
On Automatic Class Insertion with OverloadingH. Dicky, C. Dony, M. Huchard, T. LibourelLIRMM: Laboratoire d'Informatique, de Robotique et de Micro-�electronique de Montpellier161, rue Ada { 34392 Montpellier Cedex 5 { FRANCEemail: dicky,dony,huchard,libourel@lirmm.frAbstractSeveral algorithms [Cas92, MS89, Run92,DDHL94a, DDHL95, GMM95] have been pro-posed to automatically insert a class into aninheritance hierarchy. But actual hierarchies allinclude overriden and overloaded properties thatthese algorithms handle either very partially or notat all. Partially handled means handled providedthere is a separate given function f able to compareoverloaded properties [DDHL95, GMM95].In this paper, we describe a new version of ouralgorithm (named Ares) which handles automaticclass insertion more e�ciently using such a func-tion f . Although impossible to fully de�ne, thisfunction can be computed for a number of well de-�ned cases of overloading and overriding. We givea classi�cation of such cases and describe the com-putation process for a well-de�ned set of nontrivialcases.The algorithm preserves these important proper-ties:- preservation of the maximal factorization of prop-erties- preservation of the underlying structure (Galoislattice) of the input hierarchy- conservation of relevant classes of the input hier-archy with their properties.1 IntroductionThis paper deals with automatization of the inser-tion of a class (de�ned by a set of properties) intoan existing inheritance hierarchy, we will refer to

this as the "class insertion" problem. It also dealswith automatic inheritance hierarchy constructionor reorganization which is related to the "class in-sertion" problem. We propose, via a new algorithm,new advances to �ll the gap between what currentclass insertion algorithms are able to do and whatautomatic handling of actual inheritance hierarchiesreally requires.Why automate hierarchy construction? Classor object (Some programming or knowledge rep-resentation object-oriented languages are classless[DMC92]) inheritance hierarchies are at the heart ofobject-oriented programs, object knowledge-basesand object data-bases, and they are a cornerstone offrameworks i. e. of adaptable and reusable object-oriented architectures. Any kind of automated helpin building, reorganizing or maintaining hierarchiescan thus be of interest and can have applications inseveral important research areas of object technol-ogy:� organization of object-oriented frameworks[JF88]: automatic reorganization is able tobring to the fore new factorization classes andabstract classes [OJ93].� adaptation of legacy systems: numerousobject-oriented systems, thus numerous hier-archies, have been developed in the past years,automatic reorganization can help to adapt orreuse them,- by reorganizing poorly designed systems builteither by nonspecialists, or too rapidly, or with-out any concern for generalization,- by reorganizing huge systems built by di�er-ent designers or programmers at di�erent timeperiods,

- by merging hierarchies: the �nal hierarchycould be computed by reclassifying classes fromthe di�erent hierarchies. This approach shouldnot be confused with hierarchy combination,as proposed in [OH92], where a methodologyis proposed to extend existing hierarchies.� software adaptability: automatic insertion of aclass adds
exibility to an object-oriented soft-ware system, which becomes for example ableto undergo change.Independently of the application area, the morethe classes to be structured multiply and becomeintricate, the more the structuring process canbene�t from partial automatization.Given these possible applications, the next ques-tion that emerges is: what kind of methods can beprovided?Before going further, it should be stated that itwould certainly be impossible to �nd a general al-gorithm that could completely automate, generallyspeaking, class insertion and/or hierarchy reorgani-zation; �rstly, because of the di�culty in expressingcriteria to de�ne a \good" hierarchy independentlyof the context, and secondly, because the construc-tion rules are often very informal and empirical.The di�erent works describing algorithms forautomatic class insertion or hierarchy reorgani-zation that have been published [GM93, Cas92,LBSL91, LBSL90, Ber91, MS89, Run92, DDHL94a,DDHL95, Moo95, MC96] focus on the most tangibleand one of the most important criteria used whenorganizing hierarchies: to point out common prop-erties and create classes to store them (i.e. \factorcommon properties").Once this criterion is set, there is room for mul-tiple variations: incrementality, maximal factoriza-tion, conditions on inputs and outputs of the algo-rithm, constraints imposed by a particular applica-tion domain.Finally, a common and fundamental characteris-tic of object-oriented programs, knowledge repre-sentation and database hierarchies is that they in-clude properties whose name's are overloaded. Sousable and actual class insertion algorithm has tocorrectly handle overloading. Most existing algo-

rithms do not handle this issue and, when done, itis only partial [DDHL95, GMM95]. The main issueconcerning overloading in our context is to compareproperties of the same name using their signaturesand codes. Unfortunately, code comparison is un-decidable.This paper describes Ares, explains how weachieve property comparisons in a number of well-de�ned cases, and how we use this procedure toe�ciently insert classes in the presence of overload-ing.In Section 2, we present the terminology used. InSection 3, some commented examples of algorithminputs-outputs are proposed that highlight its mainproperties and give an idea on the way overloadingis handled. Section 4 compares our approach withrelated works. Section 5 gives a detailed descrip-tion of the algorithm that takes overloading intoaccount.Then a thorough study of how to compare oc-currences of generic properties, the key-problem forhandling overloading, is presented.2 Terminology and contextBefore describing examples of class insertion, in thelight of the fact that words such as "overloading","properties", "genericity", "signature" are some-how overloaded in the world of object-oriented lan-guages, let us �rst introduce the classical terminol-ogy, and terms speci�c to our problem.The algorithm will be applicable, provided it iscorrectly interfaced, to inheritance hierarchies forvarious object-oriented systems. Designing an al-gorithm interface for a particular language may becomplicated. In order to describe the algorithm, wehave chosen the global context of a standard class-based object-oriented language with inclusion poly-morphism, property overloading and overriding.2.1 Classes, inheritance, propertiesClasses and types are assimilated, and basic typesare interfaced and can be considered as classes.Classes are organized into an inheritance hierarchyH with a root. The subclass relationship induces apartial order, which we denote by >H .

