarchy defined as
in Section 2. First, we run ARES on an example. After that, we give ARFES specification,
description and complexity. We then show that ARES is an incremental insertion algorithm in
a Galois subhierarchy. This ensures that, whenever ARFES is used alone to build up a hierarchy,

the result does not depend on the order of insertion.

4.1 Through an example

Figure 8 shows a hierarchy H and a class A to be inserted, A = Invited_Prof. The prop-
erties degree and salary are ordered as in Figures 1 and 2. Figure 9 shows the final hier-
archy. The algorithm deals with all the classes following a linear extension of >p: thus a
class is taken into account after all its superclasses. We shall consider the following linear
extension of Figure 8: €, Person, Researcher, Teacher, Teacher_Researcher, Administrator,
Teacher_Researcher_Administrator.

For any class C, the properties of Declared(C) are in roman-face, while italics are used for
the properties of Inherited(C) ® . For the class Invited_Prof, italics are used for the potential
properties.

First the classes Q, Person and Researcher are explored: their property set is included in
the property set of A, thus they are superclasses of A4 9 .

While exploring the class T'eacher, the algorithm creates a class, that we call ” Able to teach”,
in order to factor the properties declared by Teacher and that belong to Properties(A), here
{degreei}. " Able to teach” is superclass of Teacher and subclass of the superclasses common
to Teacher and A, i. e. Person. The edge (T'eacher, Person) becomes a transitivity edge and
disappears.

Such an extraction upon the class T'eacher_Researcher produces the class " Able to Teach-
in High School”. The exploration of Administrator and Teacher_Researcher_Administrator
has no effect. A is linked to its immediate superclasses, in the example, to " Able to Teach in -

High School”. In Figure 9, A has no subclass, since no class of H owns all the properties of

A.

8We have represented all the inherited properties, including the overriden properties
9The superclasses of A appear in Figure 9 in rectangular hoxes

A
INVITED_PROF

name degree4 salary2 laboratory
name degree0 salary0

ADMINISTRATOR

name degree0 salary0
admin_unit

RESEARCHER TEACHER

name degree0 salary0
degree? laboratory

TEACHER_RESEARCHER

name degree0 degreel degree2
salary0 salaryl laboratory

degreed university

name degree0 salary0
degreel salaryl

TEACHER_RESEARCHER_ADMINISTRATOR

name degree0 degreel degree? degreed
salary0 salaryl laboratory university admin_unit
salary3 nb_students

Figure 8: Initial hierarchy and a class A to be inserted

4.2 Specifications

Input :

The algorithm starts with H; = (C;,T';) a class hierarchy with root 10 and with a meaningful
class A to be inserted. Properties(A) is A’s property set. The framework is the naive approach,
and in H; the properties are maximally factored: thus any property is declared only once (the
transformation described in Section 2.2 allow to take overloading into account).

Output :

The final hierarchy Hy = (Cy,T'y) ”integrates” H; and A and respects the following properties,
whose proofs are given in [DDHL94b)].

e Maximal factorizing of properties

e Transitive closure preservation of the hierarchy: For all the classes of H; still

belonging to Hy, the inheritance paths remain.

190) has no properties

Q
PERSON

‘ name degree0 salary0

"Ableto Teach"
name degree0 salary0
degreel ADMINISTRATOR
RESEARCHER
Ty
degree2 laboratory admin_unit
TEACHER
name degree0 degreel salary0o
salaryl

"Able to Teach in High School”

name degree0 degreel degree2
sala?rgyolaboer%tory eg

degreed

TEACHER_RESEARCHER

name degree0 degreel degree? degreed
salary0 salaryl |aboratory

university

INVITED_PROF

name degree0 degreel degree? degreed
salary0 |aboratory
sdary2

TEACHER_RESEARCHER_ADMINISTRATOR

name degree0 degreel degree2 degreed
salary0 salaryl laboratory university admin_unit
salary3 nb_students

Figure 9: Final hierarchy

e Conservation of the properties of input classes: Classes which belong to both hier-

archies H; and Hy keep the same set of properties.
e Meaningful class conservation: The set of meaningful classes of Hy is Cprean U{A}
4.3 Description

For presentation reasons, we give the algorithm in two steps, and only detail the first one:

e LookFor&BindSuperClasses recognizes A’s superclasses and binds A to its immediate

superclasses.

e BindSubClasses binds A to its immediate subclasses.

