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Abstract

The automatic construction or reorganization of classes inheritance hierarchies is one of the facets of the
management of object-oriented software evolution that has received a lot of attention in the last years.

Several algorithms have been proposed to automatically insert a class into an inheritance hierarchy or
to reorganize them. Omne of the major remaining issue for all these algorithms is a complete handling of
overloaded and overriden properties.

In this paper, we describe a new version of our algorithm (named Ares) which makes new advances on the
automatic handling of overlaoded properties. Besides, the algorithm has the following important properties:
preservation of the maximal factorization of properties, preservation of the underlying structure (Galois
lattice) of the input hierarchy, conservation of relevant classes of the input hierarchy with their properties.
We also present numerous examples and two case-studies highlighting both the possibilities and the current
limits of the algorithm.

Key words : Class management and class evolution, Reuse, Inheritance hierarchies, Overloading, Galois lattice, Class
libraries, Restructuring

1 Introduction

The automatic construction or reorganization of classes inheritance hierarchies is one the facets of the man-
agement of object-oriented software evolution that has received a lot of attention in the last years. Automatic
reorganization takes its place in the process of re-engineering of object-oriented systems initially build without
concern for generalization, and of large and long-lived applications. It can bring to the fore factorization and
abstract classes [0J93] or help to merge hierarchies representing different applications’. The more the classes
to be structured multiply and become intricate, the more the structuring process can benefit from automation.
This paper deals with automation of the insertion of a class (defined by a set of properties) into an existing
inheritance hierarchy, we will refer to this as the ”class insertion” problem. We propose, via a new algorithm,
new advances to fill the gap between what current class insertion algorithms are able to do and what automatic
handling of actual inheritance hierarchies really requires. Before going further, it should be stated that it is
certainly impossible to find a general algorithm that could completely automate, class insertion and/or hierarchy
reorganization; firstly because there exists no criteria defining what is a “good” hierarchy independently of a
context, and secondly, because the construction rules are often very empirical.

A lot of different works describe algorithms for automatic class insertion or hierarchy reorganization [MS89,
LBSL90, Ber91, LBSL91, Cas92, Run92, GM93, Cas94, DDHL94a, Cas95, DDHL95, Mo095, CL96, DDHL96,
Mo096]. Many of them focus on the most tangible criteria used when organizing hierarchies: to point out
common properties and create classes to store them (i.e. “factor common properties”). Beyond that common
criterion, there is room for multiple variations: global handling of a hierarchy or incremental classes insertions,
maximal or partial factorization, absence or presence of conditions on inputs and outputs, taking into account or
not the characteristics of classes properties (signatures, codes, ...). A common characteristic of object-oriented
programs, knowledge representation and database hierarchies is that they include properties whose name’s are

*Version longue de [DDHL96].
I Merging using automatic class insertion should not be confused with hierarchy combination, as proposed in [OH92].



overloaded. Advances have been made in handling this issue[Cas94, DDHL95, GMM95, DDHL96], which re-
quires that classes properties be compared using their codes and signatures. A better handling of that last
subproblem remains the most important barrier to the full reorganization of actual hierarchies.

This paper deals with property comparison, automatic class insertion and hierarchy reorganization in presence
of overloading. It completes, clarifies and extends the description of the Ares algorithm given in [DDHL96].

Section 2 defines our terminology. Section 3 presents some commented examples of algorithm inputs-outputs
that highlight its main properties and give an idea on how overloading is handled. Section 4 focuses on the
classes comparison and properties comparison subtasks of the algorithm. Section 5 gives a detailed description of
the algorithm. Section 6 proposes two case studies in which the algorithm has been applied to actual hierarchies.
Section 7 presents the algorithm’s underlying theoretical model. Section 8 makes a synthesis of related works
and compares our results to those of existing equivalent systems. Section 9 concludes this paper with some
perspectives. Appendix A summarizes the 10 possible cases of properties comparison that Ares is able to handle.

2 Terminology and context

) »

Before describing examples of class insertion, in the light of the fact that words such as ”overloading”, ”prop-
erties”, ”genericity”, ”signature” are somehow overloaded in the world of object-oriented languages, let us
first introduce the classical terminology, and terms specific to our problem. The algorithm will be applicable,
provided it is correctly interfaced, to inheritance hierarchies for various object-oriented systems. Designing
an algorithm interface for a particular language may be complicated. In order to describe the algorithm, we
have chosen the global context of a standard class-based object-oriented language with inclusion polymorphism,
property overloading and overriding.

2.1 Classes, inheritance, properties

Classes and types are assimilated, and basic types are interfaced and can be considered as classes. Classes are
organized into an inheritance hierarchy H with a root. The subclass relationship induces a partial order. We
denote this partial order by < g : for two classes C; and Cy, Cy <gy C; stands for Cs is a subclass of C. A class
is characterized by a set of properties. Class properties can be either instance variables or methods (Smalltalk
terminology). We will refer to variables and methods under the terms property or class property.

All properties have a name and other characteristics such as a signature, and in the case of methods they may
have a body or code (a set of instructions). The signature of an instance variable is its type. The signature of a
method is the ordered list of its parameter types and possibly its return type. Traditionally, the first element
of a signature is the receiver type. In this presentation, the signature does not include this first element. For a
given class C, Declared(C) denotes the set of properties declared in C, and Inherited(C) is the set of properties
declared in C' superclasses.