A class is characterized by a set of properties.Class properties can be either instance variables ormethods (Smalltalk terminology). We will refer tovariables and methods under the terms property orclass property.All properties have a name and other characteris-tics such as a signature, and in the case of methodsthey may have a body or code (a set of instructions).The signature of an instance variable representsits type. The signature of a method is the orderedlist of its parameter types and possibly its returntype. Traditionally, the �rst element of a signatureis the receiver type. In this presentation, the signa-ture does not include this �rst element.For a given class C, Declared(C) denotes the setof properties declared in C, and Inherited(C) is theset of properties declared in C superclasses.
a
4

a
3 a

3
a
4

a2

a1
a
4

C1

H’

a1

C3 C4

C2

H"

C1

C4C3

2a

a
3

a1

partial order
on generic property a

Figure 1: H' is not maximally factorized, H" is.2.2 Overloading, overriding and genericpropertiesProperties can be overloaded, i.e. it is possible to�nd properties with the same name and di�erentcharacteristics (signature, code , etc.).Overriding is a particular case of overloadingwhich makes sense in the presence of inheritanceand applies when a rede�ned property hides, for acertain object, a property of the same name that isotherwise inherited. The rules of conformance thatgovern signature rede�nition are language depen-dent1. The conformance rule for signature rede�ni-tion is one point to be speci�ed when the algorithm1For example, concerning methods, the rules are di�erentin Ei�el (multi-covariance, where the type of several or allparameters of a method can be specialized in method redef-initions) and C++ (simple-covariance, only the receiver canbe specialized)

is to be applied. We present Ares using an Ei�el-likecovariance policy [Mey92] for variable and methodrede�nitions.We have to mention the set of all class proper-ties with the same name and same arity (in case ofmethods). We call such a set a generic property 2.Each property belongs to a generic property, i.e.is an element, or an occurrence of the set of prop-erties having the same name, OGP stands for Oc-currence of a Generic Property.P denotes a generic property, and p or pi an oc-currence of P , the index is used when necessary, i.e.when we want to speak, in the same context, abouttwo distinct occurrences of P .The di�erent occurrences of P are ordered by a\specialization" order. For variables, this special-ization order can be deduced from the specializationorder on their types. For methods, this specializa-tion order can be deduced from a specialization or-der on the signatures and then on a specializationorder on method bodies3. A ticklish problem ariseswhen we admit \self-reference" in signatures4.We call "lowest common generalizations" anduse LCG(pi; pj) to denote the set of the mostspecialized common generalizations of two occur-rences of the same generic property. In most cases,LCG(pi; pj) is a single element set. In the following,we will assimilate this single element with the set.This simpli�cation does not hide di�cult problems.p(C1; C2) : C3[code] denotes a method with sig-nature (C1,C2,C3), where C3 is the return type, andcode is the method's body.We also denote: p0 or p()[= 0] for a subclass re-sponsibility or pure virtual method with an emptycode. Such a method is automatically the top ofthe specialization order of P .2same name and same meaning than Clos generic func-tions; note that this notion is rei�ed in Clos but is commonto all object-oriented languages, for example we can speak ofthe generic property printOn: in Smalltalk, which is the setof all methods named "printOn:" de�ned in the system3A method that performs a super call could be consideredas a specialization of the method invoked by this call4a signature is \self-referent" when it contains the type ofthe method's receiver

b

C2

C1

a

a b c

C4C3

a b c d e
b

C2

C1

a

C3

c d e

C1

C2

a

C4

C3

d e

c

b
C5

a b d f

C3
e

C2

b

C1

a

C4

c

C6

d

C5

f
C3

e

C2

b

C4

c

C5

f

d

g

C1

a

C6

C7

C8
C7

a d g

C3
e

C2

b

C4

c

C5

f

d

g

C1

a

C7

C8
Removing C6

H 3H 2H 1

H 4 H 5 H 6Figure 2: Insertions without overloading2.3 Meaningful classesThe designer may arbitrarily set apart a subsetCMean of meaningful classes. The algorithm will notbe allowed to delete these meaningful classes fromthe hierarchy. Examples of meaningful classes couldbe: classes with instances (of great importance in apersistent world) or classes which represent an in-teresting abstract concept.2.4 Maximal factorizationAn inheritance hierarchy is maximally factorizedif and only if, for any two classes C3 and C4with two properties a3 and a4 respectively, and forLCG(a3; a4) = a2, the hierarchy always includes acommon superclass of C3 and C4 that declares a2,such that a2 = LCG(a3; a4) (cf. Figure 1).

3 Commented examples ofinputs-outputs of the algo-rithmBefore formally describing the algorithm, we willcomment on a few examples of class insertions asthey are performed by Ares.3.1 Examples without overloadingHere is a sequence of class insertions (cf. Fig. 2)starting from hierarchy H1 and successively pro-ducing hierarchies H2 to H6, highlighting decisionstaken by Ares and showing how the maximal fac-torization property holds:� the inserted class is a simple subclass of an ex-isting class.The �rst example shows an initial hierarchy H1reduced to classes C1 and C2 and a class C3 to

a b c

C1

a b d

C2

c

C1

d

C2

a b

C3

c

C1

d

C2

C4

a
C5

b

d

C2

b C7

a C6

C1

c

H 2H 1 H 3Figure 3: Compactness and maximal factorization
a0 b0 c0 d0

a2 b1 c1 d2

C1

C2

C3 a1 b2 c2 d3

a0 b0 c0 d0C1

C4

a1 b1 d1

C2 a2 c1 d2 C3 b2 c2 d3Figure 4: A simple case of overloadingbe inserted. C3's set of properties contains C2'sset of properties, so C3 is a subclass of C2. Theoutput hierarchy is H2.� the inserted class is not a leaf of the hierar-chy. In H2, the class C4 is inserted between C2and C3 producing H3. The declaration of c istransferred from C3 to C4.� a new class is created and factorizes commonproperties. The next class C5 is an indirectsubclass of C2. In H4, class C6 is created tofactorize property d common to C3 and C5.� a class becomes empty. When class C7 isadded, property d is extracted from C6. Theside e�ect is that C6 does not declare any moreproperties in H5.� an empty class is removed. The algorithmcould be adjusted by deciding whether to keepor delete an empty class. If a deletion policy ischosen, the result of removing C6 is H6.Note that maximal factorization is not alwayscompact. Several maximally factorized hierarchiescan be built from the same set of classes.Consider for example (cf. Fig. 3) a hierarchybuilt from two classes C1 and C2 in which propertiesa and b have to be factorized.

