On Automatic Class Insertion with Overloading

H. Dicky, C. Dony, M. Huchard, T. Libourel

LIRMM: Laboratoire d’Informatique, de Robotique et de Micro-électronique de Montpellier
161, rue Ada — 34392 Montpellier Cedex 5 - FRANCE
email: dicky,dony,huchard,libourel @lirmm. fr

Abstract

Several algorithms [Cas92, MS89, Run92,
DDHL94a, DDHL95, GMM95] have been pro-
posed to automatically insert a class into an
inheritance hierarchy. But actual hierarchies all
include overriden and overloaded properties that
these algorithms handle either very partially or not
at all. Partially handled means handled provided
there is a separate given function f able to compare
overloaded properties [DDHL95, GMM95].

In this paper, we describe a new version of our
algorithm (named Ares) which handles automatic
class insertion more efficiently using such a func-
tion f. Although impossible to fully define, this
function can be computed for a number of well de-
fined cases of overloading and overriding. We give
a classification of such cases and describe the com-
putation process for a well-defined set of nontrivial
cases.

The algorithm preserves these important proper-
ties:

- preservation of the maximal factorization of prop-
erties

- preservation of the underlying structure (Galois
lattice) of the input hierarchy

- conservation of relevant classes of the input hier-
archy with their properties.

1 Introduction

This paper deals with automatization of the inser-
tion of a class (defined by a set of properties) into
an existing inheritance hierarchy, we will refer to

this as the ”class insertion” problem. It also deals
with automatic inheritance hierarchy construction
or reorganization which is related to the ”class in-
sertion” problem. We propose, via a new algorithm,
new advances to fill the gap between what current
class insertion algorithms are able to do and what
automatic handling of actual inheritance hierarchies
really requires.

Class
or object (Some programming or knowledge rep-

Why automate hierarchy construction?

resentation object-oriented languages are classless
[DMC92]) inheritance hierarchies are at the heart of
object-oriented programs, object knowledge-bases
and object data-bases, and they are a cornerstone of
frameworks 4. e. of adaptable and reusable object-
oriented architectures. Any kind of automated help
in building, reorganizing or maintaining hierarchies
can thus be of interest and can have applications in
several important research areas of object technol-
ogy:

e organization of object-oriented frameworks
[JF88]:
bring to the fore new factorization classes and
abstract classes [0J93].

e adaptation of legacy
object-oriented systems, thus numerous hier-

automatic reorganization is able to

systems: numerous
archies, have been developed in the past years,
automatic reorganization can help to adapt or
reuse them,

- by reorganizing poorly designed systems built
either by nonspecialists, or too rapidly, or with-
out any concern for generalization,

- by reorganizing huge systems built by differ-
ent designers or programmers at different time
periods,

- by merging hierarchies: the final hierarchy
could be computed by reclassifying classes from
the different hierarchies. This approach should
not be confused with hierarchy combination,
as proposed in [OH92|, where a methodology
is proposed to extend existing hierarchies.

e software adaptability: automatic insertion of a
class adds flexibility to an object-oriented soft-
ware system, which becomes for example able
to undergo change.

Independently of the application area, the more
the classes to be structured multiply and become
intricate, the more the structuring process can
benefit from partial automatization.

Given these possible applications, the next ques-
tion that emerges is: what kind of methods can be
provided?

Before going further, it should be stated that it
would certainly be impossible to find a general al-
gorithm that could completely automate, generally
speaking, class insertion and/or hierarchy reorgani-
zation; firstly, because of the difficulty in expressing
criteria to define a “good” hierarchy independently
of the context, and secondly, because the construc-
tion rules are often very informal and empirical.

The different works describing algorithms for
automatic class insertion or hierarchy reorgani-
zation that have been published [GM93, Cas92,
LBSL91, LBSLI0, Ber91, MS89, Run92, DDHL94a,
DDHLY95, M0o095, MC96] focus on the most tangible
and one of the most important criteria used when
organizing hierarchies: to point out common prop-
erties and create classes to store them (i.e. “factor
common properties”).

Once this criterion is set, there is room for mul-
tiple variations: incrementality, maximal factoriza-
tion, conditions on inputs and outputs of the algo-
rithm, constraints imposed by a particular applica-
tion domain.

Finally, a common and fundamental characteris-
tic of object-oriented programs, knowledge repre-
sentation and database hierarchies is that they in-
clude properties whose name’s are overloaded. So
usable and actual class insertion algorithm has to
correctly handle overloading. Most existing algo-

rithms do not handle this issue and, when done, it
is only partial [DDHL95, GMM95]. The main issue
concerning overloading in our context is to compare
properties of the same name using their signatures
and codes. Unfortunately, code comparison is un-
decidable.

This paper describes Ares, explains how we
achieve property comparisons in a number of well-
defined cases, and how we use this procedure to
efficiently insert classes in the presence of overload-
ing.

In Section 2, we present the terminology used. In
Section 3, some commented examples of algorithm
inputs-outputs are proposed that highlight its main
properties and give an idea on the way overloading
is handled. Section 4 compares our approach with
related works. Section 5 gives a detailed descrip-
tion of the algorithm that takes overloading into
account.

Then a thorough study of how to compare oc-
currences of generic properties, the key-problem for
handling overloading, is presented.

2 Terminology and context

Before describing examples of class insertion, in the
light of the fact that words such as ”overloading”,
”properties”, ”genericity”, ”signature” are some-
how overloaded in the world of object-oriented lan-
guages, let us first introduce the classical terminol-
ogy, and terms specific to our problem.

The algorithm will be applicable, provided it is
correctly interfaced, to inheritance hierarchies for
various object-oriented systems. Designing an al-
gorithm interface for a particular language may be
complicated. In order to describe the algorithm, we
have chosen the global context of a standard class-
based object-oriented language with inclusion poly-
morphism, property overloading and overriding.

2.1 Classes, inheritance, properties

Classes and types are assimilated, and basic types
are interfaced and can be considered as classes.
Classes are organized into an inheritance hierarchy
H with a root. The subclass relationship induces a,
partial order, which we denote by >p.

