
ARES, Adding a class and REStructuring Inheritance HierarchyH. Dicky, C. Dony, M. Huchard, T. LibourelLIRMM,161 rue Ada, 34392 Montpellier Cedex 5, France,email: name@lirmm.frJune 9, 1995AbstractIn object-oriented databases, schema design or evolution [BKKK87] should bene�t asmuch as possible from automatic tools.In this paper, we focus on the automatic insertion of classes into inheritance hierarchies,while preserving a \maximal factorizing" of class properties.We describe an incremental algorithm which factors properties, approaches the overload-ing problem, and can be used to build, reorganize or maintain a hierarchy.Our algorithm works with a model of hierarchies based on what we call the "GaloisSubHierarchy" recently introduced by [GM93] and which is a particular suborder of theGalois lattice.This algorithm maintains a Galois SubHierarchy without building the whole Galois lat-tice. R�esum�eDans les bases de donn�ees orient�ees objet, certaines phases de la conception ou del'�evolution de sch�ema [BKKK87] pourraient b�en�e�cier d'une automatisation partielle.Nous nous int�eressons plus particuli�erement au probl�eme de l'insertion d'une classe dansune hi�erarchie existante, en respectant un crit�ere de \factorisation maximale".Nous proposons un algorithme incr�emental qui factorise les propri�et�es, aborde le probl�emede la surcharge, et permet de construire, r�eorganiser ou maintenir une hi�erarchie.Notre m�ethode s'appuie sur la notion de \sous-hi�erarchie de Galois" introduite r�ecemmentpar [GM93], et qui est un sous-ordre particulier du treillis de Galois.Notre algorithme permet de maintenir une sous-hi�erarchie de Galois sans construire letreillis de Galois tout entier.Key words : Database schema, Inheritance hierarchy, Schema design, Schema evolution,Galois lattice, Restructuring, Factorizing

1

1 IntroductionIn object-oriented systems, inheritance hierarchies are generally built \by hand" by a designeror a group of designers after an analysis step. The underlying construction methods are mostlyinformal and empirical.It seems very di�cult to completely automatize the construction of hierarchies because ofthe number of criteria to take into account and of the di�culty in de�ning what is a \good"hierarchy independently of a context.However the structuring process should bene�t from a partial automation, especially whenthe classes to be structured become more intricate and numerous. Some parts of the task arerepetitive, (as for example building classes to factorize properties common to several classes)and human work does not ensure that the same situation will systematically be handled in thesame way.Hierarchy design may be done in a global way, given a set of unrelated classes to be organized.A contrario, incremental methods can be used during the design step of database schema in orderto: � insert a new class de�ned by the designer� insert a class from another database schema (\integration problem").� insert a virtual class, computed on other classes (\view class")One of the main interests of inheritance hierarchies is to share descriptions and behaviorcommon to several classes. In this paper, we focus on one essential activity when we buildinheritance hierarchies: point out common properties and create classes to store them (\factorcommon properties"). We propose an incremental algorithm which performs maximal factoriz-ing of properties de�ned on the classes, and o�ers a �rst solution to the problem of propertyoverloading.We extend di�erent methods proposed in existing systems [Cas92, LBSL91, LBSL90, Ber91]to solve that factorizing problem. We approach property overloading, and produce a simplepolynomial algorithm, whose results are well speci�ed.To describe the algorithm, we use Galois lattices, already much used in other domains (e.g., machine learning, information retrieval, knowledge representation), which provide, as notedin [GM93], a nice point of view on the factorizing problem.Section 2 introduces various de�nitions and notations. Section 3 explains what Galois latticescan bring to inheritance hierarchy building. Section 4 details the incremental algorithm and