2.2 Overloading, overriding and generic properties

Properties can be overloaded, i.e. it is possible to find properties with the same name and different characteris-
tics (signature, code , etc.). Overriding is a particular case of overloading which makes sense in the presence of
inheritance and applies when a redefined property hides, for a certain object, a property of the same name that
is otherwise inherited. The rules of conformance that govern signature redefinition are language dependent?.
The conformance rule for signature redefinition is one point to be specified when the algorithm is to be applied.
We have adopted an Eiffel-like covariance policy [Mey92] for variable and method redefinitions.

We call a generic property the set of all properties having the same name and same arity (in case of methods)>.
Each property belongs to a generic property, i.e. is an element, or an occurrence of the set of properties having
the same name®*. P denotes a generic property, and p or p; an occurrence of P, the index is used when necessary,
i.e. when we want to speak, in the same context, of two distinct occurrences of P.

2For example, concerning methods, the rules are different in Eiffel (multi-covariance, where the type of several or all parameters
of a method can be specialized in method redefinitions) and C++ (simple-covariance, only the receiver can be specialized)

3Same name and same meaning than Clos generic functions; note that this notion is reified in Clos but is common to all object-
oriented languages, for example we can speak of the generic property printOn: in Smalltalk, which is the set of all methods named
?printOn:” defined in the system.

4OGP stands for Occurrence of a Generic Property.
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Figure 1: H’ is not maximally factorized, H” is.

The different occurrences of P are ordered by a “specialization” order (denoted by <). For instance variables,
this specialization order can be deduced from the specialization order on their types, i. e under our hypotheses
from <p.

For methods, this specialization order can be deduced from a specialization order on the signatures and then on a
specialization order on method bodies®. A ticklish problem arises when we admit “self-reference” in signatures®.
“p(C1,Cs) : Cslcode]” denotes a method with signature (C,C2,Cs), where Cj is the return type, and code is
the method’s body. We note: pg or p()[= 0] a subclass responsibility or pure virtual method with an empty code.
Such a method is automatically the top of the specialization order of P.

We call ”lowest common generalizations” and use LCG(p;, p;) to denote the set of the most specialized common
generalizations of two occurrences of the same generic property. In most cases, LCG(p;, p;) is a single element
set. In the following, we will assimilate this single element with the set. This simplification does not hide
difficult problems.

2.3 Meaningful classes

The designer may arbitrarily set apart a subset Cpfeqrn Of meaningful classes. The algorithm will not be allowed
to delete these meaningful classes from the hierarchy. Examples of meaningful classes could be: classes with
instances (of great importance in a persistent world) or classes which represent an interesting abstract concept.

2.4 Maximal factorization

An inheritance hierarchy is maximally factorized if and only if, for any two classes C; and C; with two properties
p; and p; respectively, the hierarchy always includes a common superclass of C; and C; which is the only class
that declares LCG(pi, p;) (cf. Figure 1).

3 Commented examples of inputs-outputs of the algorithm

Before formally describing the algorithm, we will comment on a few examples of class insertions as they are
performed by Ares.

3.1 Examples without overloading

Here is a sequence of class insertions (¢f. Fig. 2) starting from hierarchy H; and successively producing
hierarchies H, to Hg, highlighting decisions taken by Ares and showing how the maximal factorization property
holds:
e the inserted class is a simple subclass of an existing class.
The first example shows an initial hierarchy H; reduced to classes C; and C; and a class C'3 to be inserted.
C5’s set of properties contains Cy’s set of properties, so C5 is a subclass of Cs. The output hierarchy is
H,.
e the inserted class is not a leaf of the hierarchy. In Hs, the class Cy is inserted between C and C5 producing
Hj3. The declaration of ¢ is transferred from C3 to Cy.
e a new class is created and factorizes common properties. The next class C5 is an indirect subclass of Cs.
In Hy, class Cg is created to factorize property d common to C3 and Cs.

5A method that performs a super call could be considered as a specialization of the method invoked by this call.
6 A signature is “self-referent” when it contains the type of the method’s receiver.
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Figure 2: Insertions without overloading

e a class becomes empty. When class C7 is added, property d is extracted from Cg. The side effect is that
Cs does not declare any more properties in Hs.
e an empty class is removed. The algorithm could be adjusted by deciding whether to keep or delete an
empty class. If a deletion policy is chosen, the result of removing Cy is Hg.
Note that several maximally factorized hierarchies can be built from the same set of classes. Consider for
example (cf. Fig. 3) a hierarchy built from two classes C; and Cs in which properties a and b have to be
factorized. We may obtain the following different results. Either a and b are grouped together in the same
factorization class Cs (H;), or a and b are declared in different classes Cy and C5 (Hz) (resp. Cs and C7 in Hs).
All hierarchies are maximally factorized, but H; is more compact than the others. Ares produces compact and
maximally factorized hierarchies.

3.2 Example with overloading

In the presence of overloading, the problem can be split in two parts. The first issue is to find the lowest
common generalization of two occurrences p; and p» of the same generic property P. The second issue is to use
correctly this generalization in the algorithm, assuming it is available (either computed or given by a human
expert). We present here an example of how Ares handles the second subproblem, in an ideal case where the
LCG are known.

In Figure 4, C3 is to be inserted in the hierarchy made of classes C; and Cs; the order for properties is:
az < ai < ag, by < b1 < bo, LCG(Cl,Cz) = Cp, and LCG(dz,d3) =d; with di < dp.