A class is characterized by a set of properties.
Class properties can be either instance variables or
methods (Smalltalk terminology). We will refer to
variables and methods under the terms property or
class property.

All properties have a name and other characteris-
tics such as a signature, and in the case of methods
they may have a body or code (a set of instructions).

The signature of an instance variable represents
its type. The signature of a method is the ordered
list of its parameter types and possibly its return
type. Traditionally, the first element of a signature
is the receiver type. In this presentation, the signa-
ture does not include this first element.

For a given class C, Declared(C') denotes the set
of properties declared in C, and I'nherited(C') is the
set of properties declared in C superclasses.

3
j\z C1
o
a8 ‘
partial order c
on generic property a

2
c3 c4
‘ o
"
Figure 1: H’ is not maximally factorized, H” is.

2.2 Overloading, overriding and generic
properties

Properties can be overloaded, i.e. it is possible to
find properties with the same name and different
characteristics (signature, code , etc.).

Overriding is a particular case of overloading
which makes sense in the presence of inheritance
and applies when a redefined property hides, for a
certain object, a property of the same name that is
otherwise inherited. The rules of conformance that
govern signature redefinition are language depen-
dent!. The conformance rule for signature redefini-
tion is one point to be specified when the algorithm

'For example, concerning methods, the rules are different
in Eiffel (multi-covariance, where the type of several or all
parameters of a method can be specialized in method redef-
initions) and C++ (simple-covariance, only the receiver can
be specialized)

is to be applied. We present Ares using an Eiffel-like
covariance policy [Mey92] for variable and method
redefinitions.

We have to mention the set of all class proper-
ties with the same name and same arity (in case of
methods). We call such a set a generic property 2.

Each property belongs to a generic property, i.e.
is an element, or an occurrence of the set of prop-
erties having the same name, OGP stands for Oc-
currence of a Generic Property.

P denotes a generic property, and p or p; an oc-
currence of P, the index is used when necessary, i.e.
when we want to speak, in the same context, about
two distinct occurrences of P.

The different occurrences of P are ordered by a
“specialization” order. For variables, this special-
ization order can be deduced from the specialization
order on their types. For methods, this specializa-
tion order can be deduced from a specialization or-
der on the signatures and then on a specialization
order on method bodies?. A ticklish problem arises

when we admit “self-reference” in signatures®.

We call ”lowest common generalizations” and
use LCG(p;,pj) to denote the set of the most
specialized common generalizations of two occur-
rences of the same generic property. In most cases,
LCG (pi,p;) is a single element set. In the following,
we will assimilate this single element with the set.
This simplification does not hide difficult problems.

p(Cy,Cq) : Cslcode] denotes a method with sig-
nature (C7,C5,C3), where Cj is the return type, and
code is the method’s body.

We also denote: pg or p()[= 0] for a subclass re-
sponsibility or pure virtual method with an empty
code. Such a method is automatically the top of

the specialization order of P.

“same name and same meaning than Clos generic func-
tions; note that this notion is reified in Clos but is common
to all object-oriented languages, for example we can speak of
the generic property printOn: in Smalltalk, which is the set
of all methods named " printOn:” defined in the system

* A method that performs a super call could be considered
as a specialization of the method invoked by this call

a signature is “self-referent” when it contains the type of
the method’s receiver

C1
()
C1
(a) c
C3
e
C3
cde
H1 H2
C1 Cl

Cl

2 Cc7 ({ \ c8 Removing C6 ({ \ c8
'

Ha4 H5

c7

Figure 2: Insertions without overloading

2.3 Meaningful classes

The designer may arbitrarily set apart a subset
Chrean Of meaningful classes. The algorithm will not
be allowed to delete these meaningful classes from
the hierarchy. Examples of meaningful classes could
be: classes with instances (of great importance in a
persistent world) or classes which represent an in-
teresting abstract concept.

2.4 Maximal factorization

An inheritance hierarchy is maximally factorized
if and only if, for any two classes C3 and Cy
with two properties a3 and a4 respectively, and for
LCG(as3,a4) = a9, the hierarchy always includes a
common superclass of C3 and Cy that declares ao,
such that as = LCG(a3,a4) (c¢f. Figure 1).

H6
3 Commented examples of
inputs-outputs of the algo-

rithm

Before formally describing the algorithm, we will
comment on a few examples of class insertions as
they are performed by Ares.

3.1 Examples without overloading

Here is a sequence of class insertions (c¢f. Fig. 2)
starting from hierarchy H; and successively pro-
ducing hierarchies Hy to Hg, highlighting decisions
taken by Ares and showing how the maximal fac-
torization property holds:

e the inserted class is a simple subclass of an ex-
isting class.
The first example shows an initial hierarchy H
reduced to classes Cy and Cy and a class C3 to

C1l Cc3 ca

C2 C1 Cc2

H1

@ o

Q
o

C5
C7

P
J®

Figure 3: Compactness and maximal factorization

C3 | alb2c2d3

C2 | a2blcld2

Cl | a0b0cOdO

Cl | a0b0cOdo
albldl

C3 | b2c2d3

c2

Figure 4: A simple case of overloading

be inserted. C3’s set of properties contains Cy’s
set of properties, so Cj3 is a subclass of C5. The
output hierarchy is Ho.

e the inserted class is not a leaf of the hierar-
chy. In Hy, the class Cy is inserted between Cy
and Cy producing Hs. The declaration of ¢ is
transferred from C5 to Cjy.

e a new class is created and factorizes common
properties. The next class Cs is an indirect
subclass of Cy. In Hy, class Cg is created to
factorize property d common to C3 and Cs.

When class C7 is
added, property d is extracted from Cg. The
side effect is that Cs does not declare any more
properties in Hs.

e a class becomes empty.

e an empty class is removed. The algorithm
could be adjusted by deciding whether to keep
or delete an empty class. If a deletion policy is
chosen, the result of removing Cy is Hg.

Note that maximal factorization is not always
compact. Several maximally factorized hierarchies
can be built from the same set of classes.