its main properties. The paper ends with a general discussion about the application of thealgorithm.2 De�nitions and NotationsWe give here the notations used in the rest of the paper.2.1 Database Schema and Inheritance HierarchyIn the object-oriented database framework, a database is roughly a pair (S; I) where S is theschema, and I the persistent object instances.The schema S is an inheritance hierarchy H, that is, a directed acyclic graph (C;�) where Cis a set of classes, and � a set of inheritance directed edges. H induces a partial order, which wenote as <H , and owns a \root" (maximal vertex)
. Given a class C, SuperClasses(C) (resp.SubClasses(C)) is the set of C ancestors (resp. descendants), considering <H . Immediate-SuperClasses(C) (resp. ImmediateSubClasses(C)) is the set of the minimal ancestors (resp.descendants) of C.H may contain transitivity edges, i. e. edges (Ci; Cj) such that there is a path between Ciand Cj besides the edge (Ci; Cj). In order to simplify the presentation, we do not discuss herehow we handle transitivity edges.2.2 Classes and their PropertiesA class is de�ned by a set of properties. Properties are attributes and methods described, forinstance, by a name, a signature, a domain, a value ... We now give notations for two frameworks:a naive approach without overloading and another approach in which overloading is handled.Then we show that the second approach can be reduced to the �rst one.� The Naive ApproachWe consider a set P of properties (2P is the set of P subsets) and a set C of classes. Toeach class, the function Properties : C ! 2P associates a set of properties. For a given class C,Declared(C) is the set of properties declared in C, while Inherited(C) is the set of propertiesdeclared in C's superclasses 1.The partial order <H is included into the inclusion relationship between sets of properties.In Figure 8, P is fname; university; nb students; admin unit; laboratoryg [fdegreei; 0 �i � 4g [fsalaryi; 0 � i � 3g.1Inherited(C) = SCi2Superclasses(C) Properties(Ci).

� The Approach with OverloadingLet us consider again the set of properties P and the functions Properties, Declared andInherited.In the above example, semantics leads to group together fdegreei; 0 � i � 4g (and alsofsalaryi; 0 � i � 3g). We will call a generic property a set of properties that we want to group.Generic propertyP is partitioned into generic 2 properties and we shall call G the set of the genericproperties.In Figure 8, G = fN;U;Nb;A;L;D; Sg where N = fnameg, U = funiversityg, Nb =fnb studentsg, A = fadmin unitg, L = flaboratoryg, D = fdegreei; 0 � i � 4g, S =fsalaryi; 0 � i � 3g.We denote by pi an occurrence of the generic property P .For a given class C, we de�neGenProperties(C) = fP 2 G s.t. 9pi 2 Properties(C) and pi 2Pg. GenDeclared(C) and GenInherited(C) are de�ned the same way.Furthermore, semantics partially orders each generic property P 3; we shall denote by <Pthis partial order. Figures 1 and 2 give examples of such given partial orders. For instance,salary3 <S salary1 because the code of the method salary3 may reuse the code of the methodsalary1. In the same way, the type of degree4 may be a subtype of the type of degree1 anddegree2.
technical diplomaallowing to do research works

4
for teachers and researchers

degree degree degree

allowing to teach

2 3

degree 0

1

degreeFigure 1: Example of partial order on property \Degree"Given two di�erent occurrences pi and pj of a generic property P , we call LGB(pi; pj) (LeastGreater Bounds) the set of the smallest elements which are above pi and pj in the partial order<P .2This term is inherited from CLOS system, and not from Ada, and C++ !3In Casais's work [Cas92], the height of the partial orders is limited to only one level