We do not speak about transitivity edges. A fully detailed algorithm can be found in
[DDHL94b]. The algorithm also uses some global variables:

e AalreadyCreated, a Boolean which is true if and only if a class whose set of properties

equals A’s property set is found or built as a factorizing class. AalreadyCreated initial

value is false.
e SH, the current set of A’s superclasses. SH initial value is empty.

e EmptyClasses, the set of the non-meaningful classes which set of declared properties has

been cleared out. EmptyClasses initial value is empty.

Algorithm ARES(H;,A)
begin
Look For& BindSuperClasses
BindSubClasses

end

The algorithm Look For& BindSuperClasses visits H; going down from €2, following a linear
extension of >p,. During this visit, A’s property set is compared with the set of properties of
the visited class. The whole exploration builds SH, the set of A’s superclasses in H;. Then
A is —if needed— created and bound to its direct superclasses (Create& BindSH). We end
and delete (Delete EmptyClasses) each class of the set EmptyClasses, since these classes are

non-meaningful, and at this point do not declare any more properties.

Algorithm LookFor&BindSuperClasses
begin
For every vertex C following LEH,; do
// LEH; is an arbitrary linear extension of H; starting from root ()
Visit(C, A)
endFor
Create&BindSH
Delete EmptyClasses
end

When a class C is visited, remember that all its superclasses have already been visited.
Visit deals with the easy cases when either C'is A or C' is a superclass of A, and calls Eztract

whenever a factorizing class is needed.

Algorithm Visit(C, A)
begin
if Properties(A) = Properties(C) then SetMeaningful(C); AalreadyCreated + true
else if Properties(A4) D Properties(C) then SH «+ SH|J{C}
else if Properties(A) N Declared(C) # () then Eztract(C) endif endif endif
end

The Extract algorithm creates a factorizing class C’ and inserts C’ into the hierarchy. This
factorizing class either is A or is stored inside SH. SH holds already visited H; classes which
are A’s superclasses, as well as the factorizing classes (obviously A’s superclasses) built up in
the previous steps. Given a class C, we consider the set S of classes which are C’s superclasses

while belonging to SH, and we call Sups(C,SH) the minimal elements of S.

Algorithm Extract(C)
begin
Create(C'); Declared(C") < Properties(A) () Declared(C);
ImmediateSuperclasses(C') < Sups(C,SH);
Inherited(C") = Uc e sups(c,sm) Properties(C7);
Properties(C') < Declared(C") |J Inherited(C");
ImmediateSuperClasses(C) < (ImmediateSuperClasses(C) |J{C"'}) \ Sups(C,SH)
Declared(C) « Declared(C) \ Declared(C")
Inherited(C) « Inherited(C)|J Declared(C")
if Properties(C') = Properties(A)
then SetMeaningful(C'); AalreadyCreated < true;
else SH + SH |J{C'} endif
if Declared(C) = and not IsMeaningful(C)
then EmptyClasses < EmptyClasses| J{C} endif
end

When Create&BindSH is called by LookFor& BindSuperClasses, SH contains all A’s
superclasses in the current graph. If A has not already been found, it must be created and
bound together with its immediate superclasses. We use the function Min(E) which returns

the minimal (for <) classes of set E.

Algorithm Create&BindSH
begin

if not AalreadyCreated then
Create(A); SetMeaningful(A);
ImmediateSuperClasses(A) < Min(SH)
Inherited(A) = Uc» e prin(s) Properties(C”)
Declared(A) < Properties(A) — Inherited(A)

endif

end

The algorithm Delete EmptyClasses is not described here. ARFES ends with BindSubClasses
that binds A to its immediate subclasses. A class T is a subclass of A when Properties(A) is
included in Properties(T). T is an immediate subclass if none of T’s superclasses is itself a

subclass of A.