Ares determines that C3 is a subclass of C; simply because each property of C; is specialized in C3. Combining
C> and Cj3 is more complicated, since they are not comparable. For any two occurrences in C> and C3 of a same
generic property p, we take the common lowest generalization p,,. If p,, does not appear in the classes above
C5 (here in (), we declare p,, in the factorization class Cy.
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Figure 4: A simple case of overloading

3.3 Examples with overloading and automatic determination of LC'G

The automatically computation of a LCG is not possible in whole generality, but possible for particular cases.
The complete set of cases that we are able to handle is presented in section section A and the detail of the
computation in section 4.1. We now introduce concrete examples where an LC'G can be computed and exploited
by Ares.

e Signatures give the LCG

The first example (cf. Figure 5) comes from [Mey92]. The existing hierarchy is made of a single class Car. A first
class to be inserted is Truck. The two properties to be compared are p; = register Driver(TruckDriver) and
p2 = register Driver(Driver). If it is known that TruckDriver < Driver then it can be deduced, regardless
of their codes, that p; < p» and that LCG(pl,p2) = p2. Then Ares stores p, in a new factorization class
(which we, not Ares, name Vehicle) made from Car and Truck. The same criteria are used to insert the class
AmbulanceT ruck and produce the final hierarchy. Ares is able in such a case to produce a hierarchy with
several level of overriding.

e Code gives the LCG

In the second example (¢f. Figure 6) two occurrences of the generic property display exist in the hierarchy:
do = display()[= 0] and d; = display()[codel] and a new one, dy = display()[code2] comes with the class Circle
to be inserted. Their code being different, d; and dy can be considered as incomparable. However, it is simple
to compute that dy = LCG(dy,d>). These results allow Ares to create the class GeometricFigure (except for
the name) and to produce the resulting hierarchy.

e Codes and signatures give the LCG

The last example (¢f. Figure 7) is taken from Smalltalk-80 [GR83] and adapted to a typed world. Given
the class Date, inserting the class Time should produce a factorization class (Magnitude)” with the method
<= common to Date and Time and deferred® versions of methods < and =. The occurrences of the generic
properties <=, <, = have to be compared and their LCG computed.

The first issue here is to enrich the language describing our signatures in order to note that in the signatures
of the methods <=, <, =, the types Date or Time are anchored type as defined in Eiffel [Mey92]. Indeed, the

"The set of classes whose instances can be ordered.
8Pure virtual or subclass responsibility methods.
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Figure 6: Code gives the LCG

parameter’s type of the self-referent methods <=, <, = is the type of the method’s receiver, thus the possible
type of the argument will be determined by the place in the hierarchy where the class will be inserted. In other
words, we need to know where the class will be inserted in order to correctly compute LCG and thus to correctly
insert it. We then define two signatures that match (in our terminology signatures “potentially equal”) as two
signatures having at a given position either the same type, or anchored types.

- The two methods < (of Date and Time) now have signatures that match, and have different bodies. This
is enough to confirm that they are incompatible and that their LCG will be a method having an empty body,
defined in the common superclass —say Magnitude— of Date and Time, and of signature (M agnitude).

- The two methods <= (of Date and Time) have signatures that match and the same code codel. This is
enough to confirm that they can be factored via a LCG, which is a method of code codel defined on the same
common superclass —M agnitude —of Date and Time and of signature (M agnitude).

- The next issue in this example is to compute whether a property <= should remain on classes Date and
Time. The answer to that question is language dependent. For example, the solution depicted in figure 7
allows to maintain a control on parameter’s types of <=, but requires that covariant redefinitions be allowed.
In Smalltalk, the methods <= do not remain on classes Date and Time, and runtime errors will occur when
comparing a date and a time. Ares, by maintaining precisely what can remain on those two classes allows
implementors to choose any language dependent solution.

4 Automatic classes comparisons

The algorithm compares the class to be inserted (that we call A) to all other classes in the hierarchy. This
section describes the comparison of A with one of these classes (that we call C') and focuses more particularly
on the comparison of properties of these two classes.
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Figure 7: Using codes and signatures

To compare C' with A amounts to compare the set of properties declared in C (Declared(C)) with the properties
of A (Initial Properties(A)). The goal of this comparison is to build three other sets, used by the algorithm:

e ExtractedProperties(C, A), the set of properties that should belong to a common superclass of C' and A.

Without overloading, this is simply the set of properties which belong to both Declared(C) and Initial Properties(A).
With overloading, ExtractedProperties(C, A) can include new properties that generalize two occurrences
of the same generic property belonging respectively to A and C.

e Remainder(C) (resp. Remainder(A), the set of properties remaining in C' (resp. A) after the extraction.

The computation of these sets thus requires, in presence of overloading, the computation of the lowest common
generalizations (LCG) of two OGPs.

4.1 Automatic comparison of occurrences of generic properties

An LCG computation arises when Declared(C) and Initial Properties(A) contain pa and po respectively, two
OGP of the same generic property P?. LCG(pa,pc) can be either pa or pc or the lowest property that both
pa and pc specialize.

4.1.1 Keys for property comparisons

Additional definitions on OGP and on their signatures are necessary for the comparison of properties.

Instance variables are compared using their types (ordered by <). Methods are compared by mixing code
comparison and signature comparison.

Code comparison. At this stage of the work, two cases have been considered, the codes of two methods of
the same name to be compared are identical or different.

Signature comparison. Signature comparison is based on type comparison. Two types 77 and 75 are either
equal, or one is a subtype of the other, or they are incomparable and thus have a lowest common supertype
denoted by sup(T'1,T2).

As explained in the examples (cf. Section 3.3), we also need to separately consider self-referent signatures, i. e.
signatures including the class in which the property is defined. Such elements of the signatures will be called
anchored-types (in reference to Eiffel anchored type declaration).

9Note that, in this case and with our working hypothesis, A and C owning an occurrence of the same generic property will have
a common superclass, that can be either A or C or a factorization class.