{}

{return index*ratio}

0

1

2
{return nbdays *day_ratio}

salary

salary

{return index*ratio + bonus}
3salary

salary

Figure 2: Example of partial order on property \Salary"OverloadingWe talk of overloading when several occurrences of a generic property P belong toone or more classes of the inheritance hierarchy.OverridingOverriding is a particular case of overloading where two occurrences of a genericproperty P belong to two distinct comparable classes in the inheritance hierarchy.� From the approach with overloading to the naive approachIn order to reduce the approach with overloading to the naive approach, we will consider that,when a class C has a property pi, C de facto owns all the properties that pi specializes (and over-rides), i. e. all pj , with pi <P pj. Let us now consider a class C and PropertiesO(C) the set of Cproperties in the \overloading" approach. One needs only to build PropertiesN (C) (the set of Cproperties in the naive approach) as follows : PropertiesN(C) = fpj s.t. 9pi 2 PropertiesO(C),pi �P pj , with pj ; pi 2 P , P 2 Gg, DeclaredN (C) and InheritedN (C) being de�ned as previ-ously: InheritedN (C) = SCi2Superclasses(C)PropertiesN (Ci), andDeclaredN (C) = PropertiesN(C)n4InheritedN (C).2.3 Meaningful ClassesAmong classes, we shall set apart a subset CMean of meaningful classes. Meaningful classes arethe ones the existence of which is demanded by the designer, and that the algorithm will keep.Those are, for instance, the concrete (instantiable) classes. Other classes are factorizing classes.In the OOD framework, if we suppose that all classes having persistent instances are meaningful,the database schema can be modi�ed during the exploitation since the instances need not to4n being the set di�erence

migrate. We shall use the function SetMeaningful(C) to insert C into CMean, as well as thepredicate IsMeaningful(C).2.4 Maximal factorizingFor an inheritance hierarchy H, let us express what we mean by \maximal factorizing".� Naive approach: let p 2 P, we cannot �nd two classes C1 and C2 such that p belongs toboth Declared(C1) and Declared(C2).This means that, whenever two classes C1 and C2 own the same property, there alwaysexists in the inheritance hierarchy a single common superclass (which can be C1 or C2)that declares this property.� \Overloading" approach: When a class C owns a property pi, it implicitly owns all theproperties pj that pi specializes, thus such that pi <P pj . If pj is not inherited by C, wecall pj a \potential property" of C. Such a pj is nowhere declared in the hierarchy.PotentialProp(C) = fpj s.t. 9pi 2 Properties(C), pi <P pjg n Inherited(C)PotentialDecl(C) = PotentialProp(C) nSCi2Superclasses(C)PotentialProp(Ci).The notion of maximal factorizing becomes : let p 2 P, we cannot �nd two classes C1 andC2 such that p belongs to both PotentialDecl(C1)[Declared(C1) and PotentialDecl(C2)[Declared(C2).This means that, whenever two classes C1 and C2 own, respectively, two di�erent occur-rences pi and pj of the generic property P , for each property pk of LGB(pi; pj), therealways exists in the inheritance hierarchy a common superclass of C1 and C2 that declarespk (see Figure 3).3 What hierarchy building has to do with Galois latticesGalois lattices [Aig79] are used in knowledge representation, under the name of \concepts lattice"[Wil89, Wil92] and also by some of the most recent studies on the organization of a hierarchyof classes [GM93, DDHL94a].Given a set of classes (provided with their properties) to be organized, the \maximal fac-torizing" property is not su�cient to ensure an unique resulting hierarchy. Among the di�erentpossible results, some are more compact (properties are better regrouped) than other. Galoislattice is a structure which shows all non empty intersections between class property sets, thus

a
4

a
3

a2

a
3

a
4

a
4 a1

partial order

C2 C3

C1

H’

C1

C2

C4 C3

H"

