
Automatic hierarchies reorganization: an algorithm and case studieswith overloading�C. Dony, M. Huchard, T. LibourelLIRMM: Laboratoire d'Informatique, de Robotique et de Micro-�electronique de Montpellier161, rue Ada { 34392 Montpellier Cedex 5 { FRANCEemail: dony,huchard,libourel@lirmm.frAbstractThe automatic construction or reorganization of classes inheritance hierarchies is one of the facets of themanagement of object-oriented software evolution that has received a lot of attention in the last years.Several algorithms have been proposed to automatically insert a class into an inheritance hierarchy orto reorganize them. One of the major remaining issue for all these algorithms is a complete handling ofoverloaded and overriden properties.In this paper, we describe a new version of our algorithm (named Ares) which makes new advances on theautomatic handling of overlaoded properties. Besides, the algorithm has the following important properties:preservation of the maximal factorization of properties, preservation of the underlying structure (Galoislattice) of the input hierarchy, conservation of relevant classes of the input hierarchy with their properties.We also present numerous examples and two case-studies highlighting both the possibilities and the currentlimits of the algorithm.Key words : Class management and class evolution, Reuse, Inheritance hierarchies, Overloading, Galois lattice, Classlibraries, Restructuring1 IntroductionThe automatic construction or reorganization of classes inheritance hierarchies is one the facets of the man-agement of object-oriented software evolution that has received a lot of attention in the last years. Automaticreorganization takes its place in the process of re-engineering of object-oriented systems initially build withoutconcern for generalization, and of large and long-lived applications. It can bring to the fore factorization andabstract classes [OJ93] or help to merge hierarchies representing di�erent applications1. The more the classesto be structured multiply and become intricate, the more the structuring process can bene�t from automation.This paper deals with automation of the insertion of a class (de�ned by a set of properties) into an existinginheritance hierarchy, we will refer to this as the "class insertion" problem. We propose, via a new algorithm,new advances to �ll the gap between what current class insertion algorithms are able to do and what automatichandling of actual inheritance hierarchies really requires. Before going further, it should be stated that it iscertainly impossible to �nd a general algorithm that could completely automate, class insertion and/or hierarchyreorganization; �rstly because there exists no criteria de�ning what is a \good" hierarchy independently of acontext, and secondly, because the construction rules are often very empirical.A lot of di�erent works describe algorithms for automatic class insertion or hierarchy reorganization [MS89,LBSL90, Ber91, LBSL91, Cas92, Run92, GM93, Cas94, DDHL94a, Cas95, DDHL95, Moo95, CL96, DDHL96,Moo96]. Many of them focus on the most tangible criteria used when organizing hierarchies: to point outcommon properties and create classes to store them (i.e. \factor common properties"). Beyond that commoncriterion, there is room for multiple variations: global handling of a hierarchy or incremental classes insertions,maximal or partial factorization, absence or presence of conditions on inputs and outputs, taking into account ornot the characteristics of classes properties (signatures, codes, ...). A common characteristic of object-orientedprograms, knowledge representation and database hierarchies is that they include properties whose name's are�Version longue de [DDHL96].1Merging using automatic class insertion should not be confused with hierarchy combination, as proposed in [OH92].