We may obtain the following di�erent results. Ei-ther a and b are grouped together in the same fac-torization class C3 (H1), or a and b are declared indi�erent classes C4 and C5 (H2) (resp. C6 and C7 inH3). All hierarchies are maximally factorized, butH1 is more compact than the others.Ares produces compact and maximally factorizedhierarchies.3.2 Handling of overloading in an idealcaseIn the presence of overloading, we have dividedthe problem in two parts. The �rst problem is to�nd the lowest common generalization of two oc-currences p1 and p2 of the same generic propertyP . The second problem is how to use this gener-alization in the algorithm, assuming it is available(either computed or given by a human expert). Wepresent here some examples of how Ares handlesthe second subproblem.In Figure 4, C3 is to be inserted in the hierarchymade of classes C1 and C2; the order for propertiesis: a2 < a1 < a0, b2 < b1 < b0, LCG(c1; c2) = c0,and LCG(d2; d3) = d1 < d0.

Car

Truck

Vehicle

TruckCar

registerDriver(Driver)[...]

registerDriver(TruckDriver)[...]

registerDriver(Driver)[...]

registerDriver(TruckDriver)[...]Figure 5: Signatures give the LCG
Circle

GeometricFigure GeometricFigure

Square

sideSize : float

Circle

radius : float Square

sideSize : float radius : float

display()[=0]

display()[Code1]

display()[Code2]

display()[=0]

display()[Code1] display()[Code2]Figure 6: Code gives the LCGAres determines that C3 is a subclass of C1 sim-ply because each property of C1 is specialized in C3.Combining C2 and C3 is more complicated, sincethey are not comparable. For any two occurrencesin C2 and C3 of a same generic property p, we takethe common lowest generalization pm. If pm doesnot appear in the classes above C2 (here in C1), wedeclare pm in the factorization class C4.3.3 Examples of class insertion withoverloading and automatic determi-nation of LCGIt is generally impossible to automatically computethe lowest common generalization of two OGP , butit is possible in many situations that we have startedstudying. The detailed results are presented in sec-tion 5.3. We give here some concrete examples ofoverloading where we know how to compute LCGand how Ares exploits it.� Signatures give the LCGThe �rst example (cf. Figure 5) comes from[Mey92]. The existing hierarchy is made of asingle class Car and the class to be inserted isTruck. The two properties to be compared arep1 = registerDriver(TruckDriver) and p2 =registerDriver(Driver). Given that

TruckDriver < Driver, we deduce that p1 < p2regardless of their bodies and that LCG(p1; p2) =p2.Given this result, Ares knows that p2 is themethod to be stored in the factorization class(which we, not Ares, name V ehicle) made from Carand Truck.� Code gives the LCGIn the second example (cf. Figure 6) twooccurrences of the generic property display ex-ist in the hierarchy: d0 = display()[= 0] andd1 = display()[Code1] and a new one, (d2 =display()[Code2]) comes with the class Circle tobe inserted. Their code being di�erent, d1 and d2can be considered as incomparable. However, an-other more precise code examination shows thatd0 = LCG(d1; d2). These results allow Ares tocorrectly produce the �nal hierarchy. It should benoted that the class GeometricF igure is created(except for the name) by the algorithm, if not ini-tially present.� Using codes and signaturesThe last example (cf. Figure 7) is taken fromSmalltalk-80 [GR83] and adapted to a typed world.Given the class Date, inserting the class T ime

<=(Magnitude)[Code1]

<(Magnitude)[=0]

=(Magnitude)[=0]

hour: integer

minut: integer

second: integer

Date Time

day: integer

month: integer

year: integer

hour: integer

minut: integer

second: integer

Date Time

day: integer

month: integer

year: integer

<=(Date)[Code1]

<(Date)[Code2]

=(Date)[Code3]

<=(Time)[Code1]

<(Time)[Code4]

=(Time)[Code5]

<=(Date)[Code1]

<(Date)[Code2]

=(Date)[Code3]

<=(Time)[Code1]

<(Time)[Code4]

=(Time)[Code5]

Magnitude

Figure 7: Using codes and signaturesshould produce a factorization class (Magnitude)with the method <= common to Date and T imeand \subclass responsibility" versions of methods< and =. The occurrences of the generic prop-erties <=; <;= have to be compared and theirLCG computed. Let us see how an automaticcomparison is possible using the method codes andsignatures.The �rst issue here is to enrich the language de-scribing our signatures and to recode the signaturesof the methods <=; <;= by replacing Date or Timeby an anchored type as de�ned in Ei�el [Mey92].Indeed, the parameter's type of self-referent meth-ods <=; <;= is the type of the method's receiver,thus the possible type of the argument will be de-termined by the place in the hierarchy where theclass will be inserted. In other words, we need toknow where the class will be inserted in order to cor-rectly compute LCG and thus to correctly insert it.Thus, to compute LCG, we build new versions ofsignatures in which anchored types are replaced bythe pattern "LC" (which stands for "like current"in reference to Ei�el anchored type declaration).We then de�ne two signatures that match (in ourterminology signatures \potentially equal") as twosignatures having at a given position either boththe same type, or both the pattern LC.In the example of Figure 7:� The two methods < (of Date and T ime) nowhave signatures that match, and have di�erentbodies. This is enough to con�rm

that they are incompatible and that theirLCG will be a method having an emptybody, de�ned in the common superclass |sayMagnitude| of Date and T ime, and of signa-ture (Magnitude).� The two methods<= (of Date and T ime) havesignatures that match and the same code p.This is enough to con�rm that they can be fac-tored via a LCG, which is a method of codep de�ned on the same common superclass |Magnitude |of Date and T ime and of signa-ture (Magnitude).This example represents a typical situation show-ing how Ares is able to highlight interesting factor-ization classes.4 Comparison with related worksRelated works [GM93, Cas92, LBSL91, LBSL90,Ber91, MS89, Run92, DDHL94a, DDHL95, Moo95,MC96] may be studied from three viewpoints: thestrategy used to reorganize hierarchies, the featuresof the hierarchy and the handling of overloading.4.1 Global, incremental and toolboxstrategiesTo build a hierarchy, di�erent strategies can be con-sidered:� The Toolbox approach, proposed by [Ber91], isbased on a set of local operations allowing usersto modify a hierarchy.