a1

2a

a
3

a1

Figure 3: H' is not maximally factorized, H" is.making explicit all the classes share, as we shall state after the de�nition of Galois lattice. As aconsequence, it is possible to build from Galois lattice the unique more compact hierarchy whereproperties are maximally factored.We de�ne these notions in the following.Galois lattice (from [Bor92]). Let C and P be two �nite sets and R a binaryrelation upon C
 P. Within the inheritance framework, C will be the set of classes,P the set of properties, and R the binary relation "owns as a property". The Galoislattice GL(R) is de�ned as follows:� members of GL(R) are Cartesian products K
F with1) K � C, F � P, and 8C 2 K, 8P 2 F , we have R(C;P)2) K
F is maximal under inclusion for property 1 5.� the members of GL(R) are totally ordered by the relation denoted by < andde�ned as follows :K
F < K0
F 0 , K � K0 (which is equivalent to F � F 0)Figures 4 and 5 6 show a binary relationship and its Galois lattice.This lattice is isomorphic to the lattice built upon the intersections between sets of prop-erties of C classes, lattice in which those intersections are ordered by inclusion. We build theisomorphism when we change the label vertices and keep only the right member of the Cartesian5K
F satisfying prop. 1 is maximal under inclusion for prop. 1 if there is no K0
F 0 satisfying prop. 1, andsuch that, K
F 6= K0
F 0, K � K0 and F � F 06Usually, only Hasse diagram (also called transitive reduction) is drawn to represent orders and especiallylattices.

1
432

a b c d exxx
x xxx x x

C P
Figure 4: a binary relation R "owns as a property" upon C
 P with C = f1; 2; 3; 4g andP = fa; b; c; d; eg bbbbb���� llll

����PPPPPPPP���%%%% �������������@@@@@@@
f234g
 fcgf34g
 facgf1g
 fabg f3g
 facdg f4g
 faceg

f1234g
 ;

;
 fabcdeg
f134g
 fag

Figure 5: Galois lattice built from Figure 4 exampleproduct.Another labelling will get rid of redundant information, in order to get something looking morelike an inheritance hierarchy. A vertex v, labeled by K
 F will thus be labeled by Kr
 Fr,where Kr is the subset of those classes of K that do not appear below v in the lattice, and Frthe subset of those properties of F that do not appear above v (see Figure 6).Galois inheritance latticeGalois inheritance lattice GIL(R) is isomorphic with Galois lattice. To V = K
F 2 GL(R) one associates in GIL(R) the member Vr = Kr
 Fr with Kr = K �SV 02SubClasses(V)K0, and Fr = F � SV 02SuperClasses(V) F 0, where we note V 0 =K0
F 0.GL(R) and GIL(R) are just two di�erent labellings of the same structure. Such a structurehas an important size, exponential in min(number of classes, number of properties); one can

bbbbb���� llll
����PPPPPPPP���%%%% �������������@@@@@@@

;
 fag ;
 ; f2g
 fcg;
 ;f1g
 fbg f3g
 fdg f4g
 feg;
 ;Figure 6: Galois Inheritance Lattice built from Figure 4 example%%%% llllll,,,,,,DDDDDaaaaaaaaaaaa f2g
 fcgf1g
 fbg f3g
 fdg f4g
 feg;
 fag
Figure 7: Galois SubHierarchy built from Figure 4 examplestore only a part of it in a structure [GM93] which is de�ned below. This last structure (seeFigure 7) seems to be the relevant one to build inheritance hierarchies when property factorizingis emphasized.Galois SubHierarchyThe Galois SubHierarchy GSH(R) is the order deduced from GIL(R) by removing\empty" vertices, i. e. vertices such that Vr = ;
 ;.Vertices can be deleted because they do not help to declare properties, |all their propertiesappear in the labels of higher vertices| and because no class of C owns exactly their set ofproperties. Due to the di�erence of size between Galois lattice GL(R) and Galois SubHierarchyGSH(R), algorithms that build directlyGSH(R) seem more suitable than algorithms that buildGL(R) and then reduce GL(R) to GSH(R). In adapting the algorithm of [MGG90], one getsa \global" algorithm, that builds the whole GSH(R) from the class descriptions, here the Rmatrix. In Section 4, we give the \incremental" 7 algorithm, that inserts a class in an alreadybuilt GSH(R).7This term may have several senses, it is used here to express the fact that classes are inserted one after theother