overloaded. Advances have been made in handling this issue[Cas94, DDHL95, GMM95, DDHL96], which re-quires that classes properties be compared using their codes and signatures. A better handling of that lastsubproblem remains the most important barrier to the full reorganization of actual hierarchies.This paper deals with property comparison, automatic class insertion and hierarchy reorganization in presenceof overloading. It completes, clari�es and extends the description of the Ares algorithm given in [DDHL96].Section 2 de�nes our terminology. Section 3 presents some commented examples of algorithm inputs-outputsthat highlight its main properties and give an idea on how overloading is handled. Section 4 focuses on theclasses comparison and properties comparison subtasks of the algorithm. Section 5 gives a detailed description ofthe algorithm. Section 6 proposes two case studies in which the algorithm has been applied to actual hierarchies.Section 7 presents the algorithm's underlying theoretical model. Section 8 makes a synthesis of related worksand compares our results to those of existing equivalent systems. Section 9 concludes this paper with someperspectives. Appendix A summarizes the 10 possible cases of properties comparison that Ares is able to handle.2 Terminology and contextBefore describing examples of class insertion, in the light of the fact that words such as "overloading", "prop-erties", "genericity", "signature" are somehow overloaded in the world of object-oriented languages, let us�rst introduce the classical terminology, and terms speci�c to our problem. The algorithm will be applicable,provided it is correctly interfaced, to inheritance hierarchies for various object-oriented systems. Designingan algorithm interface for a particular language may be complicated. In order to describe the algorithm, wehave chosen the global context of a standard class-based object-oriented language with inclusion polymorphism,property overloading and overriding.2.1 Classes, inheritance, propertiesClasses and types are assimilated, and basic types are interfaced and can be considered as classes. Classes areorganized into an inheritance hierarchy H with a root. The subclass relationship induces a partial order. Wedenote this partial order by <H : for two classes C1 and C2, C2 <H C1 stands for C2 is a subclass of C1. A classis characterized by a set of properties. Class properties can be either instance variables or methods (Smalltalkterminology). We will refer to variables and methods under the terms property or class property.All properties have a name and other characteristics such as a signature, and in the case of methods they mayhave a body or code (a set of instructions). The signature of an instance variable is its type. The signature of amethod is the ordered list of its parameter types and possibly its return type. Traditionally, the �rst elementof a signature is the receiver type. In this presentation, the signature does not include this �rst element. For agiven class C, Declared(C) denotes the set of properties declared in C, and Inherited(C) is the set of propertiesdeclared in C superclasses.2.2 Overloading, overriding and generic propertiesProperties can be overloaded, i.e. it is possible to �nd properties with the same name and di�erent characteris-tics (signature, code , etc.). Overriding is a particular case of overloading which makes sense in the presence ofinheritance and applies when a rede�ned property hides, for a certain object, a property of the same name thatis otherwise inherited. The rules of conformance that govern signature rede�nition are language dependent2.The conformance rule for signature rede�nition is one point to be speci�ed when the algorithm is to be applied.We have adopted an Ei�el-like covariance policy [Mey92] for variable and method rede�nitions.We call a generic property the set of all properties having the same name and same arity (in case of methods)3.Each property belongs to a generic property, i.e. is an element, or an occurrence of the set of properties havingthe same name4. P denotes a generic property, and p or pi an occurrence of P , the index is used when necessary,i.e. when we want to speak, in the same context, of two distinct occurrences of P .2For example, concerning methods, the rules are di�erent in Ei�el (multi-covariance, where the type of several or all parametersof a method can be specialized in method rede�nitions) and C++ (simple-covariance, only the receiver can be specialized)3Same name and same meaning than Clos generic functions; note that this notion is rei�ed in Clos but is common to all object-oriented languages, for example we can speak of the generic property printOn: in Smalltalk, which is the set of all methods named"printOn:" de�ned in the system.4OGP stands for Occurrence of a Generic Property.
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Figure 1: H' is not maximally factorized, H" is.The di�erent occurrences of P are ordered by a \specialization" order (denoted by <). For instance variables,this specialization order can be deduced from the specialization order on their types, i. e under our hypothesesfrom <H .For methods, this specialization order can be deduced from a specialization order on the signatures and then on aspecialization order on method bodies5. A ticklish problem arises when we admit \self-reference" in signatures6.\p(C1; C2) : C3[code]" denotes a method with signature (C1,C2,C3), where C3 is the return type, and code isthe method's body. We note: p0 or p()[= 0] a subclass responsibility or pure virtual method with an empty code.Such a method is automatically the top of the specialization order of P .We call "lowest common generalizations" and use LCG(pi; pj) to denote the set of the most specialized commongeneralizations of two occurrences of the same generic property. In most cases, LCG(pi; pj) is a single elementset. In the following, we will assimilate this single element with the set. This simpli�cation does not hidedi�cult problems.2.3 Meaningful classesThe designer may arbitrarily set apart a subset CMean of meaningful classes. The algorithm will not be allowedto delete these meaningful classes from the hierarchy. Examples of meaningful classes could be: classes withinstances (of great importance in a persistent world) or classes which represent an interesting abstract concept.2.4 Maximal factorizationAn inheritance hierarchy is maximally factorized if and only if, for any two classes Ci and Cj with two propertiespi and pj respectively, the hierarchy always includes a common superclass of Ci and Cj which is the only classthat declares LCG(pi; pj) (cf. Figure 1).3 Commented examples of inputs-outputs of the algorithmBefore formally describing the algorithm, we will comment on a few examples of class insertions as they areperformed by Ares.3.1 Examples without overloadingHere is a sequence of class insertions (cf. Fig. 2) starting from hierarchy H1 and successively producinghierarchies H2 to H6, highlighting decisions taken by Ares and showing how the maximal factorization propertyholds:� the inserted class is a simple subclass of an existing class.The �rst example shows an initial hierarchyH1 reduced to classes C1 and C2 and a class C3 to be inserted.C3's set of properties contains C2's set of properties, so C3 is a subclass of C2. The output hierarchy isH2.� the inserted class is not a leaf of the hierarchy. In H2, the class C4 is inserted between C2 and C3 producingH3. The declaration of c is transferred from C3 to C4.� a new class is created and factorizes common properties. The next class C5 is an indirect subclass of C2.In H4, class C6 is created to factorize property d common to C3 and C5.5A method that performs a super call could be considered as a specialization of the method invoked by this call.6A signature is \self-referent" when it contains the type of the method's receiver.3
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H 4 H 5 H 6Figure 2: Insertions without overloading� a class becomes empty. When class C7 is added, property d is extracted from C6. The side e�ect is thatC6 does not declare any more properties in H5.� an empty class is removed. The algorithm could be adjusted by deciding whether to keep or delete anempty class. If a deletion policy is chosen, the result of removing C6 is H6.Note that several maximally factorized hierarchies can be built from the same set of classes. Consider forexample (cf. Fig. 3) a hierarchy built from two classes C1 and C2 in which properties a and b have to befactorized. We may obtain the following di�erent results. Either a and b are grouped together in the samefactorization class C3 (H1), or a and b are declared in di�erent classes C4 and C5 (H2) (resp. C6 and C7 in H3).All hierarchies are maximally factorized, but H1 is more compact than the others. Ares produces compact andmaximally factorized hierarchies.3.2 Example with overloadingIn the presence of overloading, the problem can be split in two parts. The �rst issue is to �nd the lowestcommon generalization of two occurrences p1 and p2 of the same generic property P . The second issue is to usecorrectly this generalization in the algorithm, assuming it is available (either computed or given by a humanexpert). We present here an example of how Ares handles the second subproblem, in an ideal case where theLCG are known.In Figure 4, C3 is to be inserted in the hierarchy made of classes C1 and C2; the order for properties is:a2 < a1 < a0, b2 < b1 < b0, LCG(c1; c2) = c0, and LCG(d2; d3) = d1 with d1 < d0.Ares determines that C3 is a subclass of C1 simply because each property of C1 is specialized in C3. CombiningC2 and C3 is more complicated, since they are not comparable. For any two occurrences in C2 and C3 of a samegeneric property p, we take the common lowest generalization pm. If pm does not appear in the classes aboveC2 (here in C1), we declare pm in the factorization class C4.
4