Consider for example (cf. Fig. 3) a hierarchy
built from two classes C; and C in which properties
a and b have to be factorized.

We may obtain the following different results. Ei-
ther a and b are grouped together in the same fac-
torization class C3 (H1), or a and b are declared in
different classes Cy and C5 (Ha) (resp. Cg and C7 in
Hj). All hierarchies are maximally factorized, but
H; is more compact than the others.

Ares produces compact and maximally factorized
hierarchies.

3.2 Handling of overloading in an ideal
case

In the presence of overloading, we have divided
the problem in two parts. The first problem is to
find the lowest common generalization of two oc-
currences p; and py of the same generic property
P. The second problem is how to use this gener-
alization in the algorithm, assuming it is available
(either computed or given by a human expert). We
present here some examples of how Ares handles
the second subproblem.

In Figure 4, C5 is to be inserted in the hierarchy
made of classes Cy and Cy; the order for properties
is: ag < a1 < ag, by < by < by, LCG(cq,¢3) = ¢y,
and LCG(dg,dg) =dy < dyp.

Car
[registerDriver(Driver)[...]]

Truck Car

Vehicle
[registerDriver(Driver)[...] J

Truck

[registerDriver(TruckDriver)[...]] [

] [registerDriver(TruckDriver)[...]]

Figure 5: Signatures give the LCG

GeometricFigure

Circle
Square radius : float
[di splay()[Codel] }
sideSize : float

[display()[Codel] }

GeometricFigure
display()[=0]

Circle

display()[Code2]
radius : float

Square

sideSize : float

Figure 6: Code gives the LCG

Ares determines that Cj5 is a subclass of C sim-
ply because each property of C; is specialized in Cl.
Combining Cy and (5 is more complicated, since
they are not comparable. For any two occurrences
in Cy and Cj of a same generic property p, we take
the common lowest generalization p,,. If p,, does
not appear in the classes above Cy (here in Cy), we
declare p,, in the factorization class Cj.

3.3 Examples of class insertion with
overloading and automatic determi-
nation of LCG

It is generally impossible to automatically compute
the lowest common generalization of two OGP, but
it is possible in many situations that we have started
studying. The detailed results are presented in sec-
tion 5.3. We give here some concrete examples of
overloading where we know how to compute LCG
and how Ares exploits it.

e Signatures give the LCG

The first example (¢f. Figure 5) comes from
[Mey92].
single class Car and the class to be inserted is
Truck.
pr =
register Driver(Driver). Given that

The existing hierarchy is made of a

The two properties to be compared are
register Driver(TruckDriver) and p2 =

TruckDriver < Driver, we deduce that p; < po
regardless of their bodies and that LCG(pl,p2) =
p2.

Given this result, Ares knows that py is the
method to be stored in the factorization class
(which we, not Ares, name Vehicle) made from Car
and Truck.

e Code gives the LCG

In the second example (c¢f. Figure 6) two
occurrences of the generic property display ex-
ist in the hierarchy: dy = display()[= 0] and
di = display()[Codel] and a new one, (do =
display()[Code2]) comes with the class Circle to
be inserted. Their code being different, d; and ds
can be considered as incomparable. However, an-
other more precise code examination shows that
dy = LCG(dy,dy).
correctly produce the final hierarchy. It should be

These results allow Ares to

noted that the class GeometricFigure is created
(except for the name) by the algorithm, if not ini-
tially present.

e Using codes and signatures

The last example (¢f. Figure 7) is taken from
Smalltalk-80 [GR83] and adapted to a typed world.
Given the class Date, inserting the class Time

Date Time
hour: integer
minut: integer
second: integer

day: integer
month: integer
year: integer
<=(Time)[Codel]
<(Time)[Code4]
=(Time)[Code5]

<=(Date)[Codel]
<(Date)[Code2]
=(Date)[Code3]

Magnitude
<=(Magnitude)[Codel]
<(Magnitude)[=0]
=(Magnitude)[=0]

hour: integer

day: integer
month: integer
year: integer
<=(Time)[Codel]
<(Time)[Code4]
=(Time)[Code5]

minut: integer
second: integer
<=(Date)[Codel]
<(Date)[Code2]
=(Date)[Code3]

Figure 7: Using codes and signatures

should produce a factorization class (Magnitude)
with the method <= common to Date and Time
and “subclass responsibility” versions of methods
< and =.
erties <=,<,= have to be compared and their
LCG computed.
comparison is possible using the method codes and

The occurrences of the generic prop-
Let us see how an automatic
signatures.

The first issue here is to enrich the language de-
scribing our signatures and to recode the signatures
of the methods <=, <, = by replacing Date or Time
by an anchored type as defined in Eiffel [Mey92].
Indeed, the parameter’s type of self-referent meth-
ods <=, <, = is the type of the method’s receiver,
thus the possible type of the argument will be de-
termined by the place in the hierarchy where the
class will be inserted. In other words, we need to
know where the class will be inserted in order to cor-
rectly compute LC'G and thus to correctly insert it.
Thus, to compute LCG, we build new versions of
signatures in which anchored types are replaced by
the pattern "LC” (which stands for ”like current”
in reference to Eiffel anchored type declaration).

We then define two signatures that match (in our
terminology signatures “potentially equal”) as two
signatures having at a given position either both
the same type, or both the pattern LC.

In the example of Figure 7:

e The two methods < (of Date and Time) now

have signatures that match, and have different
bodies. This is enough to confirm

that they are incompatible and that their
LCG will be a method having an empty
body, defined in the common superclass say
Magnitude of Date and Time, and of signa-
ture (Magnitude).

e The two methods <= (of Date and Time) have
signatures that match and the same code p.
This is enough to confirm that they can be fac-
tored via a LCG, which is a method of code
p defined on the same common superclass —
Magnitude —of Date and Twme and of signa-
ture (Magnitude).

This example represents a typical situation show-

ing how Ares is able to highlight interesting factor-
ization classes.