4 The ARES algorithmThis section describes the ARES algorithm that inserts a class in a class hierarchy de�ned asin Section 2. First, we run ARES on an example. After that, we give ARES speci�cation,description and complexity. We then show that ARES is an incremental insertion algorithm ina Galois subhierarchy. This ensures that, whenever ARES is used alone to build up a hierarchy,the result does not depend on the order of insertion.4.1 Through an exampleFigure 8 shows a hierarchy H and a class A to be inserted, A = Invited Prof . The prop-erties degree and salary are ordered as in Figures 1 and 2. Figure 9 shows the �nal hier-archy. The algorithm deals with all the classes following a linear extension of >H : thus aclass is taken into account after all its superclasses. We shall consider the following linearextension of Figure 8:
, Person, Researcher, Teacher, Teacher Researcher, Administrator,Teacher Researcher Administrator.For any class C, the properties of Declared(C) are in roman-face, while italics are used forthe properties of Inherited(C) 8 . For the class Invited Prof , italics are used for the potentialproperties.First the classes
, Person and Researcher are explored: their property set is included inthe property set of A, thus they are superclasses of A 9 .While exploring the class Teacher, the algorithm creates a class, that we call 00Able to teach00,in order to factor the properties declared by Teacher and that belong to Properties(A), herefdegree1g. 00Able to teach00 is superclass of Teacher and subclass of the superclasses commonto Teacher and A, i. e. Person. The edge (Teacher, Person) becomes a transitivity edge anddisappears.Such an extraction upon the class Teacher Researcher produces the class 00Able to Teach-in High School00. The exploration of Administrator and Teacher Researcher Administratorhas no e�ect. A is linked to its immediate superclasses, in the example, to 00Able to Teach in -High School00. In Figure 9, A has no subclass, since no class of H owns all the properties ofA.
8We have represented all the inherited properties, including the overriden properties9The superclasses of A appear in Figure 9 in rectangular boxes

ADMINISTRATOR

PERSON

Ω

INVITED_PROF

TEACHER_RESEARCHER_ADMINISTRATOR

RESEARCHER TEACHER

salary0 salary1 laboratory

TEACHER_RESEARCHER

salary0 salary1 laboratory university admin_unit

salary3 nb_students

name degree0 salary0
name degree4 salary2 laboratory

degree2 laboratory
name degree0 salary0 name degree0 salary0

degree1 salary1

name degree0 degree1 degree2

degree4 university

name degree0 degree1 degree2 degree4

admin_unit
name degree0 salary0

A

Figure 8: Initial hierarchy and a class A to be inserted4.2 Speci�cationsInput :The algorithm starts with Hi = (Ci;�i) a class hierarchy with root
 10 and with a meaningfulclass A to be inserted. Properties(A) is A's property set. The framework is the naive approach,and in Hi the properties are maximally factored: thus any property is declared only once (thetransformation described in Section 2.2 allow to take overloading into account).Output :The �nal hierarchy Hf = (Cf ;�f) "integrates" Hi and A and respects the following properties,whose proofs are given in [DDHL94b].� Maximal factorizing of properties� Transitive closure preservation of the hierarchy: For all the classes of Hi stillbelonging to Hf , the inheritance paths remain.10
 has no properties

PERSON

Ω

RESEARCHER

"Able to Teach"

salary0 laboratory

"Able to Teach in High School"