a b c

C1

a b d

C2

c

C1

d

C2

a b

C3

c

C1

d

C2

C4

a
C5

b

d

C2

b C7

a C6

C1

c

H 2H 1 H 3Figure 3: Compactness and maximal factorization
a0 b0 c0 d0

a2 b1 c1 d2

C1

C2

C3 a1 b2 c2 d3

a0 b0 c0 d0C1

C4

a1 b1 d1

C2 a2 c1 d2 C3 b2 c2 d3Figure 4: A simple case of overloading3.3 Examples with overloading and automatic determination of LCGThe automatically computation of a LCG is not possible in whole generality, but possible for particular cases.The complete set of cases that we are able to handle is presented in section section A and the detail of thecomputation in section 4.1. We now introduce concrete examples where an LCG can be computed and exploitedby Ares.� Signatures give the LCGThe �rst example (cf. Figure 5) comes from [Mey92]. The existing hierarchy is made of a single class Car. A �rstclass to be inserted is Truck. The two properties to be compared are p1 = registerDriver(TruckDriver) andp2 = registerDriver(Driver). If it is known that TruckDriver < Driver then it can be deduced, regardlessof their codes, that p1 < p2 and that LCG(p1; p2) = p2. Then Ares stores p2 in a new factorization class(which we, not Ares, name V ehicle) made from Car and Truck. The same criteria are used to insert the classAmbulanceTruck and produce the �nal hierarchy. Ares is able in such a case to produce a hierarchy withseveral level of overriding.� Code gives the LCGIn the second example (cf. Figure 6) two occurrences of the generic property display exist in the hierarchy:d0 = display()[= 0] and d1 = display()[code1] and a new one, d2 = display()[code2] comes with the class Circleto be inserted. Their code being di�erent, d1 and d2 can be considered as incomparable. However, it is simpleto compute that d0 = LCG(d1; d2). These results allow Ares to create the class GeometricF igure (except forthe name) and to produce the resulting hierarchy.� Codes and signatures give the LCGThe last example (cf. Figure 7) is taken from Smalltalk-80 [GR83] and adapted to a typed world. Giventhe class Date, inserting the class T ime should produce a factorization class (Magnitude)7 with the method<= common to Date and T ime and deferred8 versions of methods < and =. The occurrences of the genericproperties <=; <;= have to be compared and their LCG computed.The �rst issue here is to enrich the language describing our signatures in order to note that in the signaturesof the methods <=; <;=, the types Date or Time are anchored type as de�ned in Ei�el [Mey92]. Indeed, the7The set of classes whose instances can be ordered.8Pure virtual or subclass responsibility methods. 5
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Figure 7: Using codes and signaturesTo compare C with A amounts to compare the set of properties declared in C (Declared(C)) with the propertiesof A (InitialP roperties(A)). The goal of this comparison is to build three other sets, used by the algorithm:� ExtractedProperties(C;A), the set of properties that should belong to a common superclass of C and A.Without overloading, this is simply the set of properties which belong to bothDeclared(C) and InitialP roperties(A).With overloading, ExtractedProperties(C;A) can include new properties that generalize two occurrencesof the same generic property belonging respectively to A and C.� Remainder(C) (resp. Remainder(A), the set of properties remaining in C (resp. A) after the extraction.The computation of these sets thus requires, in presence of overloading, the computation of the lowest commongeneralizations (LCG) of two OGPs.4.1 Automatic comparison of occurrences of generic propertiesAn LCG computation arises when Declared(C) and InitialP roperties(A) contain pA and pC respectively, twoOGP of the same generic property P 9. LCG(pA; pC) can be either pA or pC or the lowest property that bothpA and pC specialize.4.1.1 Keys for property comparisonsAdditional de�nitions on OGP and on their signatures are necessary for the comparison of properties.Instance variables are compared using their types (ordered by <). Methods are compared by mixing codecomparison and signature comparison.Code comparison. At this stage of the work, two cases have been considered, the codes of two methods ofthe same name to be compared are identical or di�erent.Signature comparison. Signature comparison is based on type comparison. Two types T1 and T2 are eitherequal, or one is a subtype of the other, or they are incomparable and thus have a lowest common supertypedenoted by sup(T1; T2)10.As explained in the examples (cf. Section 3.3), we also need to separately consider self-referent signatures, i. e.signatures including the class in which the property is de�ned. Such elements of the signatures will be calledanchored-types (in reference to Ei�el anchored type declaration).9Note that, in this case and with our working hypothesis, A and C owning an occurrence of the same generic property will havea common superclass, that can be either A or C or a factorization class.10When that type does not correspond to an existing class in the hierarchy, because T1 and T2 do not have a single lowestcommon supertype, that class has to be created by the algorithm. This case is rather uncommon in usual hierarchies.7



De�nitions of some comparison relationships between signatures used in the algorithm are presented. Let usconsider two signatures SX = (T1; T2; :::; Tn) and SY = (T 01; T 02; :::; T 0n), where Ti and T 0i are known types.� SX and SY are equal (SX = SY ) if 8i (Ti = T 0i )� SX and SY are potentially equal (SX =pot SY ) if 8i((Ti = T 0i ) or (Ti and T 0i are anchored types))� SX and SY are (strictly) comparable (SX < SY ) if one is a specialization of the other, for exampleSX < SY , i.e. if 9j s:t: Tj < T 0j and 8i 6= j (Ti � T 0i ).� SX and SY are (strictly) potentially comparable (SX <pot SY ) if one is a potential specialization ofthe other. SX is a potential specialization of SY if 9j s:t: Tj < T 0j and 8i 6= j ((Ti � T 0i ) or (Ti and T 0i areanchored types))� SX and SY are incomparable, if (9i s.t. Ti and T 0i are incomparable) or (9i; j s.t. Ti < T 0i and T 0j < Tj).We then de�ne equal (resp. potentially equal) properties as properties with the same code (in the case ofmethods) and equal (resp. potentially equal) signatures.4.1.2 Computing LCG of two propertiesWe deal in this section with the issue of computer-aided determination of LCG(pX ; pY ) in the working contextde�ned in section 2.Given pX : SX [codeX ] with SX = (T1; :::; Ti; :::; Tn) and pY : SY [codeY ] with SY = (T 01; :::; T 0i ; :::; T 0n), thegeneral formula of their LCG is for the signature : (sup(T1; T 01); :::; sup(Ti; T 0i ); :::; sup(Tn; T 0n)), and for thecode: sup(codeX ; codeY ).There are several de�nitions of what is the sup of two codes. We have up to now only considered the simplestone: two codes are either identical or di�erent, and it may happen that a code hides another one (overriding).sup(codeX ; codeY ) =- codeY if (SX < SY or SX <pot SY )- codeX if SY < SX or SY <pot SX)- codeX or codeY if (codeX = codeY ) and (SX = SY or SX =pot SY or SX , SY incomparable)- [= 0] if (codeX 6= codeY ) and (SX = SY or SX =pot SY or SX , SY incomparable)Under our working hypothesis, the determination of sup(Ti; T 0i ) only raises a problem when Ti or T 0i is ananchored type. Three kinds of cases in the determination of LCG(pX ; pY ) can be distinguished:� Cases where such a determination requires a human expert, for example when comparing two methodswith di�erent codes doing the same thing.� Cases in which an automatic computation is possible that we do not yet handle. For example, it is possibleto perform clever code comparisons than those we have already done. We have neither considered yet thecase where one is a subset of the other nor the case where the two codes have common subsets, we discussthat point in section 8. Our �rst studies have shown that to handle these cases induce important changesin the algorithm, indeed either every common sub-codes are factorized - which seems unreasonable -, eitherthe maximal factorization property should be relaxed.� Cases that can be handled with the above formulas. They are given by mixing code (2 cases) andsignature (5 cases) comparisons. They allow Ares to deal with numerous and nontrivial con�gurations. Afew examples of such con�gurations are given below, the whole cases are detailed in appendix A.4.1.3 Example 1 : pX and pY have the same code, and their signatures are potentially equalHere, both signatures have at least one anchored type at the same position).For instance, if pX is pX(T1; :::; Ti; X; :::; Tn)[code1], and pY is pY (T1; :::; Ti; Y; :::; Tn)[code1],then LCG(pX ; pY ) = pm = p(T1; :::; Ti; sup(X;Y ); :::; Tn)[code1], where sup(X;Y ) is the lowest common super-class 11 of X and Y in which the algorithm will store pm, if pm is not already \declared" in a superclass Zcontaining pZ(T1; :::; Ti; Z; :::; Tn)[code1].An example of such a situation can be found in the Magnitude example (cf. Figure 7), where X is T ime, Yis Date, and the considered property is <=. The following LGC is computed by the algorithm and added toExtractedProperties(T ime;Date).LCG(<= (T ime)[code1]; <= (Date)[code1]) is <= (sup(T ime;Date))[code1])Then the remainders are computed:11Superclass in a broad sense, which can be X or Y . 8