10When that type does not correspond to an existing class in the hierarchy, because T1 and T2 do not have a single lowest
common supertype, that class has to be created by the algorithm. This case is rather uncommon in usual hierarchies.



Definitions of some comparison relationships between signatures used in the algorithm are presented. Let us
consider two signatures Sx = (11, T», ..., T,) and Sy = (1}, T3, ..., T},), where T; and T} are known types.

e Sx and Sy are equal (Sx = Sy) if Vi (T3 =T))

e Sx and Sy are potentially equal (Sx =po Sy) if Vi((T; = I}) or (T; and T} are anchored types))

e Sx and Sy are (strictly) comparable (Sx < Sy) if one is a specialization of the other, for example
Sx < Sy, ie. if 3j s.t. Ty < T} and Vi # j (T; < T)).

e Sx and Sy are (strictly) potentially comparable (Sx <p,: Sy) if one is a potential specialization of
the other. Sx is a potential specialization of Sy if 3j s.t. T < T; and Vi # j (T; < T)) or (T; and T are
anchored types))

e Sx and Sy are incomparable, if (Ji s.t. T; and T} are incomparable) or (3i, j s.t. 7; <7} and T} < Tj).

We then define equal (resp. potentially equal) properties as properties with the same code (in the case of
methods) and equal (resp. potentially equal) signatures.

4.1.2 Computing LCG of two properties

We deal in this section with the issue of computer-aided determination of LCG(px,py) in the working context
defined in section 2.

Given px : Sx[codex] with Sx = (T1,..., T}, ...,Ty) and py : Sy[codey] with Sy = (T7,...,T},...,T},), the
general formula of their LCG is for the signature : (sup(Ty,TY), ..., sup(T;,T}), ..., sup(Ty,T})), and for the
code: sup(codex, codey).

There are several definitions of what is the sup of two codes. We have up to now only considered the simplest
one: two codes are either identical or different, and it may happen that a code hides another one (overriding).
sup(codex ,codey) =

- codey if (SX < Sy or Sx <pot Sy)

- codex if Sy < Sx or Sy <pot Sx)

- codex or codey if (codex = codey) and (Sx = Sy or Sx =pot Sy or Sx, Sy incomparable)

- [=0]if (codex # codey) and (Sx = Sy or Sx =pot Sy or Sx, Sy incomparable)

Under our working hypothesis, the determination of sup(7T;,T}) only raises a problem when T; or T'i is an
anchored type. Three kinds of cases in the determination of LCG(px,py) can be distinguished:

e Cases where such a determination requires a human expert, for example when comparing two methods
with different codes doing the same thing.

e Cases in which an automatic computation is possible that we do not yet handle. For example, it is possible
to perform clever code comparisons than those we have already done. We have neither considered yet the
case where one is a subset of the other nor the case where the two codes have common subsets, we discuss
that point in section 8. Our first studies have shown that to handle these cases induce important changes
in the algorithm, indeed either every common sub-codes are factorized - which seems unreasonable -, either
the maximal factorization property should be relaxed.

e Cases that can be handled with the above formulas. They are given by mixing code (2 cases) and
signature (5 cases) comparisons. They allow Ares to deal with numerous and nontrivial configurations. A
few examples of such configurations are given below, the whole cases are detailed in appendix A.

4.1.3 Example 1 : px and py have the same code, and their signatures are potentially equal

Here, both signatures have at least one anchored type at the same position).

For instance, if px is px (T4, ..., T3, X, ..., Ty,)[codel], and py is py (Th, ..., T;,Y, ..., T,,)[codel],

then LCG(px,py) = pm = p(T1, ..., Ti, sup(X,Y), ..., T,)[codel], where sup(X,Y") is the lowest common super-
class '' of X and Y in which the algorithm will store p,,, if p,, is not already “declared” in a superclass Z
containing pz (11, ...,13, Z, ..., T,,)[codel].

An example of such a situation can be found in the Magnitude example (cf. Figure 7), where X is Time, YV
is Date, and the considered property is <=. The following LGC is computed by the algorithm and added to
ExtractedProperties(Time, Date).

LCG(<= (Time)[codel], <= (Date)[codel]) is <= (sup(Time, Date))[codel])

Then the remainders are computed:

HSuperclass in a broad sense, which can be X or Y.



Remainder(Time) = {hour : integer, minut : integer, second : integer, ...}
Remainder(Date) = {day : integer, month : integer, year : integer, ...}

Knowing that neither Remainder(Date) nor Remainder(Time) are empty, Ares deduces that a factorization
class C' = Magnitude'? has to be created in which properties stored in EztractedProperties(Time, Date) will
be declared (among them is <= (M agnitude)[codel], note that its signature has been updated).

4.1.4 Example 2 : px and py have the same signatures, and their codes are different.

In such a case, at least a deferred property can be declared on sup(X,Y):

px is of the form px (T, ...,T},)[codel], and

py is of the form py (T4, ..., T),)[code2], then

LCG(anpY) = p(T17 ey Tn)[: 0]

This situation has been encountered in the second example of section 3.3, (cf. Figure 6) when comparing the
methods display of classes Square and Circle. The LCG to factorize is display()[= 0]. Since this property is
already declared in the hierarchy, Ares correctly inserts the class Circle as a subclass of GeometricFigure. This
formula for LCG is again an acceptable result, but px could also be a specialization of py (or the opposite).
Determining this requires either a human expert or more sophisticated techniques for class comparison (is px’s
code a specialization of py’s code? Do px and py have a worthwhile common subpart to be factorized? Do the
other properties allow to conclude ?).