� Global algorithms [MGG90, LBSL91, LBSL90,Cas91, Moo95, MC96] build in a single stepthe whole hierarchy from the binary relationClass� property.� Incremental algorithms insert a new class intoan already existing hierarchy. Such a tech-nique is proposed by [Cas92, MS89, Run92,DDHL94a, DDHL95, GMM95].All of these strategies may lead to the same re-sults, no one can be considered better than another.For instance, given a set of classes, a whole hierar-chy can be built by successive applications of anincremental algorithm. Conversely, a global algo-rithm can always be used to insert a class A in a hi-erarchy whose class set is E |starting fromA and E ,forgetting the structure of the hierarchy. However,depending on the utilization context, one strategyor another will be more suitably adapted. A globalalgorithm is obviously more suitable in the �rst caseabove, while an incremental algorithm should beused in the second. Besides, global algorithms aremore adapted when the given data is the relationClass-Property |for instance, when reorganizingan unsatisfactory hierarchy from scratch|, whileincremental algorithms and toolboxes �t evolutionbetter.4.2 Underlying hierarchy modelsThe underlying model used to represent hierarchiesis more or less restrictive.[Cas92] does not impose any constraints on theinheritance graph; this seems powerful at �rst sightbut there is no formal characterization of the resultsproduced by the algorithm. In [LBSL91, LBSL90],there is a strong constraint on hierarchies in whichonly leaves can represent instanciables classes.Moreover, a second set of algorithms use implic-itly ([Run92, MS89, MC96]), or explicitly ([GM93,GMMM95, DDHL94a, DDHL95]) with furtheradaptations, the Galois lattice of the Class-Propertyrelation to encode hierarchies. The Galois latticeis a mathematical construction ensuring the mostcompact maximal factorization (more details can befound in [Aig79, Wil89, Wil92, GM93, DDHL94a,GMMM95]).

[Run92, MS89] use the whole lattice (preciselya sup-semi-lattice) and this raises some problems.Firstly because of space consumption: in theworst case, the space complexity is exponential inmax(number of classes, number of properties).Secondly, because this structure imposes some con-straints on the hierarchy; for example, Figure 2shows how this structure can forbid the deletion ofa class (class C6 in H5); indeed, if the deletion isachieved (as in H6) then C3 and C5 have the twolowest common superclasses C2 and C8 and the hi-erarchy is no longer a lattice.More cleverly, [GM93] proposed use of a struc-ture which is a sub-order of the Galois lattice,that we call a Galois subhierarchy, which improvesspace complexity. However, in the same exampleof Figure 2, the Galois subhierarchy imposes a con-trary constraint to the hierarchy: class C6 must bedeleted even if it is a meaningful class (cf. section2.3). [MC96] seems to produce the same structureof a Galois subhierarchy.Our algorithm is based on the Galois subhierar-chy. It uses and preserves an underlying Galoislattice and thus produces formally well character-ized results. We have added a slight modi�cationto avoid the deletion of meaningful classes.4.3 Taking overloading into accountInitial studies [LBSL90, LBSL91] did not take over-loading into account. A �rst advance is describedin [Cas92], which simply allows an abstract (purevirtual) method to be overriden by an implementedone which itself cannot be overriden. A second stepis described in [MS89, Run92, DDHL95, GMMM95,GMM95], proposing systems able to take overload-ing into account, provided there is an \oracle" ableto compare two occurrences of the same genericproperty, and give their lowest common generaliza-tion(s).We improve algorithms concerning this topic intwo ways: the main one concerns partial automa-tion of the oracle for a set of well-de�ned cases, in-cluding cases of \self-referent" signatures, the sec-ond one is a signi�cant improvement of the spacecomplexity.

5 The Ares AlgorithmWe present below the speci�cations, the algorithm,and then detail our approach of overloading withself-referent signatures.5.1 Speci�cationsInput: The algorithm starts withHi = (Ci;�i)a class hierarchy with a root 5 and with a meaning-ful class A to be inserted. CMean is the set of mean-ingful classes of Hi. Properties(A) is A's propertyset.Output: The �nal hierarchy Hf = (Cf ;�f)"integrates" Hi and A and respects the followingproperties [DDHL94b].� Preservation of the maximal factoriza-tion of propertiesWhen Hi is maximally factorized, so is Hf� Preservation of the underlying modelWhen Hi is a Galois sub-hierarchy of CMean,Hf is a Galois sub-hierarchy of CMeanSfAg.� Inheritance path preservation of the hi-erarchyFor all classes of Hi still belonging to Hf , theinheritance paths remain.� Conservation of the properties of inputclassesClasses which belong to both hierarchies Hiand Hf keep the same set of properties.� Meaningful class conservationThe set of meaningful classes of Hf isCMeanSfAgNote that with any input hierarchy, i. e. not nec-essarily a Galois subhierarchy and/or a maximallyfactorized one, everything common to the hierarchyand the class to be inserted is factorized by Ares.5.2 The algorithmThe algorithm (cf. Figure 8) can be split into threeparts : (1) search of A superclasses, (2) deletion ofnon-meaningful empty classes and (3) search of A5The root has no properties, and does not appear in the�gures