salary2
salary0 laboratory

INVITED_PROF

TEACHER_RESEARCHER

university
salary0 salary1 laboratory

TEACHER_RESEARCHER_ADMINISTRATOR

salary3 nb_students
salary0 salary1 laboratory university admin_unit

ADMINISTRATOR

name degree0 salary0

name degree0 salary0

degree1

name degree0 salary0

degree2 laboratory
TEACHER

salary1
name degree0 degree1 salary0

name degree0 degree1 degree2

degree4

name degree0 degree1 degree2 degree4

name degree0 degree1 degree2 degree4

name degree0 degree1 degree2 degree4

admin_unit
name degree0 salary0

Figure 9: Final hierarchy� Conservation of the properties of input classes: Classes which belong to both hier-archies Hi and Hf keep the same set of properties.� Meaningful class conservation: The set of meaningful classes of Hf is CMeanSfAg4.3 DescriptionFor presentation reasons, we give the algorithm in two steps, and only detail the �rst one:� LookFor&BindSuperClasses recognizes A's superclasses and binds A to its immediatesuperclasses.� BindSubClasses binds A to its immediate subclasses.We do not speak about transitivity edges. A fully detailed algorithm can be found in[DDHL94b]. The algorithm also uses some global variables:� AalreadyCreated, a Boolean which is true if and only if a class whose set of propertiesequals A's property set is found or built as a factorizing class. AalreadyCreated initial

value is false.� SH, the current set of A's superclasses. SH initial value is empty.� EmptyClasses, the set of the non-meaningful classes which set of declared properties hasbeen cleared out. EmptyClasses initial value is empty.Algorithm ARES(Hi,A)beginLookFor&BindSuperClassesBindSubClassesendThe algorithm LookFor&BindSuperClasses visits Hi going down from
, following a linearextension of >Hi . During this visit, A's property set is compared with the set of properties ofthe visited class. The whole exploration builds SH, the set of A's superclasses in Hf . ThenA is |if needed| created and bound to its direct superclasses (Create&BindSH). We endand delete (DeleteEmptyClasses) each class of the set EmptyClasses, since these classes arenon-meaningful, and at this point do not declare any more properties.Algorithm LookFor&BindSuperClassesbeginFor every vertex C following LEHi do// LEHi is an arbitrary linear extension of Hi starting from root
V isit(C;A)endForCreate&BindSHDeleteEmptyClassesendWhen a class C is visited, remember that all its superclasses have already been visited.V isit deals with the easy cases when either C is A or C is a superclass of A, and calls Extractwhenever a factorizing class is needed.Algorithm V isit(C;A)beginif Properties(A) = Properties(C) then SetMeaningful(C); AalreadyCreated trueelse if Properties(A) � Properties(C) then SH SHSfCgelse if Properties(A) \Declared(C) 6= ; then Extract(C) endif endif endifendThe Extract algorithm creates a factorizing class C 0 and inserts C 0 into the hierarchy. Thisfactorizing class either is A or is stored inside SH. SH holds already visited Hi classes whichare A's superclasses, as well as the factorizing classes (obviously A's superclasses) built up inthe previous steps. Given a class C, we consider the set S of classes which are C's superclasseswhile belonging to SH, and we call Sups(C;SH) the minimal elements of S.

Algorithm Extract(C)beginCreate(C 0); Declared(C 0) Properties(A)TDeclared(C);ImmediateSuperclasses(C 0) Sups(C; SH);Inherited(C 0) = SC"2Sups(C;SH) Properties(C");Properties(C 0) Declared(C 0)S Inherited(C 0);ImmediateSuperClasses(C) (ImmediateSuperClasses(C)SfC 0g) n Sups(C; SH)Declared(C) Declared(C) nDeclared(C 0)Inherited(C) Inherited(C)SDeclared(C 0)if Properties(C 0) = Properties(A)then SetMeaningful(C 0); AalreadyCreated true;else SH SH SfC 0g endifif Declared(C) = ; and not IsMeaningful(C)then EmptyClasses EmptyClassesSfCg endifendWhen Create&BindSH is called by LookFor&BindSuperClasses, SH contains all A'ssuperclasses in the current graph. If A has not already been found, it must be created andbound together with its immediate superclasses. We use the function Min(E) which returnsthe minimal (for <H) classes of set E.Algorithm Create&BindSHbeginif not AalreadyCreated thenCreate(A); SetMeaningful(A);ImmediateSuperClasses(A) Min(SH)Inherited(A) = SC"2Min(SH) Properties(C")Declared(A) Properties(A) � Inherited(A)endifendThe algorithmDeleteEmptyClasses is not described here. ARES ends withBindSubClassesthat binds A to its immediate subclasses. A class T is a subclass of A when Properties(A) isincluded in Properties(T). T is an immediate subclass if none of T 's superclasses is itself asubclass of A.4.4 ComplexityWith very rough approximations, we �nd an algorithm complexity that belongs to O(n� (! �p+m)), where n is the number of Hi classes, m the number of Hi edges, ! its width, (i.e. the biggestnumber of incomparable classes in the graph, which is for instance 3 in Figure 8), and p is themaximal number of properties of a class (12 on the same �gure). A detailed study of complexitycan be found in [DDHL94b]. In the approach with overloading, to keep an interesting cost, somemodi�cations will have to be brought, especially to avoid storing the potential properties of eachclass.