4 Comparison with related works

Related works [GM93, Cas92, LBSL91, LBSL90,
Ber91, MS89, Run92, DDHL94a, DDHLY5, Mo0095,
MC96] may be studied from three viewpoints: the
strategy used to reorganize hierarchies, the features
of the hierarchy and the handling of overloading.

4.1 Global,
strategies

incremental and toolbox

To build a hierarchy, different strategies can be con-
sidered:
e The Toolboz approach, proposed by [Ber91], is
based on a set of local operations allowing users
to modify a hierarchy.

e Global algorithms [MGG90, LBSL91, LBSL90,
Cas91, Mo095, MC96] build in a single step
the whole hierarchy from the binary relation
Class — property.

e Incremental algorithms insert a new class into
an already existing hierarchy. Such a tech-
nique is proposed by [Cas92, MS89, Run92,
DDHL94a, DDHL95, GMM95].

All of these strategies may lead to the same re-
sults, no one can be considered better than another.
For instance, given a set of classes, a whole hierar-
chy can be built by successive applications of an
incremental algorithm. Conversely, a global algo-
rithm can always be used to insert a class A in a hi-
erarchy whose class set is £ starting from A and €,
forgetting the structure of the hierarchy. However,
depending on the utilization context, one strategy
or another will be more suitably adapted. A global
algorithm is obviously more suitable in the first case
above, while an incremental algorithm should be
used in the second. Besides, global algorithms are
more adapted when the given data is the relation
Class-Property for instance, when reorganizing
an unsatisfactory hierarchy from scratch , while
incremental algorithms and toolboxes fit evolution

better.

4.2 Underlying hierarchy models

The underlying model used to represent hierarchies
is more or less restrictive.

[Cas92] does not impose any constraints on the
inheritance graph; this seems powerful at first sight
but there is no formal characterization of the results
produced by the algorithm. In [LBSL91, LBSLI0],
there is a strong constraint on hierarchies in which
only leaves can represent instanciables classes.

Moreover, a second set of algorithms use implic-
itly ([Run92, MS89, MC96]), or explicitly ([GM93,
GMMM95, DDHL94a, DDHL95]) with further
adaptations, the Galois lattice of the Class-Property
The Galois lattice
is a mathematical construction ensuring the most

relation to encode hierarchies.

compact maximal factorization (more details can be
found in [Aig79, Wil89, Wil92, GM93, DDHL94a,
GMMMO95]).

[Run92, MS89] use the whole lattice (precisely
a sup-semi-lattice) and this raises some problems.
in the
worst case, the space complexity is exponential in

Firstly because of space consumption:

max(number of classes, number of properties).
Secondly, because this structure imposes some con-
straints on the hierarchy; for example, Figure 2
shows how this structure can forbid the deletion of
a class (class Cg in Hj); indeed, if the deletion is
achieved (as in Hg) then C3 and Cy have the two
lowest common superclasses Cy and Cg and the hi-
erarchy is no longer a lattice.

More cleverly, [GM93] proposed use of a struc-
ture which is a sub-order of the Galois lattice,
that we call a Galois subhierarchy, which improves
space complexity. However, in the same example
of Figure 2, the Galois subhierarchy imposes a con-
trary constraint to the hierarchy: class Cg must be
deleted even if it is a meaningful class (cf. section
2.3). [MCY6] seems to produce the same structure
of a Galois subhierarchy.

Our algorithm is based on the Galois subhierar-
chy. It uses and preserves an underlying Galois
lattice and thus produces formally well character-
ized results. We have added a slight modification
to avoid the deletion of meaningful classes.

4.3 Taking overloading into account

Initial studies [LBSL90, LBSL91] did not take over-
loading into account. A first advance is described
in [Cas92], which simply allows an abstract (pure
virtual) method to be overriden by an implemented
one which itself cannot be overriden. A second step
is described in [MS89, Run92, DDHL95, GMMM95,
GMMY95], proposing systems able to take overload-
ing into account, provided there is an “oracle” able
to compare two occurrences of the same generic
property, and give their lowest common generaliza-
tion(s).

We improve algorithms concerning this topic in
two ways: the main one concerns partial automa-
tion of the oracle for a set of well-defined cases, in-
cluding cases of “self-referent” signatures, the sec-
ond one is a significant improvement of the space
complexity.

5 The Ares Algorithm

We present below the specifications, the algorithm,
and then detail our approach of overloading with
self-referent signatures.

5.1 Specifications

Input: The algorithm starts with H; = (C;, T';)
a class hierarchy with a root 5 and with a meaning-
ful class A to be inserted. Cpjeqn 18 the set of mean-
ingful classes of H;. Properties(A) is A’s property

set.

Output: The final hierarchy H; = (Cy,I'y)
"integrates” H; and A and respects the following
properties [DDHL94b].

e Preservation of the maximal factoriza-
tion of properties
When H; is maximally factorized, so is Hy

e Preservation of the underlying model
When H; is a Galois sub-hierarchy of Cpjean,
Hy is a Galois sub-hierarchy of Carean U{A}.

e Inheritance path preservation of the hi-
erarchy
For all classes of H; still belonging to Hy, the
inheritance paths remain.

e Conservation of the properties of input
classes
Classes which belong to both hierarchies H;
and H; keep the same set of properties.

e Meaningful class conservation
The set of meaningful classes of H; is

CMean U{A}

Note that with any input hierarchy, 7. e. not nec-
essarily a Galois subhierarchy and/or a maximally
factorized one, everything common to the hierarchy
and the class to be inserted is factorized by Ares.

5.2 The algorithm

The algorithm (cf. Figure 8) can be split into three
parts : (1) search of A superclasses, (2) deletion of

non-meaningful empty classes and (3) search of A

"The root has no properties, and does not appear in the
figures

subclasses. We focus on part 1, in which A super-
classes are found or built and where A is bounded
to its immediate superclasses. This part raises the
main issues. A complete description of parts 2 and
3 could be adapted from previous work [DDHL94b)].