4.1.5 Example 3: px and py have different codes, and their signatures are comparable.

One of the properties is a specialization of the other, if for instance Sx < Sy, then LCG(px,py) = py. This
case occurs in the “car-truck” example (cf. Figure 5) if we consider that the two methods register Driver have
different codes (codel for Car and code2 for Truck).

The computed LCG is register Driver(Driver)[codel] that will be declared in the common superclass of Car
and Truck'®.

4.2 Computation of ExtractedProperties and Remainder

It is now possible to define precisely the sets EztractedProperties and Remainder (A still representing the
class to be inserted, and C' the current visited class in the hierarchy).

e ExtractedProperties(C, A) is the set of all LCG of properties of Declared(C) and Initial Properties(A)
having the same name, which are neither equal nor potentially equal to a property inherited by C4.

e Remainder(C) (resp. Remainder(A)) is obtained by removing from Properties(C) (resp. InitialProper-
ties(A)), each property either equal or potentially equal to a property of EztractedProperties(C, A) or
inherited from a superclass of C and A.

5 The Ares Algorithm
This section describes the kernel of the algorithm.

5.1 Specifications

Input: Inputs are a class hierarchy H; = (C;, <g,) and a meaningful class A to be inserted. Caseqn is the set
of meaningful classes of H;.

12We will use the name Magnitude for clarity but of course, Ares does not find the name.
13The difference with the case 3 (cf. Appendix A is that here register Driver(TruckDriver) clearly overrides
register Driver(Driver).

M More formally, ExtractedProperties(C, A) =
{pm = LCG(pc,pa) s.t. AP, pc € P, pa € P, pc € Declared(C), pa € Initial Properties(A),
and Vp; € Inherited(C), pm # pi and pm #pot Pi}



Algorithm Ares(H;,A)
begin
;;Initializations
AalreadyCreated < false ; Superclasses(A) < 0 ; EmptyClasses < ()
NewDeclared(A) < Initial Properties(A) ; DirectSubclasses(A) < 0
LEH; < ComputeLinear Extension(>m;)

; ;Comparison of A with all classes of LEH;
For (every class C in LEH;) do
Compute(Extracted Properties(C,A))
Compute(Remainder(C)); Compute(Remainder(A))
if Remainder(C) # () then
if ((Remainder(A) = 0)or(ExtractedProperties(C, A) # 0))
;;A new class C’ has to be created as a superclass of C
Create(C")
Declared(C") < UpdateSignatures(Eztracted Properties(C, A))
ImmediateSuperclasses(C') < MinCommonSups(C, Superclasses(A))
I'mmediateSuperClasses(C)
+ (ImmediateSuperClasses(C)|J{C'}) \ MinCommonSups(C, Superclasses(A))
Declared(C) < Dif ference(Declared(C), Declared(C"))
if Remainder(A) =0 then ;;C’ = A, and C is a subclass of A
AalreadyCreated < true ; Crean < Crean |JC'
DirectSubclasses(A) < DirectSubclasses(A) | J{C}
else ;;C’ is a superclass of A
Superclasses(A) < Superclasses(A) |J{C"}
NewDeclared(A) < Dif ference(NewDeclared(A), Declared(C")
endif
if Declared(C) =0 and C ¢ Carean then
EmptyClasses «+ EmptyClasses| J{C}
endif
endif
else ; ; Remainder(C) =0
if Remainder(A) # 0 then ;;C is a superclass of A
Superclasses(A) < Superclasses(A) | J{C}
NewDeclared(A) < Dif ference(NewDeclared(A), Declared(C))
else AalreadyCreated < true ; ;Remainder(A)= () : C = A
endif
endif
endfor

; ;Creating class A and binding it to Superclasses(A)

if not AalreadyCreated then
Create(A) ; Crean < Chean |J A
ImmediateSuperClasses(A) «+ Min(Superclasses(A))
ImmediateSubClasses(A) < DirectSubclasses(A)
Declared(A) < NewDeclared(A)

endif

Delete EmptyClasses

end

Figure 8: The Ares Algorithm
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Output:  The output hierarchy Hy = (Cy, <g,) integrates H; and A and respects the following properties
[DDHL94b].
e Preservation of the underlying model
When H; is a Galois sub-hierarchy of Careqn, Hy is a Galois sub-hierarchy of Caseqn [J{A}-
e Preservation of the maximal factorization of properties
If H; is maximally factorized, so is Hy. If H; is not maximally factorized, H; will not be but everything
common to the hierarchy and the class to be inserted will be factorized.
e Inheritance path preservation of the hierarchy
For all classes of H; still belonging to Hy, the inheritance paths remain.
e Conservation of the properties of input classes
Classes which belong to both hierarchies H; and Hy keep the same set of properties.
e Meaningful class conservation
The set of meaningful classes of Hy is Carean [J{A}

5.2 The algorithm

Conceptually, the algorithm (c¢f. Figure 8) can be split in: (1) search of A superclasses and subclasses, (2)
deletion of non-meaningful empty classes. We focus here on part (1).

The algorithm visits successively all classes in the input hierarchy H; going down from the root and following
a linear extension LEH; of >p,. A class is thus visited after all its superclasses.

At each step, the sets ExtractedProperties(C, A), Remainder(A) and Remainder(C) are computed and used
to update the following variables (global to the whole visiting process):

- AalreadyCreated: a Boolean stating whether a class equivalent to A has been found or created.

- Superclasses(A): the current set of A’s superclasses.

DirectSubclasses(A): the current set of A’s immediate subclasses.