4.5 ARES is an incremental algorithm for maintaining Galois SubHierarchiesGalois lattice model allows to specify ARES whenever it is used alone to build up a hierarchy.The result below (for a proof see [DDHL94b]) shows that ARES is indeed an incrementalinsertion algorithm in a Galois SubHierarchy.PropertyLet H = (C;�) be a hierarchy, CMean the set of meaningful classes in H, and A theclass to be inserted. If H is the Galois subhierarchy of CMean, then ARES buildsup the Galois subhierarchy of CMeanSfAg (which is the set of meaningful classes ofthe resulting hierarchy).5 Conclusion and discussionThe Galois lattices provide a nice general method to build inheritance hierarchies. The algorithmARES allows an \exact" insertion of a class in a Galois subhierarchy. The above property ensuresthat, whenever a hierarchy is created from scratch, the result does not depend on the order inwhich the classes are inserted.A prototype of the algorithm has been implemented and tested in ObjVlisp [Coi87].We now give a short overview of the problems on which we are currently working, whicharise in concrete situations.� An inheritance hierarchy, even with maximal property factorizing, is not always the Galoissubhierarchy of the set of its classes, nor even the Galois subhierarchy of the set of its meaningfulclasses [DDHL94a].� Partial orders upon properties are often implicit for the designer. They may be madeexplicit from a preexisting type hierarchy: the partial order on an attribute could be deducedfrom its type; the partial order on a method could be, in easy cases, deduced from its signa-ture. In other cases the partial order could come from code dependencies between the di�erentoccurrences of a method (Figure 2). Many other criteria may be used.� But even when these orders are known, the factorizing produced by ARES may have tobe transformed in several ways either to match speci�c languages capabilities or to \interpret"the semantics of the domain.Firstly, the resulting hierarchy cannot be encoded in those languages that do not supportmultiple inheritance, except through further graph modi�cations as proposed in [GM93].Secondly, let us look at an example which illustrates problems occurring in concrete over-riding situations (Figure 10). Let X and Y be two types. Let p1 (resp. p2) be an attribute of

name p and type X (resp. Y), p1 and p2 both belong to the generic property P . In that case, itcan easily be admitted that the order between p1 and p2 is the same as the one between X andY . Let C1 (resp. C2) be the class composed of property p1 (resp. p2). We now work on a classhierarchy containing only C1 and in which we want to include C2. p1 and p2 are incomparablebut LGB(p1; p2) = p : S. When inserting C2, ARES creates a new class CS (superclass of C1and C2) which de�nes a property p of type S in order to show that factoring is possible, and itleaves properties p1 and p2 with their correct types on C1 and C2.
p: S

p: X p:Y
p1 p2

C
1

C
2

C
1

S

X Y

p:Y

p: S

p: X

CS

p: X

Type hierarchy for property P

Initial hierarchy Final hierarchy

 Partial order deduced

Figure 10: Attribute overriding exampleHere are some possible adaptations of ARES's result:1. the result is not modi�ed: this is possible in Ei�el and in O2C where an attribute canbe specialized in a subclass with a compatible more speci�c type. The presence of p onCS makes sense, for example, when a method that uses p is shared by C1 and C2 and isfactored on CS.2. p is removed from C1 and C2 and factored on CS with name p and type S, p is inherited byC1 and C2, the type constraint on p1 and p2 is relaxed. This is the only way to implementthe previous example in C++. Indeed, an attempt to override an attribute in a subclassC fails: it leads to a situation in which C owns two di�erent attributes.3. p1 and p2 should not be factored on CS. This situation can occur at least in the followingcon�guration: in languages in which all classes have a common superclass !, the situation