The algorithm uses some global variables:

e AalreadyCreated: a Boolean which is true if,
while visiting the hierarchy and creating factor-
ization classes, a class with the same properties
as A is found.

e SH: the current set of A superclasses. At any
time, SH holds already visited classes in H;
which are A superclasses, as well as the factor-
izing classes (obviously A superclasses) already
created by the algorithm.

e EmptyClasses: the set of the non-meaningful
classes which, after a factorization, do not de-
clare any more properties.

We use the function SetMeaningful(C) to in-
sert C' into Cuafean,
IsMeaningful(C).

The algorithm visits all classes in the input hier-

as well as the predicate

archy H; going down from the root and following a
linear extension LEH; of >, i.e. a class is visited
after all its superclasses. The goal of these visits
is to build SH, the set of A superclasses in Hy.
Then, if needed, A is created and bounded to its
direct superclasses.

When a class C is visited, its set of de-
clared properties Declared(C) is
to the set Properties(A). We
ExtractedProperties(C, A)
as the set of the properties ”common” to C and A.

compared
compute
which can be seen

For any pair of occurrences (pc,pa) of the same
generic property, we call a function which in first
approximation returns LCG(pc,pa) for further
details, see section 5.3. We keep LCG(pc,pa) if it
is not declared in a (strict) superclass of C'. More
formally, the set ExtractedProperties(C, A) is:
ExtractedProperties(C, A) =
{pm = LCG(pc,pa) s.t. 3P, pc € P, pa € P, pc €
Declared(C), pa € Properties(A),
and py, 1s not declared in a strict superclass of C'}
The set of remaining properties of C' (resp. A) is:
Remainder(C) = Declared(C)\

ExtractedProperties(C, A)
Remainder(A) = Properties(A)\
[Extracted Properties(C, A) U Inherited(C)]).

The operator \ is in first approximation the set
difference, and will be better specified in Section
5.3.

Now, when EztractedProperties(C, A) is empty,
nothing has to be factorized, and in the other cases:

e Remainder(C) is not empty

- Remainder(A) is not empty

Example: A = C5 and C = Cj for Hz in
Figure 2. ExtractedProperties(C,A) = {d},
Remainder(C) = {e} and Remainder(A) =
{f}. The two classes are incomparable and
the properties of ExtractedProperties(C, A)
are factorized® in a common superclass C' of
C and A. (' is added in the hierarchy and
is stored in SH (the set of A superclasses).
C' is defined as a superclass of C, and as a
subclass of the classes of Sups(C,SH). We
call Sups(C, SH) the minimal elements of the
set of classes which are C' superclasses while
belonging to SH.

- Remainder(A) is empty

Example: A = C4 and C = Cj3 for Hy in
Figure 2. EuztractedProperties(C, A) = {c},
Remainder(C) = {d, e} and Remainder(A) =
{}. A is a superclass of C, the properties of
A declared in C are extracted from C and we
insert A in the hierarchy as a superclass of C.

e Remainder(C) is empty

- Remainder(A) is not empty

Example: A = (5 and C' = Cy for Hierarchy
1 in Figure 2. ExtractedProperties(C,A) =
{b}, Remainder(C') = {} and
Remainder(A) = {c,d,e}.
class of A, C' is stored in SH.

C is a super-

- Remainder(A) is empty
It means that A and C are the same class.
When the whole hierarchy has been visited, SH

Sand possibly adapted as shown later

contains all A superclasses. If A has not already
been found, it must be created and connected to
its immediate superclasses we use the func-
tion Min(FE), which returns the minimal (for <jp)

classes of set F.

5.3 Automatic comparison of occur-
rences of generic properties

Handling overloading in Ares requires being able to
compare an occurrence of a generic property (com-
ing with the class to be inserted) with elements al-
ready present in the hierarchy.

A problem arises when the set of properties of the
class A to be inserted and the set of properties of
an existing class C being visited (cf. section 5.2)
contain p4 and pc respectively, two OGP of the
same generic property P.

In such cases, Ares needs to compute:

e LCG(pa,pc) i. e.
ized in a common superclass of C' and A.

the property to be factor-

LCG(pa,pc) can be either p4 or pe or the low-
est property that both p4 and p¢ specialize.

e Remainder(C) and Remainder(A), allowing
Ares to state what is the common superclass

of Aand C7.

In the above section, describing the algorithm,
discussions related to (1) the computation of
the LCG of two OGP and (2) the precise de-
scription of the computation of Remainder(C)
and Remainder(A) have been delegated and are
presented here.

We first present additional information and def-
initions of OGP and their signatures necessary for
the comparison of properties. Secondly, we explain
how to compute remainders of C' and A in the gen-
eral case, and thirdly we deal with automatic com-
putation of LCOG(pg,pe)-

"note that with our working hypothesis, A and C owning
an occurrence of the same generic property will have a com-
mon superclass, that can be either A or C or a factorization
class

Algorithm ARES(H;,A)
begin
// Initializations
AalreadyCreated < false
SH + 0
EmptyClasses <)
// Looking for and binding superclasses
For every vertex C following LEH,; do
// LEH; is an arbitrary linear eztension of H; starting from root ()
// Visiting C
if ExtractedProperties(C, A) # () then
if Remainder(C) # () then
Create(C")
Declared(C") + ExtractedProperties(C, A)
ImmediateSuperclasses(C') « Sups(C,SH)
Inherited(C") = Ucrcsups(c,sm) Properties(C”)
Properties(C") < Declared(C")J Inherited(C")
ImmediateSuperClasses(C)
+ (ImmediateSuperClasses(C)J{C'}) \ Sups(C, SH)
Declared(C) < Declared(C) \ Declared(C")
Inherited(C) < Inherited(C) | Declared(C")
if Properties(C') = Properties(A) then
//C’=4 is a superclass of C
SetMeaning ful(C")
AalreadyCreated < true
else SH <+ SH|J{C'} endif
if Declared(C) =0 and not IsMeaningful(C) then
EmptyClasses < EmptyClasses|J{C} endif
else //Remainder(C) = ()
if Remainder(A) # 0 then
//C is a superclass of 4
SH + SH J{C}
else //Remainder(A) =0 : C and 4 are the same class
AalreadyCreated < true endif
endif
endif
endfor // Creating class A and binding it to SH
if not AalreadyCreated then
Create(A)
SetMeaning ful(A)
ImmediateSuperClasses(A) < Min(SH)
Inherited(A) = Ucreninsmy Properties(C”)
Declared(A) < Properties(A) — Inherited(A)
endif
Delete EmptyClasses
BindSubClasses
end

Figure 8: The ARES Algorithm

5.3.1 Keys for property comparisons

Methods are compared by mixing code comparison
and signature comparison. Instance variables are
compared using their types.