- EmptyClasses: the current set of the non-meaningful classes which, after a factorization, do not declare
any more properties.

- NewDeclared(A): the current set of properties defined in the class A.

Here is the detail of each visit step.

e If Remainder(C) is not empty.

A is a superclass of C' or A and C are incomparable. In the first case ExtractedProperties(C, A) (may
be empty) represents the initial properties of A not inherited from Superclasses(A). It is necessary to
create a class representing A. In the second case, if furthermore ExtractedProperties(C, A) is not empty,
a new common superclass will be create.

In these cases (characterized by Remainder(A) = 0 or ExtractedProperties(C,A) # 0), we remark
that all properties in ExtractedProperties(C, A) are factorized'® in a new common superclass C’, cre-
ated as a superclass of C, and as a subclass of MinCommonSups(C, Superclasses(A)). The func-
tion MinCommonSups returns the set of the minimal classes which are C' superclasses and belong to
Superclasses(A). C becoming a subclass of C’, the function Dif ference (described below) computes
which properties should subsequently be removed from Declared(C). In presence of overloading, this
operation is not just a single set difference. The function UpdateSignatures simply replaces, if present in
the signature of C', sup(A,C) by C'.

— If Remainder(A) is empty,
The class C' exactly corresponds to the class A to be inserted.
For example: A = C4 and C = (3 in Figure 2 (hierarchy H,). ExtractedProperties(C, A) = {c},
Remainder(C) = {d,e} and Remainder(A) = 0.
— If Remainder(A) is not empty,
C' is a superclass of A, NewDeclared(A) has thus to be updated in the same way as C.

An example of such a case can be found in Figure 2 (hierarchy Hjs) with: A = C5 and C = (s,
ExtractedProperties(C, A) = {d}, Remainder(C) = {e}, Remainder(A) = {f} and C' = C6.

e If Remainder(C) is empty,

15 And possibly updated to solve potential anchored types indecision in their signatures.
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ios

int good()
int fail

istream ostream fstreambase
istream& get(char&) ostream& flush() void close()
istream& operator>>(char&) ostreamé& put(char) void open(const char* name, int mode, int prot=0664)

iostream

D

ofstream

oid open(const char* name, int mode=ios::out, int prot=0664)
fstreambase::open(name, mode, prot)}

ifstream
void open(const char* name, int mode=ios::in, int prot=0664)
{ fstreambase::open(name, mode, prot)}

fstream

void open(const char* name, int mode, int prot=0664)
{fstreambase::open(name, mode, prot)}

Figure 9: A part of C++ stream hierarchy

— If Remainder(A) is not empty,
C is a superclass of A, both classes have to be updated subsequently.
For example: A = C5 and C = () in Figure 2 (hierarchy H;). ExtractedProperties(C, A) = {b},
Remainder(C) = () and Remainder(A) = {c,d, e}.

— If Remainder(A) is empty,
The class C' exactly corresponds to the class A to be inserted.

When the whole hierarchy has been visited, if A has not already been found, it is created, connected to its imme-
diate superclasses (stored in Min(Superclasses(A))), to its immediate subclasses (stored in DirectSubclasses(A))
and receives its properties (stored in NewDeclared(A)).

Due to the restructurations of the hierarchy, some classes do not declare any more properties, if they are non
meaningfull, they are deleted properly.

The function Dif ference computes the new set of declared properties of a class X that becomes, in the context
of the algorithm, a subclass of another Y. Properties of X equal to a property of Y are removed and properties
of X having the same name and code than a property of ¥ are updated (their code is replaced by a ”super”
call)!.

To replace a code by a ”super” call implies simple adaptations of the functions that compare properties and
their code that are not described here.

6 Reorganization of actual hierarchies - Case studies

We have applied the algorithm to small but actual hierarchies with their complete set of properties.

6.1 The C++4 stream hierarchy

The Figure 9 shows a part of the stream hierarchy taken from the Gnu C++ library. The property sets of
classes ios, istream, ostream, fstreambase is partially represented, whereas the classes iostream, ifstream,
of stream, fstream are complete. The constructors are not represented since they do not modify the results,
and in first analysis, default values in method signatures have been ignored.

This stream hierarchy raises, from our point of view, two issues : the method open of fstream is useless, and
fstream should be a subclass of ¢ fstream and of stream.

16More formally,
Dif ference(SPx,SPy) = SPx\E | J F where :
E ={p: € SPx s.t. 3py € SPy,pz € P, py € P,code(pz) = code(py)}
F = {p}, s.t. Ip. € SPx,3py € SPy,pz € P, py € P, code(p.) = code(py), signature(pz) < signature(py),
P < p(signature(pe))[super p]}
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ifstream ofstream

int good() int good()

int fail() int fail()

istream& get(char&) ostreamé& flush()
istream& operator>>(char&) ostreamé& put(char)

void close() ostream& operator<<(char)
void open(const char* name, int mode, int prot) void clos()

void open(const char* name, int mode, int prot)

fstream

int good()

int fail()

istreamé& get(char&)

istreamé& operator>>(char&)

ostream& flush()

ostream& put(char)

ostream& operator<<(char)

void close()

void open(const char* name, int mode, int prot)

Figure 10: Flattened classes

We have used Ares to “rebuild” this hierarchy, by flattening classes i fstream, of stream and fstream, and by
reintroducing them. Flattening the classes!” produces the property sets shown in Figure 10.