Remainder(T ime) = fhour : integer;minut : integer; second : integer; :::gRemainder(Date) = fday : integer;month : integer; year : integer; :::gKnowing that neither Remainder(Date) nor Remainder(T ime) are empty, Ares deduces that a factorizationclass C 0 =Magnitude12 has to be created in which properties stored in ExtractedProperties(T ime;Date) willbe declared (among them is <= (Magnitude)[code1], note that its signature has been updated).4.1.4 Example 2 : pX and pY have the same signatures, and their codes are di�erent.In such a case, at least a deferred property can be declared on sup(X;Y ):pX is of the form pX(T1; :::; Tn)[code1], andpY is of the form pY (T1; :::; Tn)[code2], thenLCG(pX ; pY ) = p(T1; :::; Tn)[= 0].This situation has been encountered in the second example of section 3.3, (cf. Figure 6) when comparing themethods display of classes Square and Circle. The LCG to factorize is display()[= 0]. Since this property isalready declared in the hierarchy, Ares correctly inserts the class Circle as a subclass of GeometricF igure. Thisformula for LCG is again an acceptable result, but pX could also be a specialization of pY (or the opposite).Determining this requires either a human expert or more sophisticated techniques for class comparison (is pX 'scode a specialization of pY 's code? Do pX and pY have a worthwhile common subpart to be factorized? Do theother properties allow to conclude ?).4.1.5 Example 3: pX and pY have di�erent codes, and their signatures are comparable.One of the properties is a specialization of the other, if for instance SX < SY , then LCG(pX ; pY ) = pY . Thiscase occurs in the \car-truck" example (cf. Figure 5) if we consider that the two methods registerDriver havedi�erent codes (code1 for Car and code2 for Truck).The computed LCG is registerDriver(Driver)[code1] that will be declared in the common superclass of Carand Truck13.4.2 Computation of ExtractedProperties and RemainderIt is now possible to de�ne precisely the sets ExtractedProperties and Remainder (A still representing theclass to be inserted, and C the current visited class in the hierarchy).� ExtractedProperties(C;A) is the set of all LCG of properties of Declared(C) and InitialP roperties(A)having the same name, which are neither equal nor potentially equal to a property inherited by C14.� Remainder(C) (resp. Remainder(A)) is obtained by removing from Properties(C) (resp. InitialProper-ties(A)), each property either equal or potentially equal to a property of ExtractedProperties(C, A) orinherited from a superclass of C and A.5 The Ares AlgorithmThis section describes the kernel of the algorithm.5.1 Speci�cationsInput: Inputs are a class hierarchy Hi = (Ci; <Hi) and a meaningful class A to be inserted. CMean is the setof meaningful classes of Hi.12We will use the name Magnitude for clarity but of course, Ares does not �nd the name.13The di�erence with the case 3 (cf. Appendix A is that here registerDriver(TruckDriver) clearly overridesregisterDriver(Driver).14More formally, ExtractedProperties(C;A) =fpm = LCG(pC ; pA) s:t: 9P; pC 2 P; pA 2 P; pC 2 Declared(C); pA 2 InitialProperties(A);and 8pi 2 Inherited(C); pm 6= pi and pm 6=pot pig
9



Algorithm Ares(Hi,A)begin;;InitializationsAalreadyCreated false ; Superclasses(A) ; ; EmptyClasses ;NewDeclared(A) InitialProperties(A) ; DirectSubclasses(A) ;LEHi  ComputeLinearExtension(>Hi);;Comparison of A with all classes of LEHiFor (every class C in LEHi) doCompute(ExtractedProperties(C;A))Compute(Remainder(C)); Compute(Remainder(A))if Remainder(C) 6= ; thenif ((Remainder(A) = ;)or(ExtractedProperties(C;A) 6= ;));;A new class C' has to be created as a superclass of CCreate(C0)Declared(C0) UpdateSignatures(ExtractedProperties(C;A))ImmediateSuperclasses(C0) MinCommonSups(C; Superclasses(A))ImmediateSuperClasses(C) (ImmediateSuperClasses(C)SfC0g) nMinCommonSups(C; Superclasses(A))Declared(C) Difference(Declared(C); Declared(C0))if Remainder(A) = ; then ;;C' = A, and C is a subclass of AAalreadyCreated true ; CMean  CMeanSC0DirectSubclasses(A) DirectSubclasses(A)SfCgelse ;;C' is a superclass of ASuperclasses(A) Superclasses(A)SfC0gNewDeclared(A) Difference(NewDeclared(A); Declared(C0)endifif Declared(C) = ; and C 62 CMean thenEmptyClasses EmptyClassesSfCgendifendifelse ;;Remainder(C) = ;if Remainder(A) 6= ; then ;;C is a superclass of ASuperclasses(A) Superclasses(A)SfCgNewDeclared(A) Difference(NewDeclared(A); Declared(C))else AalreadyCreated true ;;Remainder(A)= ; : C = Aendifendifendfor;;Creating class A and binding it to Superclasses(A)if not AalreadyCreated thenCreate(A) ; CMean  CMeanSAImmediateSuperClasses(A) Min(Superclasses(A))ImmediateSubClasses(A) DirectSubclasses(A)Declared(A) NewDeclared(A)endifDeleteEmptyClassesend Figure 8: The Ares Algorithm
10