At this stage of the work,
two cases have been considered, the codes of the

Code comparison.

methods to be compared are either identical or
different.

Signature comparison. Signature comparison is
based on type comparison. Two types 77 and T5
are either equal, or one is a subtype of the other,
or they are incomparable and thus have a common
supertype sup(T'1,T2).

Moreover, as explained in the examples (cf.
Section 3.3), we need to separately consider self-

referent signatures, i. e. signatures including the

Such a
class has been characterized in the signature as an

class in which the property is defined.

anchored type and recoded with the pattern "LC”.

Comparison relationships for signatures. Def-
initions of some comparison relationships between
signatures used in the algorithm are presented. Let
us consider two signatures Sy4 = (A1, Ag, ..., Ay)
and S¢ = (By,Bo,...,By,), where A; and B, are
known types.

e Sy and S¢ are equal if Vi (Ai = Bi)

e Sy and Sc are potentially equal if Vi (Ai =
Bi) or (Ai = LC and Bi = LC)

e S4 and Sc are comparable if one is a spe-
cialization of the other, for example S4 < S¢
Vi (4; < By),

e Sy and Sc are potentially comparable if
one is a potential specialization of the other.
For instance Sy is a potential specialization of
Sc if Vi (Ai <= Bi) or (Ai = LC and Bi =
LC),

e S4 and S¢ are incomparable, if (37 s.t. A;
and B; are incomparable) or (4,5 s.t. A; < B;
and Bj < A7)

5.3.2 Remainder computation

potentially equal)
properties as properties with the same code and

Let us define equal (resp.

equal (resp. potentially equal) signatures.

It is now possible to more precisely compute
Remainder(C') and Remainder(A).

- Remainder(C) is obtained by removing, from
Declared(C'), properties equal or potentially equal
to a property of ExtractedProperties(C, A).

- Remainder(A) is obtained by removing, from
Properties(A),
equal to a property of ExtractedProperties(C, A).

properties equal or potentially

5.3.3 Computing LCG of two properties

We deal in this section with the issue of computer-
aided determination of LCOG(pa, pc) in the working
context defined in section 2. Recall that we gener-
ally distinguish between three kinds of cases in the
determination of LCG(pa, pc):

e (Cases where such a determination requires a
human expert, for example when comparing
two methods with different codes doing the
same thing.

e Cases in which an automatic computation is
possible that we do not yet handle. For exam-
ple, it is possible to perform much more clever
code comparisons than those we have already
done.

e Cases that we have studied and that we now
describe. We consider that the rather simple
rules that we have established allow Ares to
deal with numerous and nontrivial cases.

The cases we have considered are given by mixing
code and signature comparisons as summarized in
Figure 9.

Let us consider again two OGP: p4 with signa-
ture S4 in the class A to be inserted, and pe with
signature S¢ declared in the class C' that Ares is
visiting. For each case in the array, we give the
LCG and when needed explanations and examples.

1. pas and pc have the same signature
and the same code : p4 and pco are the same

property, LCG(pa,pc) = pa = pc-

2. ps and pc have the same code, and
their signatures are potentially equal : both
signatures have at least one anchored type at the
same position.

For instance, if pA is
pa(Th,....T;, A, ..., T,)[codel], and pC is
pc(Th, ..., T;,C, ..., T,)[codel], then LCG(pa,pc) =
pm = p(T1,....,T;, sup(A,C), ..., T)[codel], where
sup(A,C) is the lowest common superclass & of
C and A in which the algorithm will store p,,, if
Pm 18 not already “declared” in a superclass of C
1. e. if there is no superclass X of C' containing
px(Th,....T;, X, ..., T,)[codel].

An example of such a situation can be found in
the Magnitude example (cf. Figure 7), where A
is Time, C is Date, and the considered property
is <. The following provides a snapshot of things
computed by the algorithm:

LCG(< (LC)[codel], < (LC)[codel])
= < (sup(Time, Date))[codel])
ExtractedProperties(Time, Date)
= {< (sup(Time, Date))[codel], ...}

Remainder(Date)

= {hour integer, minut integer, second
integer, ...}

Remainder(Time)

= {day integer, month integer, year

integer, ...}

that neither Remainder(Date) nor
Remainder(Time) are empty, Ares deduces that
Magnitude® has to
In Magnitude properties stored in
will be de-

clared, in particular < (Magnitude)[codel]. Note

Knowing

a factorization class C' =
be created.
ExtractedProperties(Time, Date)

that the signature for < on Magnitude has been
rebuilt.

3. p4 and pc have the same code, and their
signatures are comparable. In whole generality,
one of the properties is a specialization of the other,
if for example S4 < S¢, then LCG(pa,pc) = pe-

8superclass in a broad sense, which can be C or A
9We will use the name Magnitude for clarity but of course,
Ares does not find the name

In the “car-truck” example (cf. Section 3.3, Fig-
ure 5), no hypothesis have been put forward con-
cerning the code of the two properties register-
Driver. If we consider that they have the same
code, this is an example of our current case 3, and
we compute:

LCG(register Driver(Driver)[codel],
register Driver(Truck Driver)[codel])
= register Driver(Driver)[codel] = py,

pm Will be declared on the superclass of the two
clagses Car and Truck, whatever it is. Know-
ing whether or not the other property (here
should be

considered the same and subsequently be removed

register Driver(Truck Driver)[codel])

from the other class, is an optimization of the algo-
rithm and is language and application dependent.