subclasses. We focus on part 1, in which A super-classes are found or built and where A is boundedto its immediate superclasses. This part raises themain issues. A complete description of parts 2 and3 could be adapted from previous work [DDHL94b].The algorithm uses some global variables:� AalreadyCreated: a Boolean which is true if,while visiting the hierarchy and creating factor-ization classes, a class with the same propertiesas A is found.� SH: the current set of A superclasses. At anytime, SH holds already visited classes in Hiwhich are A superclasses, as well as the factor-izing classes (obviously A superclasses) alreadycreated by the algorithm.� EmptyClasses: the set of the non-meaningfulclasses which, after a factorization, do not de-clare any more properties.We use the function SetMeaningful(C) to in-sert C into CMean, as well as the predicateIsMeaningful(C).The algorithm visits all classes in the input hier-archy Hi going down from the root and following alinear extension LEHi of >Hi , i.e. a class is visitedafter all its superclasses. The goal of these visitsis to build SH, the set of A superclasses in Hf .Then, if needed, A is created and bounded to itsdirect superclasses.When a class C is visited, its set of de-clared properties Declared(C) is comparedto the set Properties(A). We computeExtractedProperties(C;A) which can be seenas the set of the properties "common" to C and A.For any pair of occurrences (pC ; pA) of the samegeneric property, we call a function which in �rstapproximation returns LCG(pC ; pA) |for furtherdetails, see section 5.3. We keep LCG(pC ; pA) if itis not declared in a (strict) superclass of C. Moreformally, the set ExtractedProperties(C;A) is:ExtractedProperties(C;A) =fpm = LCG(pC ; pA) s:t: 9P; pC 2 P; pA 2 P; pC 2Declared(C); pA 2 Properties(A);and pm is not declared in a strict superclass of CgThe set of remaining properties of C (resp. A) is:Remainder(C) = Declared(C)n

ExtractedProperties(C;A)Remainder(A) = Properties(A)n[ExtractedProperties(C;A) [Inherited(C)]).The operator n is in �rst approximation the setdi�erence, and will be better speci�ed in Section5.3.Now, when ExtractedProperties(C;A) is empty,nothing has to be factorized, and in the other cases:� Remainder(C) is not empty- Remainder(A) is not emptyExample: A = C5 and C = C3 for H3 inFigure 2. ExtractedProperties(C;A) = fdg,Remainder(C) = feg and Remainder(A) =ffg. The two classes are incomparable andthe properties of ExtractedProperties(C;A)are factorized6 in a common superclass C 0 ofC and A. C 0 is added in the hierarchy andis stored in SH (the set of A superclasses).C 0 is de�ned as a superclass of C, and as asubclass of the classes of Sups(C;SH). Wecall Sups(C;SH) the minimal elements of theset of classes which are C superclasses whilebelonging to SH.- Remainder(A) is emptyExample: A = C4 and C = C3 for H2 inFigure 2. ExtractedProperties(C;A) = fcg,Remainder(C) = fd; eg and Remainder(A) =fg. A is a superclass of C, the properties ofA declared in C are extracted from C and weinsert A in the hierarchy as a superclass of C.� Remainder(C) is empty- Remainder(A) is not emptyExample: A = C3 and C = C2 for Hierarchy1 in Figure 2. ExtractedProperties(C;A) =fbg, Remainder(C) = fg andRemainder(A) = fc; d; eg. C is a super-class of A, C is stored in SH.- Remainder(A) is emptyIt means that A and C are the same class.When the whole hierarchy has been visited, SH6and possibly adapted as shown later

contains all A superclasses. If A has not alreadybeen found, it must be created and connected toits immediate superclasses | we use the func-tion Min(E), which returns the minimal (for <H)classes of set E.5.3 Automatic comparison of occur-rences of generic propertiesHandling overloading in Ares requires being able tocompare an occurrence of a generic property (com-ing with the class to be inserted) with elements al-ready present in the hierarchy.A problem arises when the set of properties of theclass A to be inserted and the set of properties ofan existing class C being visited (cf. section 5.2)contain pA and pC respectively, two OGP of thesame generic property P .In such cases, Ares needs to compute:� LCG(pA; pC) i. e. the property to be factor-ized in a common superclass of C and A.LCG(pA; pC) can be either pA or pC or the low-est property that both pA and pC specialize.� Remainder(C) and Remainder(A), allowingAres to state what is the common superclassof A and C7.In the above section, describing the algorithm,discussions related to (1) the computation ofthe LCG of two OGP and (2) the precise de-scription of the computation of Remainder(C)and Remainder(A) have been delegated and arepresented here.We �rst present additional information and def-initions of OGP and their signatures necessary forthe comparison of properties. Secondly, we explainhow to compute remainders of C and A in the gen-eral case, and thirdly we deal with automatic com-putation of LCG(pa; pc).
7note that with our working hypothesis, A and C owningan occurrence of the same generic property will have a com-mon superclass, that can be either A or C or a factorizationclass

Algorithm ARES(Hi,A)begin// InitializationsAalreadyCreated falseSH ;EmptyClasses ;// Looking for and binding superclassesFor every vertex C following LEHi do// LEHi is an arbitrary linear extension of Hi starting from root
// Visiting Cif ExtractedProperties(C;A) 6= ; thenif Remainder(C) 6= ; thenCreate(C 0)Declared(C 0) ExtractedProperties(C;A)ImmediateSuperclasses(C 0) Sups(C;SH)Inherited(C 0) = SC"2Sups(C;SH) Properties(C")Properties(C 0) Declared(C 0)S Inherited(C 0)ImmediateSuperClasses(C) (ImmediateSuperClasses(C)SfC 0g) n Sups(C;SH)Declared(C) Declared(C) nDeclared(C 0)Inherited(C) Inherited(C)SDeclared(C 0)if Properties(C 0) = Properties(A) then//C'=A is a superclass of CSetMeaningful(C 0)AalreadyCreated trueelse SH SH SfC 0g endifif Declared(C) = ; and not IsMeaningful(C) thenEmptyClasses EmptyClassesSfCg endifelse //Remainder(C) = ;if Remainder(A) 6= ; then//C is a superclass of ASH SH SfCgelse //Remainder(A) = ; : C and A are the same classAalreadyCreated true endifendifendifendfor // Creating class A and binding it to SHif not AalreadyCreated thenCreate(A)SetMeaningful(A)ImmediateSuperClasses(A) Min(SH)Inherited(A) = SC"2Min(SH) Properties(C")Declared(A) Properties(A)� Inherited(A)endifDeleteEmptyClassesBindSubClassesend Figure 8: The ARES Algorithm