The topological sorting on classes of the initial hierarchy H; (that is the hierarchy of Figure 9 without i f stream,
of stream and fstream) could be : ios, istream, ostream, iostream, fstreambase. To reintroduce i f stream,
Ares compares successively the flattened class ifstream with the classes of H;. The first comparison with ios
gives :

ExtractedProperties(ios, i f stream) = {int good(),int fail()}
Remainder(ios) = ()
Remainder(i fstream) =

{istreamé& get(char),

istream& operator >> (char),

void close(),

void open(constcharx,int,int))}

Ios is thus considered as a superclass of ifstream. Another way of understanding this is to remark that
Properties(ifstream) contains Properties(ios).

For similar reasons istream and fstreambase are recognized as superclasses of i fstream.
EzxtractedProperties(ostream, i f stream) and ExtractedProperties(iostream,ifstream) are both empty, thus
their visit has no effect. Indeed, neither ostream nor iostream declare properties also owned by i f stream. This
leads to the introduction of i fstream with an empty property set (cf. Figure 11). The discussion for of stream
is symmetric, as is symmetric its place in the hierarchy.

Clearly fstream properties set is exactly the union of the properties sets of all classes in the current hierarchy.
F'stream is thus placed, with an empty property set, as a subclass of the lowest classes, that are iostream,
ifstream and of stream.

The final hierarchy (cf. Figure 11) solves the two issues we had noticed. Its interesting structure is the
boolean lattice built up from three atoms corresponding to three characteristics of streams: “input”, “output”
or “file”. Moreover, the diamond lattice reduced to ios, istream, ostream and tostream, corresponds to the
basic “input/output” components. The cubic lattice (cf. Figure 11) can be interpreted as the extension of
the diamond lattice to a new component (“file”). The first diamond is reproduced in the diamond induced by
fstreambase, i fstream, of stream, fstream, that was not the case in the hierarchy of Figure 9.

Applying the same reconstruction to classes representing input/output services in main memory (strstream),
we would obtain the hierarchy of Figure 12, that we consider clearer than the original one. There are more edges
in hierarchy of Figure 11 than in hierarchy of Figure 9, but the regularity of the structure helps to understand
the hierarchy. A lowest multiple inheritance edge number is not necessarily a good measure of the readability.

17Concerning the method open, we have considered that the codes of the methods ifstream :: open, ofstream :: open and
fstream :: open are made of a simple call to the super-method fstreambase :: open. The “flattened” version only contain one
method open with the code given in fstreambase.
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ios

Int315°

/\

istream ostream fstreambase
‘ istreamé& get(char&) ostream& flush() ‘ [void close() }

istreamé& operator>>(char&) ostream& put(char) void open(const char* name, int mode, int prot)
ostream& operator<<(char)

ifstream

iostream :j ofstream

fstream

)

Figure 11: file streams

strstreambase fstreambase

istrstream ' ofstream

strstream fstream

Figure 12: Towards an alternative organization of C++ streams

In order to illustrate the interest of a correct handling of self-referent signatures, consider the classes istream_withassign
(class of the standard input stream (cin)), ostream_withassign (class of the standard output stream (cout)),
and iostream_withassign which represent the streams having an assignment operator.

class istream_withassign : public istream {
public:
istream_withassign& operator=(istream&); };

class ostream_withassign : public ostream {
public:
ostream_withassign& operator=(ostream&); I;

class iostream_withassign : public ostream {
public:
iostream_withassign& operator=(iostream&); };

The effect of flattening and reintroducing them in the hierarchy would be to create a new class (which does not
exist in the current C++ hierarchy), say withassign, declaring only a method withassign& operator = (ios&).
As previously, a copy of the diamond ios, istream, ostream, iostream would be done to represent the new
component “withassign”, and linked to the initial diamond (cf. Figure 13). Classes istream-_withassign,
ostream_withassign and tostream_withassign would keep their own operator = for typing reasons. Withassign
has the great interest of materializing the concept of “streams with assignment” which was previously fragmented
in the original C++ hierarchy (see Figure 14). Finally the various versions of the method open with parameters
default values can be reintroduced in the classes i fstream, of stream and fstream of the hierarchy produced
by Ares.
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strstreambase fstreambase

istrstream

istream_withassign

iostream_withassign

Figure 13: Introduction of withassign class

ios

e

istream fstreambase strtreambase ostream

i

istream_withassign

N

ostream_withassign

ifstream ofstream ostrstream

fstream stretream

iostream_withassign

Figure 14: C++ stream hierarchy

6.2 A case study in Smalltalk

Ares has also been applied to a small subpart of the Smalltalk hierarchy. The absence of signatures (untyped
world) makes the task of the algorithm more complex because of the lack of data for LCG computation.

Here the result is also interesting for two reasons. On the one hand, it brings again to the fore some factorization
problems in the hierarchy. It shows how the algorithm can be used, not necessarily to produce a new final
hierarchy but to help human designers to improve the original one. On the other hand it shows some limits
of our today’s version of the algorithm and proves that the maximal factorization criteria certainly has to be
relaxed to deal in a realistic way with actual hierarchies[Cas94].

The subset of the Smalltalk hierarchy we have studied is simply composed of the classes Object, Magnitude,
Time and Date as shown in left part of Figure 15. The properties mentioned in the figure are those that raises
factorisation issues ([= 0] still means that a method is deferred, “from” indicates where a factorized method
comes from). The initial hierarchy has been broken and rebuild by successive insertions of the four classes.
The description of the reorganization is omitted and the result is presented in the right part of the figure. The
factorization classes (named C'1, ..., C'5) are numbered by the order in which they have been created!®.