4. py and pco have the same code, and
their signatures are potentially comparable :
both signatures have at least one anchored type at
the same position.

For instance, if
pais pa(Th,...T;. X, ..., Tj, A, ..., T,)[codel],
pc is pc(Th,....T;,Y, ... T;,C, ... T,)[codel],
with Y < X. Then LCG(pa,pc)
=p(Th,...T;, X,....,Tj,sup(A, C), ..., T,,) [codel].
This case is very similar to Case 2, but sup(A, C)
is more constrained, it cannot be C.

5. ps and pc have the same code, and
their signatures are incomparable.

For instance, if
paispa(Ty, ..., T;, ...
pc is po(Ty, ... T}, ...,
LCG(pa,pc) is
p(sup(Th,TY), ..., sup(T;,T}), ..., sup(Ty, T})) [codel].

, T)[codel], and
T)[codel], then

6. pa and pc have the same signatures,
and their codes are different.

If codes are different, at least a deferred property
can be declared for a superclass. For example, if
, Ty)[codel], and
pc is of the form: po (T, ..., T,)[code2], then
LOG(pa,pc) = p(Ti, ..., Tn)[= 0]

pa is of the form: pu(T7, ...

Signatures
Equal Potentially Comparable | Potentialy Incomparable
ual
Codes eq comparable
Equal 1 2 3 4 5
Different 6 7 8 ° 10

Figure 9: Mixing code and signature comparison

This situation was encountered in the second ex-
ample of section 3.3, (cf. Figure 6) when com-
paring the methods display of class Square and
display of class Clircle. The LCG to factorize is
display()[= 0]. Since this property is already de-
clared in the hierarchy, Ares correctly inserts the
class C'ircle as a subclass of GeometricFigure.

This formula for LCG is again an acceptable
result, but p, could also be a specialization of po
(or the opposite). Determining this requires either
a human expert or more sophisticated techniques
for code comparison (is p,’s code a specialization
of p.’s code?) or an optimization of the Ares result
on which we are currently working.

7. pa and pc have different codes, and
their signatures are potentially equal.
For instance, if
pais pa(Ty, ..., T;, A, ..., T,)[codel], and
pc is po(Th, ..., T;, C, ..., T,) [code2], then
LCG(pa,pc) = p(Th, ..., T, sup(A, C), ..., T,)[= 0]

The Magnitude hierarchy (¢f. Section 3.3,
Figure 7) includes an example of such a case,
where A is Time, C is Date, and the considered
properties are < of Date and Time. The computed
LCG to be stored in the factorization class is
< (sup(Date, Time))[= 0]. This factorization class
being determined (cf. the discussion on Case 2), the
final property to factorize is < (M agnitude)[= 0]

8. pis and pc have different codes, and
their signatures are comparable.

One of the properties is a specialization of the
other, if for instance Sy < S¢, then LCG(pa,pc) =
bc-

This case occurs in the “car-truck” example (cf.
Figure 5) if we consider that the two methods
register Driver have different codes. The com-
puted LCG is register Driver(Driver)[codel] that
will be declared in the common superclass of Car
and T'ruck. The difference with Case 3 is that here
register Driver(TruckDriver)

clearly overrides

register Driver(Driver).

9. ps and pc have different codes, and
their signatures are potentially comparable
—both signatures have at least one anchored type
at the same position.

For instance, if
pais pa(Th, ... Ti, X, ..., Tj, A, ..., Ty)[codel], and
pc is pc(Th,.... 1, Y, ... T;,C, ..., T,)[code2],
with Y < X, then LOG(pa, pc)
=p(Th,...Ti, X, ..., Tj, sup(A,C), ..., T,,)[= 0].

10. p4 and pc have different codes, and
their signatures are incomparable.

For instance, if

pais pa(Ty, ..., T;, ..., Ty)[codel], and

pC(Tlla ---azjila ""T’rll)[COde2]’ then LCG(pAapC)
= p(sup(Th,T}), ..., sup(T;, T)), ..., sup(T,, T}))[=

-

=)

This is a case where further researches are neces-
sary, indeed such a rule may lead, in certain cases,
to the creation of uninteresting (only containing de-
ferred!'? properties) factorization classes. The issues
here are (1) how to obtain a more precise rule and
(2) how to optimize the hierarchy thereafter.

6 Conclusion

We have presented an incremental algorithm able
to automatically insert a class, defined by the set
of its properties, into an existing class inheritance
hierarchy. The algorithm takes an input hierarchy
and a class and produces a well characterized
output hierarchy: it preserves the input hierarchy
features such as its structure, maximal factoriza-
tion of properties, inheritance paths and the set of
meaningful classes.

Furthermore, handling of overloading in the
algorithm has been studied and partially achieved.
The problem has been split into two subproblems:
(1) the comparison of occurrences of generic
properties and (2) the use of the results of these
comparisons in the algorithm. Provided that the
first subproblem is solved, the algorithm works
with overloading according to the above descrip-
tions. Concerning the first subproblem, we have
recalled the limits of automatization, 4. e. we
explained why it will never be able to completely
deal with the comparison of generic properties
without the assistance of a human expert. These
limits being defined, we have given a first catego-
rization of properties and some rules to compare
them automatically in a certain number of well de-
fined cases, notably in self-referent signatures cases.

The algorithm has been implemented and tested
on nontrivial but pre-compiled cases. One of our
main current concerns is to apply it to large scale
hierarchies produced in foreign applications. This

requires interfacing the algorithm, and secondly im-

subclass responsibility

plementing post-processors that will optimize its re-
sults many optimizations are possible but there
was no room to describe them there.

Many further studies can be foreseen: We first
plan to extend the number of handled cases of
automatic comparison of generic properties; this is
possible: (1) by studying in further detail the cases
of properties having self-referent signatures, and
(2) by analyzing more precisely method bodies via
syntactic and even semantic analysis. Concerning
method refactoring through syntactic analysis, the
reader should refer to [0J93] and [Mo0096]. Another
difficult issue would be to combine this work with
linearization algorithms [DHHM94] used to solve
conflicts in hierarchies with multiple inheritance.