Output: The output hierarchy Hf = (Cf ; <Hf ) integrates Hi and A and respects the following properties[DDHL94b].� Preservation of the underlying modelWhen Hi is a Galois sub-hierarchy of CMean, Hf is a Galois sub-hierarchy of CMeanSfAg.� Preservation of the maximal factorization of propertiesIf Hi is maximally factorized, so is Hf . If Hi is not maximally factorized, Hf will not be but everythingcommon to the hierarchy and the class to be inserted will be factorized.� Inheritance path preservation of the hierarchyFor all classes of Hi still belonging to Hf , the inheritance paths remain.� Conservation of the properties of input classesClasses which belong to both hierarchies Hi and Hf keep the same set of properties.� Meaningful class conservationThe set of meaningful classes of Hf is CMeanSfAg5.2 The algorithmConceptually, the algorithm (cf. Figure 8) can be split in: (1) search of A superclasses and subclasses, (2)deletion of non-meaningful empty classes. We focus here on part (1).The algorithm visits successively all classes in the input hierarchy Hi going down from the root and followinga linear extension LEHi of >Hi . A class is thus visited after all its superclasses.At each step, the sets ExtractedProperties(C;A), Remainder(A) and Remainder(C) are computed and usedto update the following variables (global to the whole visiting process):- AalreadyCreated: a Boolean stating whether a class equivalent to A has been found or created.- Superclasses(A): the current set of A's superclasses.- DirectSubclasses(A): the current set of A's immediate subclasses.- EmptyClasses: the current set of the non-meaningful classes which, after a factorization, do not declareany more properties.- NewDeclared(A): the current set of properties de�ned in the class A.Here is the detail of each visit step.� If Remainder(C) is not empty.A is a superclass of C or A and C are incomparable. In the �rst case ExtractedProperties(C;A) (maybe empty) represents the initial properties of A not inherited from Superclasses(A). It is necessary tocreate a class representing A. In the second case, if furthermore ExtractedProperties(C;A) is not empty,a new common superclass will be create.In these cases (characterized by Remainder(A) = ; or ExtractedProperties(C;A) 6= ;), we remarkthat all properties in ExtractedProperties(C;A) are factorized15 in a new common superclass C 0, cre-ated as a superclass of C, and as a subclass of MinCommonSups(C; Superclasses(A)). The func-tion MinCommonSups returns the set of the minimal classes which are C superclasses and belong toSuperclasses(A). C becoming a subclass of C 0, the function Difference (described below) computeswhich properties should subsequently be removed from Declared(C). In presence of overloading, thisoperation is not just a single set di�erence. The function UpdateSignatures simply replaces, if present inthe signature of C 0, sup(A;C) by C 0.{ If Remainder(A) is empty,The class C 0 exactly corresponds to the class A to be inserted.For example: A = C4 and C = C3 in Figure 2 (hierarchy H2). ExtractedProperties(C;A) = fcg,Remainder(C) = fd; eg and Remainder(A) = ;.{ If Remainder(A) is not empty,C 0 is a superclass of A, NewDeclared(A) has thus to be updated in the same way as C.An example of such a case can be found in Figure 2 (hierarchy H3) with: A = C5 and C = C3,ExtractedProperties(C;A) = fdg, Remainder(C) = feg, Remainder(A) = ffg and C 0 = C6.� If Remainder(C) is empty,15And possibly updated to solve potential anchored types indecision in their signatures.11



istream& get(char&)
istream& operator>>(char&)

istream

void close()
void open(const char* name, int mode, int prot=0664)

fstreambase

 ostream& flush()

ostream& operator<<(char)
ostream& put(char)  

ostream

int good()
int fail()

ios

iostream

void open(const char* name, int mode=ios::out, int prot=0664)
{fstreambase::open(name, mode, prot)}

ofstream

void open(const char* name, int mode, int prot=0664)
{fstreambase::open(name, mode, prot)}

fstream

void open(const char* name, int mode=ios::in, int prot=0664)
{fstreambase::open(name, mode, prot)}

ifstream

Figure 9: A part of C++ stream hierarchy{ If Remainder(A) is not empty,C is a superclass of A, both classes have to be updated subsequently.For example: A = C3 and C = C2 in Figure 2 (hierarchy H1). ExtractedProperties(C;A) = fbg,Remainder(C) = ; and Remainder(A) = fc; d; eg.{ If Remainder(A) is empty,The class C exactly corresponds to the class A to be inserted.When the whole hierarchy has been visited, if A has not already been found, it is created, connected to its imme-diate superclasses (stored inMin(Superclasses(A))), to its immediate subclasses (stored inDirectSubclasses(A))and receives its properties (stored in NewDeclared(A)).Due to the restructurations of the hierarchy, some classes do not declare any more properties, if they are nonmeaningfull, they are deleted properly.The function Difference computes the new set of declared properties of a class X that becomes, in the contextof the algorithm, a subclass of another Y . Properties of X equal to a property of Y are removed and propertiesof X having the same name and code than a property of Y are updated (their code is replaced by a "super"call)16.To replace a code by a "super" call implies simple adaptations of the functions that compare properties andtheir code that are not described here.6 Reorganization of actual hierarchies - Case studiesWe have applied the algorithm to small but actual hierarchies with their complete set of properties.6.1 The C++ stream hierarchyThe Figure 9 shows a part of the stream hierarchy taken from the Gnu C++ library. The property sets ofclasses ios, istream, ostream, fstreambase is partially represented, whereas the classes iostream, ifstream,ofstream, fstream are complete. The constructors are not represented since they do not modify the results,and in �rst analysis, default values in method signatures have been ignored.This stream hierarchy raises, from our point of view, two issues : the method open of fstream is useless, andfstream should be a subclass of ifstream and ofstream.16More formally,Difference(SPX; SPY ) = SPXnESF where :E = fpx 2 SPX s:t: 9py 2 SPY ; px 2 P; py 2 P; code(px) = code(py)gF = fp0x s:t: 9px 2 SPX ;9py 2 SPY ; px 2 P; py 2 P; code(px) = code(py); signature(px) < signature(py);p0x  p(signature(px))[super p]g 12
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 ostream& flush()
ostream& put(char)  
ostream& operator<<(char)
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void open(const char* name, int mode, int prot)Figure 10: Flattened classesWe have used Ares to \rebuild" this hierarchy, by 
attening classes ifstream, ofstream and fstream, and byreintroducing them. Flattening the classes17 produces the property sets shown in Figure 10.The topological sorting on classes of the initial hierarchyHi (that is the hierarchy of Figure 9 without ifstream,ofstream and fstream) could be : ios, istream, ostream, iostream, fstreambase. To reintroduce ifstream,Ares compares successively the 
attened class ifstream with the classes of Hi. The �rst comparison with iosgives :ExtractedProperties(ios; ifstream) = fint good(); int fail()gRemainder(ios) = ;Remainder(ifstream) =fistream& get(char);istream& operator >> (char);void close();void open(constchar�; int; int))gIos is thus considered as a superclass of ifstream. Another way of understanding this is to remark thatProperties(ifstream) contains Properties(ios).For similar reasons istream and fstreambase are recognized as superclasses of ifstream.ExtractedProperties(ostream; ifstream) and ExtractedProperties(iostream; ifstream) are both empty, thustheir visit has no e�ect. Indeed, neither ostream nor iostream declare properties also owned by ifstream. Thisleads to the introduction of ifstream with an empty property set (cf. Figure 11). The discussion for ofstreamis symmetric, as is symmetric its place in the hierarchy.Clearly fstream properties set is exactly the union of the properties sets of all classes in the current hierarchy.Fstream is thus placed, with an empty property set, as a subclass of the lowest classes, that are iostream,ifstream and ofstream.The �nal hierarchy (cf. Figure 11) solves the two issues we had noticed. Its interesting structure is theboolean lattice built up from three atoms corresponding to three characteristics of streams: \input", \output"or \�le". Moreover, the diamond lattice reduced to ios, istream, ostream and iostream, corresponds to thebasic \input/output" components. The cubic lattice (cf. Figure 11) can be interpreted as the extension ofthe diamond lattice to a new component (\�le"). The �rst diamond is reproduced in the diamond induced byfstreambase, ifstream, ofstream, fstream, that was not the case in the hierarchy of Figure 9.Applying the same reconstruction to classes representing input/output services in main memory (strstream),we would obtain the hierarchy of Figure 12, that we consider clearer than the original one. There are more edgesin hierarchy of Figure 11 than in hierarchy of Figure 9, but the regularity of the structure helps to understandthe hierarchy. A lowest multiple inheritance edge number is not necessarily a good measure of the readability.17Concerning the method open, we have considered that the codes of the methods ifstream :: open, ofstream :: open andfstream :: open are made of a simple call to the super-method fstreambase :: open. The \
attened" version only contain onemethod open with the code given in fstreambase. 13
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fstreamstrstream