4.4 Complexity

With very rough approximations, we find an algorithm complexity that belongs to O(n* (wp+
m)), where n is the number of H; classes, m the number of H; edges, w its width, (i.e. the biggest
number of incomparable classes in the graph, which is for instance 3 in Figure 8), and p is the
maximal number of properties of a class (12 on the same figure). A detailed study of complexity
can be found in [DDHL94b]. In the approach with overloading, to keep an interesting cost, some
modifications will have to be brought, especially to avoid storing the potential properties of each

class.

4.5 ARES is an incremental algorithm for maintaining Galois SubHierarchies

Galois lattice model allows to specify ARES whenever it is used alone to build up a hierarchy.
The result below (for a proof see [DDHL94b]) shows that ARES is indeed an incremental

insertion algorithm in a Galois SubHierarchy.

Property

Let H = (C,T') be a hierarchy, Cpjeqn the set of meaningful classes in H, and A the
class to be inserted. If H is the Galois subhierarchy of Cpseqn, then ARES builds
up the Galois subhierarchy of Cpjeqn U{A} (which is the set of meaningful classes of

the resulting hierarchy).

5 Conclusion and discussion

The Galois lattices provide a nice general method to build inheritance hierarchies. The algorithm
ARES allows an “exact” insertion of a class in a Galois subhierarchy. The above property ensures
that, whenever a hierarchy is created from scratch, the result does not depend on the order in
which the classes are inserted.

A prototype of the algorithm has been implemented and tested in ObjVlisp [Coi87].

We now give a short overview of the problems on which we are currently working, which
arise in concrete situations.

e An inheritance hierarchy, even with maximal property factorizing, is not always the Galois
subhierarchy of the set of its classes, nor even the Galois subhierarchy of the set of its meaningful
classes [DDHL94a].

e Partial orders upon properties are often implicit for the designer. They may be made
explicit from a preexisting type hierarchy: the partial order on an attribute could be deduced
from its type; the partial order on a method could be, in easy cases, deduced from its signa-
ture. In other cases the partial order could come from code dependencies between the different
occurrences of a method (Figure 2). Many other criteria may be used.

e But even when these orders are known, the factorizing produced by ARES may have to
be transformed in several ways either to match specific languages capabilities or to “interpret”
the semantics of the domain.

Firstly, the resulting hierarchy cannot be encoded in those languages that do not support
multiple inheritance, except through further graph modifications as proposed in [GM93].

Secondly, let us look at an example which illustrates problems occurring in concrete over-

riding situations (Figure 10). Let X and Y be two types. Let p; (resp. p2) be an attribute of

name p and type X (resp. Y), p; and ps both belong to the generic property P. In that case, it
can easily be admitted that the order between p; and p, is the same as the one between X and
Y. Let Cy (resp. Cy) be the class composed of property p; (resp. p2). We now work on a class
hierarchy containing only C; and in which we want to include C5. p; and py are incomparable
but LGB(p1,p2) = p : S. When inserting Cy, ARES creates a new class C'S (superclass of C;
and C9) which defines a property p of type S in order to show that factoring is possible, and it

leaves properties p; and ps with their correct types on Cy and Cs.

S p:S
X Y p: X p:Y
pl p2
Type hierarchy Partial order deduced for property P

s (g

G (p)
1
SICISR TS

Initial hierarchy Final hierarchy

Figure 10: Attribute overriding example

Here are some possible adaptations of ARES’s result:

1. the result is not modified: this is possible in Fiffel and in O,C' where an attribute can
be specialized in a subclass with a compatible more specific type. The presence of p on
C'S makes sense, for example, when a method that uses p is shared by Cy and C5 and is

factored on CS.