5.3.1 Keys for property comparisonsMethods are compared by mixing code comparisonand signature comparison. Instance variables arecompared using their types.Code comparison. At this stage of the work,two cases have been considered, the codes of themethods to be compared are either identical ordi�erent.Signature comparison. Signature comparison isbased on type comparison. Two types T1 and T2are either equal, or one is a subtype of the other,or they are incomparable and thus have a commonsupertype sup(T1; T2).Moreover, as explained in the examples (cf.Section 3.3), we need to separately consider self-referent signatures, i. e. signatures including theclass in which the property is de�ned. Such aclass has been characterized in the signature as ananchored type and recoded with the pattern "LC".Comparison relationships for signatures. Def-initions of some comparison relationships betweensignatures used in the algorithm are presented. Letus consider two signatures SA = (A1; A2; :::; An)and SC = (B1; B2; :::; Bn), where Ai and Bi areknown types.� SA and SC are equal if 8i (Ai = Bi)� SA and SC are potentially equal if 8i (Ai =Bi) or (Ai = LC and Bi = LC)� SA and SC are comparable if one is a spe-cialization of the other, for example SA < SCif 8i (Ai � Bi),� SA and SC are potentially comparable ifone is a potential specialization of the other.For instance SA is a potential specialization ofSC if 8i (Ai <= Bi) or (Ai = LC and Bi =LC),� SA and SC are incomparable, if (9i s.t. Aiand Bi are incomparable) or (9i; j s.t. Ai < Biand Bj < Aj).

5.3.2 Remainder computationLet us de�ne equal (resp. potentially equal)properties as properties with the same code andequal (resp. potentially equal) signatures.It is now possible to more precisely computeRemainder(C) and Remainder(A).- Remainder(C) is obtained by removing, fromDeclared(C), properties equal or potentially equalto a property of ExtractedProperties(C;A).- Remainder(A) is obtained by removing, fromProperties(A), properties equal or potentiallyequal to a property of ExtractedProperties(C;A).5.3.3 Computing LCG of two propertiesWe deal in this section with the issue of computer-aided determination of LCG(pA; pC) in the workingcontext de�ned in section 2. Recall that we gener-ally distinguish between three kinds of cases in thedetermination of LCG(pA; pC):� Cases where such a determination requires ahuman expert, for example when comparingtwo methods with di�erent codes doing thesame thing.� Cases in which an automatic computation ispossible that we do not yet handle. For exam-ple, it is possible to perform much more clevercode comparisons than those we have alreadydone.� Cases that we have studied and that we nowdescribe. We consider that the rather simplerules that we have established allow Ares todeal with numerous and nontrivial cases.The cases we have considered are given by mixingcode and signature comparisons as summarized inFigure 9.Let us consider again two OGP : pA with signa-ture SA in the class A to be inserted, and pC withsignature SC declared in the class C that Ares isvisiting. For each case in the array, we give theLCG and when needed explanations and examples.1. pA and pC have the same signatureand the same code : pA and pC are the sameproperty, LCG(pA; pC) = pA = pC .

2. pA and pC have the same code, andtheir signatures are potentially equal : bothsignatures have at least one anchored type at thesame position.For instance, if pA ispA(T1; :::; Ti; A; :::; Tn)[code1], and pC ispC(T1; :::; Ti; C; :::; Tn)[code1], then LCG(pA; pC) =pm = p(T1; :::; Ti; sup(A;C); :::; Tn)[code1], wheresup(A;C) is the lowest common superclass 8 ofC and A in which the algorithm will store pm, ifpm is not already \declared" in a superclass of Ci. e. if there is no superclass X of C containingpX(T1; :::; Ti;X; :::; Tn)[code1].An example of such a situation can be found inthe Magnitude example (cf. Figure 7), where Ais T ime, C is Date, and the considered propertyis �. The following provides a snapshot of thingscomputed by the algorithm:LCG(� (LC)[code1];� (LC)[code1])= � (sup(T ime;Date))[code1])ExtractedProperties(T ime;Date)= f� (sup(T ime;Date))[code1]; :::gRemainder(Date)= fhour : integer;minut : integer; second :integer; :::gRemainder(T ime)= fday : integer;month : integer; year :integer; :::gKnowing that neither Remainder(Date) norRemainder(T ime) are empty, Ares deduces thata factorization class C 0 = Magnitude9 has tobe created. In Magnitude properties stored inExtractedProperties(T ime;Date) will be de-clared, in particular � (Magnitude)[code1]. Notethat the signature for � on Magnitude has beenrebuilt.3. pA and pC have the same code, and theirsignatures are comparable. In whole generality,one of the properties is a specialization of the other,if for example SA < SC , then LCG(pA; pC) = pC .8superclass in a broad sense, which can be C or A9We will use the name Magnitude for clarity but of course,Ares does not �nd the name