iostreamFigure 12: Towards an alternative organization of C++ streamsIn order to illustrate the interest of a correct handling of self-referent signatures, consider the classes istream withassign(class of the standard input stream (cin)), ostream withassign (class of the standard output stream (cout)),and iostream withassign which represent the streams having an assignment operator.class istream_withassign : public istream {public:istream_withassign& operator=(istream&); };class ostream_withassign : public ostream {public:ostream_withassign& operator=(ostream&); };class iostream_withassign : public ostream {public:iostream_withassign& operator=(iostream&); };The e�ect of 
attening and reintroducing them in the hierarchy would be to create a new class (which does notexist in the current C++ hierarchy), say withassign, declaring only a method withassign& operator = (ios&).As previously, a copy of the diamond ios, istream, ostream, iostream would be done to represent the newcomponent \withassign", and linked to the initial diamond (cf. Figure 13). Classes istream withassign,ostream withassign and iostream withassign would keep their own operator = for typing reasons. Withassignhas the great interest of materializing the concept of \streams with assignment" which was previously fragmentedin the original C++ hierarchy (see Figure 14). Finally the various versions of the method open with parametersdefault values can be reintroduced in the classes ifstream, ofstream and fstream of the hierarchy producedby Ares. 14
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Figure 14: C++ stream hierarchy6.2 A case study in SmalltalkAres has also been applied to a small subpart of the Smalltalk hierarchy. The absence of signatures (untypedworld) makes the task of the algorithm more complex because of the lack of data for LCG computation.Here the result is also interesting for two reasons. On the one hand, it brings again to the fore some factorizationproblems in the hierarchy. It shows how the algorithm can be used, not necessarily to produce a new �nalhierarchy but to help human designers to improve the original one. On the other hand it shows some limitsof our today's version of the algorithm and proves that the maximal factorization criteria certainly has to berelaxed to deal in a realistic way with actual hierarchies[Cas94].The subset of the Smalltalk hierarchy we have studied is simply composed of the classes Object, Magnitude,T ime and Date as shown in left part of Figure 15. The properties mentioned in the �gure are those that raisesfactorisation issues ([= 0] still means that a method is deferred, \from" indicates where a factorized methodcomes from). The initial hierarchy has been broken and rebuild by successive insertions of the four classes.The description of the reorganization is omitted and the result is presented in the right part of the �gure. Thefactorization classes (named C 01, ..., C 05) are numbered by the order in which they have been created18.The positive results lie in the discovery of new abstract classes that can be, for some of them, of interest.� Ares has found classes more general than the initial Object class. For example, the class C 02 has beencreated because the methods = and hash are rede�ned as deferred on Magnitude. Thus C 02 is a newabstract class that represents all the classes that do not want to inherit (or in other words that override)the default versions of equality and hashing provided by Objects.18This order could change if the order in which classes are inserted also changes - e.g. T ime before Date or Date before T ime -,but the �nal result, except for classes names, would be the same.15
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� The three methods storeOn : printOn : and readFrom : have been integrated to C 02 (as deferred methods)because they are rede�ned with di�erent codes in the classes Date and T ime. Ares is thus able to grouptogether sets of classes that rede�ne the same set of methods. A human designer can then decide whetherthose abstract classes are of interest.� The class C'5 factorizes what is common to Date and T ime, it suggests a new abstract class that couldbe called Time Measurement� The new class Object is now the superclass of classes that want to inherit a general method for equalityand hashing.Concerning the dark side of the result, the complexity of the resulting hierarchy has to be noticed. Thiscomplexity has two causes. It �rst re
ects some imperfections of the language; for example, the class C 04 hasbeen created to store the Object class method initializeC. In fact that method has only one goal, to initializethe Object class, and should not be inherited by anyone. The second cause is that Ares performs a maximalfactorization of properties and creates classes useful in theory but useless in practice. For example, the classesDate and T ime are no more subclasses of Magnitude but of C 03 instead. The reason is that Date (or T ime)and Magnitude own or inherit di�erent versions of the methods storeOn :, printOn :, and readFrom :. Toleave Date and T ime as subclasses of Magnitude, would require that Date's printOn : be a specialization ofMagnitude's printOn :.The relaxation of the maximal factorization criterion is then necessary but requires important modi�cations ofthe algorithm.7 Underlying theoretical modelAfter these case-studies, we come back to the algorithm and focus in this section on its underlying theoreticalmodel.Many works on class reorganization are based on the maximal property factorization principle which is astrong constraint but does not ensure unique results, the way properties are grouped or the number of classescan be di�erent for two maximally factorized hierarchies. The best compactness can be obtained by usinga mathematical structure known in data analysis under the name of \Galois lattice" [Aig79] or \conceptlattice"[Wil82, Wil89, Wil92].Galois lattices [Aig79] are used (at least) in domains such that knowledge acquisition and representation, dataanalysis, information retrieval, data mining and their interest for hierarchy organization was recently highlightedby [GM93]. In section 8, we will show that some algorithms produce a well characterized sub-structure of aGalois lattice. We recall here the related de�nitions.Galois lattice can be seen as a structure which shows all non empty intersections between class property sets,thus making all sharing explicit. A Galois lattice enables the building of unique more compact hierarchies inwhich properties are maximally factored.Here is the de�nition of its basic structure. The point is to associate a class set K and a property set F suchthat:- all the classes in K share exactly all properties in F and nothing more- symmetrically the properties of F are owned by all the classes of K and only by these classes.Galois lattice (from [Bor92] 19). Let C and P be two �nite sets and R a binary relation uponC 
 P . Within the inheritance framework, C will be the set of classes, P the set of properties, andR the binary relation "owns as a property". The Galois lattice GL(R) is de�ned as follows:� members of GL(R) are Cartesian products K 
F with1) K � C, F � P , and 8C 2 K, 8P 2 F , we have R(C;P )2) K 
F is maximal under inclusion for property 1 20.� the members of GL(R) are totally ordered by the relation denoted by < and de�ned as follows:K 
F < K0 
F 0 , K � K0 (which is equivalent to F � F 0)19Alternative de�nitions can be found in the previously mentioned publications.20K 
 F satisfying prop. 1 is maximal under inclusion for prop. 1 if there is no K0 
 F 0 satisfying prop. 1, and such that,K
F 6= K0 
 F 0, K � K0 and F � F 0 . 17
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Figure 16: Galois lattice and substructureThe Figure 16, 21 shows a binary relation (part a) and its Galois lattice (part b). This lattice is isomorphic tothe lattice built upon the intersections between sets of properties of C classes, lattice in which those intersectionsare ordered by inclusion. The isomorphism is built by changing the label vertices by keeping the right memberof the cartesian product.In order to produce something closer to an inheritance hierarchy, a new labeling removes redundant information.A vertex v, labelled by K 
 F can be labeled by Kr 
Fr, where Kr is the subset of those classes of K that donot appear below v in the lattice, and Fr the subset of those properties of F that do not appear above v (seeFigure 16 part (c)).Galois inheritance latticeA Galois inheritance lattice GIL(R) is isomorphic to a Galois lattice. To V = K 
 F 2 GL(R)is associated in GIL(R) the member Vr = Kr 
 Fr with Kr = K � SV 02SubClasses(V )K0, andFr = F �SV 02SuperClasses(V ) F 0, where we note V 0 = K0 
F 0.GL(R) and GIL(R) are just two di�erent labeling of the same structure, the size of which being exponential innumber of classes and number of properties. It is possible to store only a subpart of it in a Galois Sub-hierarchy[GM93].Galois Sub-hierarchyThe Galois Sub-hierarchy GSH(R) is the order deduced from GIL(R) by removing \empty" ver-tices22, i. e. vertices such that Vr = ; 
 ;.Due to the di�erence of size between Galois lattice GL(R) and Galois Sub-hierarchy GSH(R) (c.f. Figure 16,part d), algorithms that build directly GSH(R) are more e�cient than those that build GL(R) and then reduceGL(R) to GSH(R). [MGG90] have proposed a \global" algorithm, that builds the whole GSH(R) from the21Usually, only Hasse diagram (also called transitive reduction) is drawn to represent order and lattices.22Vertices can be deleted because they do not declare properties, -all their properties appear in the labels of higher vertices- andbecause no class of C owns exactly their set of properties. 18