2. pisremoved from C7 and Cy and factored on C'S with name p and type S, p is inherited by
Ch and (9, the type constraint on p; and ps is relaxed. This is the only way to implement
the previous example in C++. Indeed, an attempt to override an attribute in a subclass

C fails: it leads to a situation in which C' owns two different attributes.

3. p1 and ps should not be factored on C'S. This situation can occur at least in the following

configuration: in languages in which all classes have a common superclass w, the situation

where S = w can mean that C and Cy own by accident a property with the same name
p but with no common semantics. It seems difficult to take the ”no-factorizing” decision

without an external human operator checking the algorithm’s result.

Thirdly, a factorizing class declaring two properties could be split into two different factoriz-
ing classes (see Figure 11), without losing the maximal factorizing property. The choice between
the two depends on the semantics of the domain.

Furthermore, the pursuit of the maximal factorizing criterion may multiply the number of

factorizing classes. Sometimes it is a good thing, when it creates “good” reusable classes.

G2 @
]
(29 (29 CORRCD

Figure 11: Two different maximal factorizings

But sometimes, when the partial order holds more information than needed for building the
hierarchy, some factorizing classes are useless. In hierarchy H” of Figure 3, for instance, the
designer could see no meaning in the creation of class Cs. The partial order relevant to the
building of the hierarchy would in fact be the order induced by {a1, a3, a4}.

Our current work consists in applying the algorithm to concrete hierarchies written in differ-
ent languages. We have already identified how to build partial orders for attributes of classes (a
simple example was given in this section, with Figure 10). The case of methods is more complex
since code and domain, codomain result types have to be taken into account. It is already clear
that some cases will require an external human help but also that many cases are simple enough

to be automated.

Acknowledgement : With sincere thanks to anonymous referees for their helpful comments.

“Where do right ideas come from ? From class consciousness” Chairman Mao

References

[Aig79] M. Aigner. Combinatorial Theory. Springer-Verlag, 1979.

[Ber91] P. Bergstein. Object Preserving Class Transformations. Proceedings of OOPSLA’91,
1991.

[BKKK87]

[Bor92]

[Cas92]

[Coi87]

[DDHLY4a]

[DDHLY4b)

[GM93]

[LBSLYO]

[LBSLY1]

MGGY0]

[Wilg9)

[Wil92]

J. Banerjee, W. Kim, K.J. Kim, and H. Korth. Semantics and implementation of

schema evolution object-oriented databases. Proc. ACM SIGMOD Conf., 1987.

J. P. Bordat. Sur l’algorithmique combinatoire d’ordres finis. These d’état. Univer-

sité Montpellier 2, 1992.

E. Casais. An incremental class reorganization approach. ECOQOP’92 Proceedings,

1992.

P. Cointe. Metaclasses are First Class : The ObjVlisp Model. OOPSLA’87 Pro-
ceedings, 1987.

H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, un algorithme d’Ajout
avec REStructuration dans les hiérarchies de classes. Actes de Langages et Modéles

a Objets 94, 1994.

H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, un algorithme d’Ajout
avec REStructuration dans les hiérarchies de classes. Technical report, LIRMM,

1994.

R. Godin and H. Mili. Building and Maintaining Analysis-Level Class Hierarchies
Using Galois Lattices. OOPSLA 93 Proceedings, 1993.

K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe. Abstraction of object-oriented data

models. Proceedings of International Conference on Entity-Relationship, 1990.

K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe. From objects to classes: Algo-

rithms for optimal object-oriented design. Journal of Software Engineering, 1991.

Guy Mineau, Jan Gecsei, and Robert Godin. Structuring Knowledge Bases Using
Automatic Learning. Proceedings of the sizth International Conference on Data

Engineering, 1990.

R. Wille. Knowledge acquisition by methods of formal concept analysis. Data
Analysis, Learning Symbolic nd Numeric Knowledge, 23, 1989.

R. Wille. Concept lattices and conceptual knowledge systems. Computers Math.
Applic, 23, 1992.