In the \car-truck" example (cf. Section 3.3, Fig-ure 5), no hypothesis have been put forward con-cerning the code of the two properties register-Driver. If we consider that they have the samecode, this is an example of our current case 3, andwe compute:LCG(registerDriver(Driver)[code1];registerDriver(TruckDriver)[code1])= registerDriver(Driver)[code1] = pmpm will be declared on the superclass of the twoclasses Car and Truck, whatever it is. Know-ing whether or not the other property (hereregisterDriver(TruckDriver)[code1]) should beconsidered the same and subsequently be removedfrom the other class, is an optimization of the algo-rithm and is language and application dependent.4. pA and pC have the same code, andtheir signatures are potentially comparable :both signatures have at least one anchored type atthe same position.For instance, ifpA is pA(T1; :::; Ti;X; :::; Tj ; A; :::; Tn)[code1],pC is pC(T1; :::; Ti; Y; :::; Tj ; C; :::; Tn)[code1],with Y < X. Then LCG(pA; pC)= p(T1; :::; Ti;X; :::; Tj ; sup(A;C); :::; Tn)[code1].This case is very similar to Case 2, but sup(A;C)is more constrained, it cannot be C.5. pA and pC have the same code, andtheir signatures are incomparable.For instance, ifpA is pA(T1; :::; Ti; :::; Tn)[code1], andpC is pC(T 01; :::; T 0i ; :::; T 0n)[code1], thenLCG(pA; pC) isp(sup(T1; T 01); :::; sup(Ti; T 0i); :::; sup(Tn; T 0n))[code1].6. pA and pC have the same signatures,and their codes are di�erent.If codes are di�erent, at least a deferred propertycan be declared for a superclass. For example, ifpA is of the form: pA(T1; :::; Tn)[code1], andpC is of the form: pC(T1; :::; Tn)[code2], thenLCG(pA; pC) = p(T1; :::; Tn)[= 0]

Potentially

comparable
Codes

Equal

Different

Signatures

Equal Comparable

6

2 31 4 5

7 8 9 10

IncomparablePotentially
equal

Figure 9: Mixing code and signature comparisonThis situation was encountered in the second ex-ample of section 3.3, (cf. Figure 6) when com-paring the methods display of class Square anddisplay of class Circle. The LCG to factorize isdisplay()[= 0]. Since this property is already de-clared in the hierarchy, Ares correctly inserts theclass Circle as a subclass of GeometricF igure.This formula for LCG is again an acceptableresult, but pA could also be a specialization of pC(or the opposite). Determining this requires eithera human expert or more sophisticated techniquesfor code comparison (is pa's code a specializationof pc's code?) or an optimization of the Ares resulton which we are currently working.7. pA and pC have di�erent codes, andtheir signatures are potentially equal.For instance, ifpA is pA(T1; :::; Ti; A; :::; Tn)[code1], andpC is pC(T1; :::; Ti; C; :::; Tn)[code2], thenLCG(pA; pC) = p(T1; :::; Ti; sup(A;C); :::; Tn)[= 0]The Magnitude hierarchy (cf. Section 3.3,Figure 7) includes an example of such a case,where A is T ime, C is Date, and the consideredproperties are < of Date and T ime. The computedLCG to be stored in the factorization class is< (sup(Date; T ime))[= 0]. This factorization classbeing determined (cf. the discussion on Case 2), the�nal property to factorize is < (Magnitude)[= 0]

8. pA and pC have di�erent codes, andtheir signatures are comparable.One of the properties is a specialization of theother, if for instance SA < SC , then LCG(pA; pC) =pC .This case occurs in the \car-truck" example (cf.Figure 5) if we consider that the two methodsregisterDriver have di�erent codes. The com-puted LCG is registerDriver(Driver)[code1] thatwill be declared in the common superclass of Carand Truck. The di�erence with Case 3 is that hereregisterDriver(TruckDriver) clearly overridesregisterDriver(Driver).9. pA and pC have di�erent codes, andtheir signatures are potentially comparable|both signatures have at least one anchored typeat the same position.For instance, ifpA is pA(T1; :::; Ti;X; :::; Tj ; A; :::; Tn)[code1], andpC is pC(T1; :::; Ti; Y; :::; Tj ; C; :::; Tn)[code2],with Y < X, then LCG(pA; pC)= p(T1; :::; Ti;X; :::; Tj ; sup(A;C); :::; Tn)[= 0].10. pA and pC have di�erent codes, andtheir signatures are incomparable.For instance, ifpA is pA(T1; :::; Ti; :::; Tn)[code1], and

pC(T 01; :::; T 0i ; :::; T 0n)[code2], then LCG(pA; pC)= p(sup(T1; T 01); :::; sup(Ti; T 0i); :::; sup(Tn; T 0n))[=0].This is a case where further researches are neces-sary, indeed such a rule may lead, in certain cases,to the creation of uninteresting (only containing de-ferred10 properties) factorization classes. The issueshere are (1) how to obtain a more precise rule and(2) how to optimize the hierarchy thereafter.6 ConclusionWe have presented an incremental algorithm ableto automatically insert a class, de�ned by the setof its properties, into an existing class inheritancehierarchy. The algorithm takes an input hierarchyand a class and produces a well characterizedoutput hierarchy: it preserves the input hierarchyfeatures such as its structure, maximal factoriza-tion of properties, inheritance paths and the set ofmeaningful classes.Furthermore, handling of overloading in thealgorithm has been studied and partially achieved.The problem has been split into two subproblems:(1) the comparison of occurrences of genericproperties and (2) the use of the results of thesecomparisons in the algorithm. Provided that the�rst subproblem is solved, the algorithm workswith overloading according to the above descrip-tions. Concerning the �rst subproblem, we haverecalled the limits of automatization, i. e. weexplained why it will never be able to completelydeal with the comparison of generic propertieswithout the assistance of a human expert. Theselimits being de�ned, we have given a �rst catego-rization of properties and some rules to comparethem automatically in a certain number of well de-�ned cases, notably in self-referent signatures cases.The algorithm has been implemented and testedon nontrivial but pre-compiled cases. One of ourmain current concerns is to apply it to large scalehierarchies produced in foreign applications. Thisrequires interfacing the algorithm, and secondly im-10subclass responsibility