class descriptions, here the R matrix. Former versions of Ares[DDHL94a, DDHL95] as well as [GMM95] are\incremental" 23 algorithms, that use directly an already built GSH(R). Today's version of Ares hierarchyrepresentation [DDHL96] has an underlying Galois sub-hierarchy structure.8 Comparison with related worksRelated works may be studied from three viewpoints: the strategy used to reorganize hierarchies, the featuresof the hierarchy and the handling of overloading.8.1 StrategiesBesides a factorization algorithm, a decomposition principle is presented in [Cas94], which makes explicit thedi�erent abstraction steps used in an inheritance edge. This decomposition is an interesting complement to thefactorization, and mixing them is a promising issue.To build a hierarchy, di�erent strategies can be considered:� The Toolbox approach, proposed by [Ber91], is based on a set of local operations allowing users to modifya hierarchy.� Factorization is not the single possible strategy for reorganization, Cas94 has described a decomposi-tion algorithm able to \separate various abstraction steps merged in a single inheritance link" [Cas94].Decomposition can be an interesting complement to the factorization, and mixing them is a promisingissue.� Another approach has been called refactoring. It consists in the factorization of all instructions commonto several methods[Moo96]. Such factorizations are only based on syntactic criteria, they will producenumerous methods and classes, the semantics of which being certainly quite unclear.� Algorithms can be global or incremental.Global algorithms [MGG90, LBSL91, LBSL90, Cas91, Moo95, MC96, CL96] build in a single step thewhole hierarchy from the binary relation Class� PropertyIncremental algorithms insert a new class into an already existing hierarchy. Such a technique is proposedby [Cas92, MS89, Run92, DDHL94a, DDHL95, GMM95, DDHL96].[Cas92] proposes an interesting variation where the user limits the exploration to a part of the hierarchy.All of these strategies may lead to the same results. For instance, given a set of classes, a whole hierarchy can bebuilt by successive applications of an incremental algorithm. Conversely, a global algorithm can always be usedto insert a class A in a hierarchy whose set of classes is E , starting from A and E and forgetting the structureof the hierarchy. Global algorithms are more adapted when the given data is the relation Class-Property -for instance, when reorganizing an unsatisfactory hierarchy from scratch-, while incremental algorithms andtoolboxes �t evolution better.8.2 Underlying hierarchy modelsThe underlying model used to represent hierarchies is more or less restrictive. [Cas92] does not impose any con-straints on the input hierarchy but does not give any formal characterization of the result. In [LBSL91, LBSL90],there is a strong constraint on hierarchies in which only leaves can represent instanciable classes, and the hier-archies being produced using heuristics, there is no easy way to characterize the �nal result.A second set of algorithms use implicitly ([Run92, MS89, MC96, CL96]), or explicitly ([GM93, GMMM95,DDHL94a, DDHL95, DDHL96]) with further adaptations, the Galois lattice of the Class-Property relation toencode hierarchies.[Run92, MS89] use the whole lattice (precisely a sup-semi-lattice) and this raises some problems. Firstly be-cause of space consumption and secondly, because this structure imposes some constraints on the hierarchy. Forexample, Figure 2 shows how it can forbid the deletion of a class (C6 in H5); indeed, if the deletion is achieved(as in H6) then C3 and C5 have two lowest common superclasses C2 and C8 and the hierarchy is no longer alattice.More cleverly, [GM93] proposed to use a Galois sub-hierarchy as de�ned in section 7 to improve space complexity.However, for the same example, the Galois sub-hierarchy imposes an opposite constraint: the class C6 must bedeleted even if it is meaningful (cf. section 2.3).23This term may have several senses, it is used here to express the fact that classes are inserted one after the other.19