where S = ! can mean that C1 and C2 own by accident a property with the same namep but with no common semantics. It seems di�cult to take the "no-factorizing" decisionwithout an external human operator checking the algorithm's result.Thirdly, a factorizing class declaring two properties could be split into two di�erent factoriz-ing classes (see Figure 11), without losing the maximal factorizing property. The choice betweenthe two depends on the semantics of the domain.Furthermore, the pursuit of the maximal factorizing criterion may multiply the number offactorizing classes. Sometimes it is a good thing, when it creates \good" reusable classes.
a b

a b c a b d a b c a b d

a b

Figure 11: Two di�erent maximal factorizingsBut sometimes, when the partial order holds more information than needed for building thehierarchy, some factorizing classes are useless. In hierarchy H 00 of Figure 3, for instance, thedesigner could see no meaning in the creation of class C2. The partial order relevant to thebuilding of the hierarchy would in fact be the order induced by fa1; a3; a4g.Our current work consists in applying the algorithm to concrete hierarchies written in di�er-ent languages. We have already identi�ed how to build partial orders for attributes of classes (asimple example was given in this section, with Figure 10). The case of methods is more complexsince code and domain, codomain result types have to be taken into account. It is already clearthat some cases will require an external human help but also that many cases are simple enoughto be automated.Acknowledgement : With sincere thanks to anonymous referees for their helpful comments.
\Where do right ideas come from ? From class consciousness" Chairman MaoReferences[Aig79] M. Aigner. Combinatorial Theory. Springer-Verlag, 1979.[Ber91] P. Bergstein. Object Preserving Class Transformations. Proceedings of OOPSLA'91,1991.

[BKKK87] J. Banerjee, W. Kim, K.J. Kim, and H. Korth. Semantics and implementation ofschema evolution object-oriented databases. Proc. ACM SIGMOD Conf., 1987.[Bor92] J. P. Bordat. Sur l'algorithmique combinatoire d'ordres �nis. Th�ese d'�etat. Univer-sit�e Montpellier 2, 1992.[Cas92] E. Casais. An incremental class reorganization approach. ECOOP'92 Proceedings,1992.[Coi87] P. Cointe. Metaclasses are First Class : The ObjVlisp Model. OOPSLA'87 Pro-ceedings, 1987.[DDHL94a] H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, un algorithme d'Ajoutavec REStructuration dans les hi�erarchies de classes. Actes de Langages et Mod�eles�a Objets 94, 1994.[DDHL94b] H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, un algorithme d'Ajoutavec REStructuration dans les hi�erarchies de classes. Technical report, LIRMM,1994.[GM93] R. Godin and H. Mili. Building and Maintaining Analysis-Level Class HierarchiesUsing Galois Lattices. OOPSLA 93 Proceedings, 1993.[LBSL90] K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe. Abstraction of object-oriented datamodels. Proceedings of International Conference on Entity-Relationship, 1990.[LBSL91] K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe. From objects to classes: Algo-rithms for optimal object-oriented design. Journal of Software Engineering, 1991.[MGG90] Guy Mineau, Jan Gecsei, and Robert Godin. Structuring Knowledge Bases UsingAutomatic Learning. Proceedings of the sixth International Conference on DataEngineering, 1990.[Wil89] R. Wille. Knowledge acquisition by methods of formal concept analysis. DataAnalysis, Learning Symbolic nd Numeric Knowledge, 23, 1989.[Wil92] R. Wille. Concept lattices and conceptual knowledge systems. Computers Math.Applic, 23, 1992.