plementing post-processors that will optimize its re-sults | many optimizations are possible but therewas no room to describe them there.Many further studies can be foreseen: We �rstplan to extend the number of handled cases ofautomatic comparison of generic properties; this ispossible: (1) by studying in further detail the casesof properties having self-referent signatures, and(2) by analyzing more precisely method bodies viasyntactic and even semantic analysis. Concerningmethod refactoring through syntactic analysis, thereader should refer to [OJ93] and [Moo96]. Anotherdi�cult issue would be to combine this work withlinearization algorithms [DHHM94] used to solvecon
icts in hierarchies with multiple inheritance.AckowledgmentsWe would like to thank Nicolas Prade for itscontribution to the automatic comparison of occur-rences of generic properties.References[Aig79] M. Aigner. Combinatorial Theory.Springer-Verlag, 1979.[Ber91] P. Bergstein. Object Preserving ClassTransformations. Special issue of Sig-plan Notice - Proceedings of ACMOOPSLA'91, 26(11):299{313, 1991.[Cas91] E. Casais. Managing Evolution in Ob-ject Oriented Environments : An Al-gorithmic Approach. PhD thesis, Uni-versit�e de Gen�eve, 1991.[Cas92] E. Casais. An incremental class reor-ganization approach. ECOOP'92 Pro-ceedings, 1992.[DDHL94a] H. Dicky, C. Dony, M. Huchard, andT. Libourel. ARES, un algorithmed'Ajout avec REStructuration dans leshi�erarchies de classes. Actes de Lan-gages et Mod�eles �a Objets 94, pages125{136, 1994.[DDHL94b] H. Dicky, C. Dony, M. Huchard, andT. Libourel. ARES, un algorithme

d'Ajout avec REStructuration dans leshi�erarchies de classes. Technical re-port, LIRMM, 1994.[DDHL95] H. Dicky, C. Dony, M. Huchard, andT. Libourel. ARES, Adding a classand REStructuring Inheritance Hier-archies. 11 i�emes journ�ees Bases deDonn�ees Avanc�ees, Nancy, 1995.[DHHM94] R. Ducournau, M. Habib, M. Huchard,and ML. Mugnier. Proposal for aMonotonic Multiple Inheritance Lin-earization. Special issue of SigplanNotice - Proceedings of ACM OOP-SLA'94, 29(10):164{175, 1994.[DMC92] Christophe Dony, Jacques Malenfant,and Pierre Cointe. Prototype-basedlanguages: From a new taxonomy toconstructive proposals and their vali-dation. Special issue of Sigplan Notice- Proceedings of ACM OOPSLA'92.,27(10):201{217, 1992.[GM93] R. Godin and H. Mili. Building andMaintaining Analysis-Level Class Hi-erarchies Using Galois Lattices. Specialissue of Sigplan Notice - Proceedingsof ACM OOPSLA'93, 28(10):394{410,1993.[GMM95] R. Godin, G. Mineau, and R. Missaoui.Incremental structuring of knowledgebases. Proceedings of InternationalKRUSE symposium: Knowledge Re-trieval, Use, and Storage for E�-ciency Springer-Verlag's Lecture Notesin Arti�cial Intelligence, 9(2):179{198,1995.[GMMM95] R. Godin, H. Mili, G. Mineau, andR. Missaoui. Conceptual Clusteringmethods based on Galois lattices andapplications. Revue d'intelligence arti-�cielle, 9(2), 1995.[GR83] A. Golberg and D. Robson. Smalltalk-80, the Language and its Implementa-

tion. Addison Wesley, Reading, Mas-sachusetts, 1983.[JF88] Ralph E. Johnson and Brian Foot.Designing reusable classes. Jour-nal of Object-Oriented Programming,1(2):22{35, 1988.[LBSL90] K. J. Lieberherr, P. Bergstein, andI. Silva-Lepe. Abstraction of object-oriented data models. Proceedings ofInternational Conference on Entity-Relationship, pages 81{94, 1990.[LBSL91] K. J. Lieberherr, P. Bergstein, andI. Silva-Lepe. From objects to classes:Algorithms for optimal object-orienteddesign. Journal of Software Engineer-ing, pages 205{228, 1991.[MC96] Ivan Moore and Tim Clement. A Sim-ple and E�cient Algorithm for Infer-ring Inheritance Hierarchies. TOOLSEurope 1996 Proceedings, Prentice-Hall, 1996.[Mey92] B. Meyer. Ei�el, The Language.Prentice Hall - Object-Oriented Series,1992.[MGG90] Guy Mineau, Jan Gecsei, and RobertGodin. Structuring Knowledge BasesUsing Automatic Learning. Proceed-ings of the sixth International Confer-ence on Data Engineering, pages 274{280, 1990.[Moo95] Ivan Moore. Guru - A Tool for Auto-matic Restructuring of Self InheritanceHierarchies. TOOLS USA 1995 Pro-ceedings, Prentice-Hall, 1995.[Moo96] Ivan Moore. Automatic InheritanceHierarchy Restructuring and MethodRefactoring. Special issue of SigplanNotice - Proceedings of ACM OOP-SLA'96, 1996.[MS89] M. Missiko� and M. Scholl. An Algo-rithm for Insertion into a Lattice: Ap-plication to Type Classi�cation. Proc.

3rd Int. Conf. FODD'89, pages 64{82,1989.[OH92] Harold Ossher and William Harrison.Combination of Inheritance Hierar-chies. Special issue of Sigplan Notice- Proceedings of ACM OOPSLA'92,27(10):25{40, 1992.[OJ93] William F. Opdyke and Ralph E.Jonhson. Creating Abstract Super-classes by Refactoring. Proceedings ofthe 21st Annual Conference on Com-puter Science, pages 66{72, February1993.[Run92] E. A. Rundensteiner. A Class Classi�-cation Algorithm For Supporting Con-sistent Object Views. Technical report,University of Michigan, 1992.[Wil89] R. Wille. Knowledge acquisition bymethods of formal concept analy-sis. Data Analysis, Learning Symbolicnd Numeric Knowledge, 23:365{380,1989.[Wil92] R. Wille. Concept lattices and con-ceptual knowledge systems. Comput-ers Math. Applic, 23:493{513, 1992.