Two kinds of algorithms produce Galois sub-hierarchies, [MGG90, MC96, CL96] are global and [DDHL94a,GMM95, DDHL95]24 are incremental.The current version of our algorithm also produces a Galois sub-hierarchy and thus has formally well charac-terized results. The main di�erence with a above ones lies in the handling of overloaded properties as explainedbelow.8.3 Taking overloading into accountInitial studies [LBSL90, LBSL91] did not take overloading into account. A �rst advance has been proposed in[Cas92], which allowed a pure virtual method to be overriden by an implemented one which itself cannot beoverriden. A second step has been described in [MS89, Run92, GM93, DDHL95]: overloading can be taken intoaccount, provided there is an \oracle" able to compare two occurrences of the same generic property, and givetheir lowest common generalization(s). Furthermore, these algorithms require, to handle overloading, that alloccurrences of all generic properties be stored somewhere (in the class-property binary relation table for globalones and the classes for incremental ones).The current version of Ares presented in this article integrates the idea of a computed comparison of overloadedproperties not reduced to simple equality. Only declared properties are stored in classes and LCGs are computedwhen needed. This version also proposes a partial automation of the comparison of two properties based oncode and signatures, including cases of \self-referent" signatures.9 ConclusionWe have presented an incremental algorithm able to automatically insert a class, de�ned by the set of its prop-erties, into an existing class inheritance hierarchy. The algorithm takes an input hierarchy and a class andproduces a well characterized output hierarchy: it preserves the input hierarchy features such as its structure,maximal factorization of properties, inheritance paths and the set of meaningful classes.Furthermore, handling of overloading in the algorithm has been studied and partially achieved. The problemhas been split into two subproblems: (1) the comparison of occurrences of generic properties and (2) the use ofthe results of these comparisons in the algorithm. Provided that the �rst subproblem is solved, the algorithmworks with overloading according to the above descriptions. Concerning the �rst subproblem, we have recalledthe limits of automation, i. e. we explained why it will never be able to completely deal with the comparison ofgeneric properties without the assistance of a human expert. These limits being de�ned, we have given a �rstcategorization of properties and some rules to compare them automatically in a certain number of well de�nedcases, notably in self-referent signatures cases.We have presented two case-study, one in a typed world that highlights the Ares possibilities in the handlingof overloaded properties, another in an untyped world showing both the interest of reorganization and some ofthe limits of the algorithm.These limits de�ne our future works.The �rst issue (highlighted by the Smalltalk case study) is related to the limitation of the number of factor-ization classes. The solution requires a relaxation of the maximal factorization criteria and implies importantmodi�cations of the algorithm.We also plan to extend the number of handled cases of automatic comparison of generic properties. Codecomparison can be extended to the cases where a code is included in another and where two codes havecommon subsets. In this, we will not exactly follow the refactoring school ([OJ93] and [Moo96]) since we planto limit ourselves to refactoring sub-parts of occurrences of same generic properties. This study is in progress.Another di�cult issue would be to combine this work with linearization algorithms [DHHM94] used to solvecon
icts in hierarchies with multiple inheritance.Finally, one of our main current concerns is to apply it to large scale hierarchies produced in foreign applications.This requires interfacing the algorithm, and secondly implementing post-processors that will optimize its results.
24In [DDHL95] a slight modi�cation is required to avoid the deletion of meaningful classes.20
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Figure 17: Mixing code and signature comparisonA Appendix: ten properties comparisons cases.This appendix summarizes the 10 possible cases of properties comparison that Ares is able to handle. The issue isto compute the lowest common generalization of two occurrences of the same generic property: LCG(pA(SA)[CodeA]; pC(SC)[CodeC ]),(pA being declared in the class A to be inserted and pC in a class C).1. pA and pC have the same signature and the same code : pA and pC are the same property,LCG(pA; pC) = pA = pC .2. pA and pC have the same code, and their signatures are potentially equal.cf. Section 4.1.23. pA and pC have the same code, and their signatures are comparable. In whole generality, one ofthe properties is a specialization of the other, if for example SA < SC , then LCG(pA; pC) = pC .In the \car-truck" example (cf. Section 3.3, Figure 5), no hypothesis have been made regarding the code of thetwo properties registerDriver. If we consider that they have the same code, this is an example of our currentcase 3, and we compute:LCG(registerDriver(Driver)[code1];registerDriver(TruckDriver)[code1])= registerDriver(Driver)[code1] = pmpm will be declared on the superclass of the two classes Car and Truck, whatever it is. Knowing whether or notthe other property (here registerDriver(TruckDriver)[code1]) should be considered the same and subsequentlybe removed from the other class, is an optimization of the algorithm and is language and application dependent.4. pA and pC have the same code, and their signatures are potentially comparable : both signatureshave at least one anchored type at the same position.For instance, ifpA is pA(T1; :::; Ti; X; :::; Tj ; A; :::; Tn)[code1],pC is pC(T1; :::; Ti; Y; :::; Tj ; C; :::; Tn)[code1],with Y < X . Then LCG(pA; pC)= p(T1; :::; Ti; X; :::; Tj ; sup(A;C); :::; Tn)[code1].This case is very similar to Case 2, but sup(A;C) is more constrained, it cannot be C.5. pA and pC have the same code, and their signatures are incomparable.For instance, ifpA is pA(T1; :::; Ti; :::; Tn)[code1], andpC is pC(T 01; :::; T 0i ; :::; T 0n)[code1], thenLCG(pA; pC) isp(sup(T1; T 01); :::; sup(Ti; T 0i ); :::; sup(Tn; T 0n))[code1]. 23



6. pA and pC have the same signatures, and their codes are di�erent.Cf. Section 4.1.27. pA and pC have di�erent codes, and their signatures are potentially equal.For instance, ifpA is pA(T1; :::; Ti; A; :::; Tn)[code1], andpC is pC(T1; :::; Ti; C; :::; Tn)[code2], thenLCG(pA; pC) = p(T1; :::; Ti; sup(A;C); :::; Tn)[= 0]The Magnitude hierarchy (cf. Section 3.3, Figure 7) includes an example of such a case, where A is T ime,C is Date, and the considered properties are < of Date and T ime. The computed LCG to be stored in thefactorization class is < (sup(Date; T ime))[= 0]. This factorization class being determined (cf. the discussionon Case 2), the �nal property to factorize is < (Magnitude)[= 0]8. pA and pC have di�erent codes, and their signatures are comparable.Cf. Section 4.1.29. pA and pC have di�erent codes, and their signatures are potentially comparable|both signatureshave at least one anchored type at the same position.For instance, ifpA is pA(T1; :::; Ti; X; :::; Tj ; A; :::; Tn)[code1], andpC is pC(T1; :::; Ti; Y; :::; Tj ; C; :::; Tn)[code2],with Y < X , then LCG(pA; pC)= p(T1; :::; Ti; X; :::; Tj ; sup(A;C); :::; Tn)[code1].10. pA and pC have di�erent codes, and their signatures are incomparable.For instance, ifpA is pA(T1; :::; Ti; :::; Tn)[code1], andpC(T 01; :::; T 0i ; :::; T 0n)[code2], then LCG(pA; pC)= p(sup(T1; T 01); :::; sup(Ti; T 0i ); :::; sup(Tn; T 0n))[= 0].This is a case where further researches are necessary, indeed such a rule may lead, in certain cases, to thecreation of uninteresting (only containing deferred properties) factorization classes. The issues here are (1) howto obtain a more precise rule and (2) how to optimize the hierarchy thereafter.
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