Ackowledgments

We would like to thank Nicolas Prade for its
contribution to the automatic comparison of occur-
rences of generic properties.

References

[Aig79] M. Aigner.

Springer-Verlag, 1979.

Combinatorial Theory.

[Ber91] P. Bergstein. Object Preserving Class
Transformations. Special issue of Sig-
plan Notice - Proceedings of ACM

OOPSLA’91, 26(11):299-313, 1991.

[Cas91] E. Casais. Managing Evolution in Ob-
An Al-

gorithmic Approach. PhD thesis, Uni-

ject Oriented Environments :

versité de Geneve, 1991.

[Cas92] E. Casais. An incremental class reor-
ganization approach. ECOOP’92 Pro-

ceedings, 1992.

[DDHL94a] H. Dicky, C. Dony, M. Huchard, and
T. Libourel. ARES, un algorithme
d’Ajout avec REStructuration dans les
hiérarchies de classes. Actes de Lan-
gages et Modéles a Objets 94, pages

125-136, 1994.

[DDHL94b] H. Dicky, C. Dony, M. Huchard, and
T. Libourel. ARES, un algorithme

[DDHLY5]

[DHHM94]

[DMC92]

[GM93]

[GMMO95]

[GMMM95]

[GR83]

d’Ajout avec REStructuration dans les

hiérarchies de classes. Technical re-

port, LIRMM, 1994.

H. Dicky, C. Dony, M. Huchard, and
T. Libourel. ARES, Adding a class
and REStructuring Inheritance Hier-
archies. 11 iémes journées Bases de

Données Avancées, Nancy, 1995.

R. Ducournau, M. Habib, M. Huchard,
and ML. Mugnier.
Monotonic Multiple Inheritance Lin-

Proposal for a

earization. Special issue of Sigplan
Notice - Proceedings of ACM OOP-
SLA’94, 29(10):164-175, 1994.

Christophe Dony, Jacques Malenfant,
and Pierre Cointe. Prototype-based
languages: From a new taxonomy to
constructive proposals and their vali-
dation. Special issue of Sigplan Notice
- Proceedings of ACM OOPSLA’92.,

27(10):201-217, 1992.

R. Godin and H. Mili. Building and
Maintaining Analysis-Level Class Hi-
erarchies Using Galois Lattices. Special
issue of Sigplan Notice - Proceedings
of ACM OOPSLA’93, 28(10):394-410,
1993.

R. Godin, G. Mineau, and R. Missaoui.
Incremental structuring of knowledge
bases. Proceedings of International
KRUSE symposium: Knowledge Re-
Use, and Storage for Effi-
ciency Springer-Verlag’s Lecture Notes
in Artificial Intelligence, 9(2):179-198,
1995.

trieval,

R. Godin, H. Mili, G. Mineau, and
R. Missaoui.

methods based on Galois lattices and

Conceptual Clustering

applications. Revue d’intelligence arti-

ficielle, 9(2), 1995.

A. Golberg and D. Robson. Smalltalk-
80, the Language and its Implementa-

[JFSS]

[LBSLYO]

[LBSLY1]

[MCY6]

[Mey92]

[MGG90]

[Mo0095]

[Mo0096]

[MS89)]

tion. Addison Wesley, Reading, Mas-
sachusetts, 1983.

Ralph E. Johnson and Brian Foot.
Designing reusable classes. Jour-
nal of Object-Oriented Programming,

1(2):22-35, 1988.

K. J. Lieberherr, P. Bergstein, and
I. Silva-Lepe. Abstraction of object-
oriented data models. Proceedings of
International Conference on Entity-

Relationship, pages 81 94, 1990.

K. J. Lieberherr, P. Bergstein, and
I. Silva-Lepe. From objects to classes:
Algorithms for optimal object-oriented

design. Journal of Software Engineer-
ing, pages 205-228, 1991.

Ivan Moore and Tim Clement. A Sim-
ple and Efficient Algorithm for Infer-

ring Inheritance Hierarchies. TOOLS
Europe 1996 Proceedings, Prentice-
Hall, 1996.

B. Meyer. Eiffel, The Language.

Prentice Hall - Object-Oriented Series,
1992.

Guy Mineau, Jan Gecsei, and Robert
Godin. Structuring Knowledge Bases
Using Automatic Learning. Proceed-
ings of the sixzth International Confer-
ence on Data Engineering, pages 274

280, 1990.

Ivan Moore. Guru - A Tool for Auto-
matic Restructuring of Self Inheritance
Hierarchies. TOOLS USA 1995 Pro-
ceedings, Prentice-Hall, 1995.

Ivan Moore. Automatic Inheritance
Hierarchy Restructuring and Method
Refactoring. Special issue of Sigplan
Notice - Proceedings of ACM OOP-

SLA’96, 1996.

M. Missikoff and M. Scholl. An Algo-
rithm for Insertion into a Lattice: Ap-
plication to Type Classification. Proc.

[OH92]

[0J93]

[Run92]

[Wilg9]

[Wil92]

3rd Int. Conf. FODD’89, pages 64 82,
1989.

Harold Ossher and William Harrison.
Combination of Inheritance Hierar-
chies. Special issue of Sigplan Notice
- Proceedings of ACM OOPSLA’92,
27(10):25 40, 1992.

William F. Opdyke and Ralph E.
Jonhson. Creating Abstract Super-
classes by Refactoring. Proceedings of
the 21st Annual Conference on Com-
puter Science, pages 66 72, February
1993.

E. A. Rundensteiner. A Class Classifi-
cation Algorithm For Supporting Con-
sistent Object Views. Technical report,
University of Michigan, 1992.

R. Wille. Knowledge acquisition by
methods of formal concept analy-
sis. Data Analysis, Learning Symbolic
nd Numeric Knowledge, 23:365-380,
1989.

R. Wille. Concept lattices and con-
ceptual knowledge systems. Comput-
ers Math. Applic, 23:493-513, 1992.