The positive results lie in the discovery of new abstract classes that can be, for some of them, of interest.

e Ares has found classes more general than the initial Object class. For example, the class C'2 has been
created because the methods = and hash are redefined as deferred on Magnitude. Thus C'2 is a new
abstract class that represents all the classes that do not want to inherit (or in other words that override)
the default versions of equality and hashing provided by Objects.

18 This order could change if the order in which classes are inserted also changes - e.g. Time before Date or Date before Time -,
but the final result, except for classes names, would be the same.
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Figure 15: A case study with the Smalltalk hierarchy.
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e The three methods storeOn : printOn : and readFrom : have been integrated to C'2 (as deferred methods)
because they are redefined with different codes in the classes Date and Time. Ares is thus able to group
together sets of classes that redefine the same set of methods. A human designer can then decide whether
those abstract classes are of interest.

e The class C’5 factorizes what is common to Date and Time, it suggests a new abstract class that could
be called Time Measurement

e The new class Object is now the superclass of classes that want to inherit a general method for equality
and hashing.

Concerning the dark side of the result, the complexity of the resulting hierarchy has to be noticed. This
complexity has two causes. It first reflects some imperfections of the language; for example, the class C'4 has
been created to store the Object class method initializeC'. In fact that method has only one goal, to initialize
the Object class, and should not be inherited by anyone. The second cause is that Ares performs a maximal
factorization of properties and creates classes useful in theory but useless in practice. For example, the classes
Date and Time are no more subclasses of Magnitude but of C'3 instead. The reason is that Date (or Time)
and Magnitude own or inherit different versions of the methods storeOn :, printOn :, and readFrom :. To
leave Date and Time as subclasses of Magnitude, would require that Date’s printOn : be a specialization of
Magnitude’s printOn :.

The relaxation of the maximal factorization criterion is then necessary but requires important modifications of
the algorithm.

7 Underlying theoretical model

After these case-studies, we come back to the algorithm and focus in this section on its underlying theoretical
model.

Many works on class reorganization are based on the maximal property factorization principle which is a
strong constraint but does not ensure unique results, the way properties are grouped or the number of classes
can be different for two maximally factorized hierarchies. The best compactness can be obtained by using
a mathematical structure known in data analysis under the name of “Galois lattice” [Aig79] or “concept
lattice” [Wil82, Wil89, Wil92].

Galois lattices [Aig79] are used (at least) in domains such that knowledge acquisition and representation, data
analysis, information retrieval, data mining and their interest for hierarchy organization was recently highlighted
by [GM93]. In section 8, we will show that some algorithms produce a well characterized sub-structure of a
Galois lattice. We recall here the related definitions.

Galois lattice can be seen as a structure which shows all non empty intersections between class property sets,
thus making all sharing explicit. A Galois lattice enables the building of unique more compact hierarchies in
which properties are maximally factored.

Here is the definition of its basic structure. The point is to associate a class set K and a property set F such
that:

- all the classes in K share exactly all properties in F and nothing more

- symmetrically the properties of F are owned by all the classes of K and only by these classes.

Galois lattice (from [Bor92] '%). Let C and P be two finite sets and R a binary relation upon
C ® P. Within the inheritance framework, C will be the set of classes, P the set of properties, and
R the binary relation "owns as a property”. The Galois lattice GL(R) is defined as follows:
e members of GL(R) are Cartesian products K ® F with
1) KCC, FCP,and VC € K, VP € F, we have R(C, P)
2) K ® F is maximal under inclusion for property 1 2°.

e the members of GL(R) are totally ordered by the relation denoted by < and defined as follows

KeF <K ®F < K CK' (which is equivalent to F D F')

19 Alternative definitions can be found in the previously mentioned publications.
20C ® F satisfying prop. 1 is maximal under inclusion for prop. 1 if there is no K' ® F' satisfying prop. 1, and such that,
KQFAK @F,KCK' and F CF' .
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Figure 16: Galois lattice and substructure

The Figure 16, 2! shows a binary relation (part a) and its Galois lattice (part b). This lattice is isomorphic to
the lattice built upon the intersections between sets of properties of C classes, lattice in which those intersections
are ordered by inclusion. The isomorphism is built by changing the label vertices by keeping the right member
of the cartesian product.

In order to produce something closer to an inheritance hierarchy, a new labeling removes redundant information.
A vertex v, labelled by K ® F can be labeled by K, ® F., where K, is the subset of those classes of K that do
not appear below v in the lattice, and F, the subset of those properties of F that do not appear above v (see
Figure 16 part (c)).

Galois inheritance lattice

A Galois inheritance lattice GIL(R) is isomorphic to a Galois lattice. ToV = K ® F € GL(R)
is associated in GIL(R) the member V, = K, ® F, with K, = K — UV’GSubC’lasses(V) K', and
Fr=F = Uvresuperciasses(vy ' » where we note V' = K" & F'.

GL(R) and GIL(R) are just two different labeling of the same structure, the size of which being exponential in
number of classes and number of properties. It is possible to store only a subpart of it in a Galois Sub-hierarchy
[GM93].

Galois Sub-hierarchy
The Galois Sub-hierarchy GSH(R) is the order deduced from GIL(R) by removing “empty” ver-
tices?2, 4. e. vertices such that V, =0 ® 0.

Due to the difference of size between Galois lattice GL(R) and Galois Sub-hierarchy GSH (R) (c.f. Figure 16,
part d), algorithms that build directly GSH (R) are more efficient than those that build GL(R) and then reduce
GL(R) to GSH(R). [MGGI0] have proposed a “global” algorithm, that builds the whole GSH(R) from the

21Usually, only Hasse diagram (also called transitive reduction) is drawn to represent order and lattices.
22Vertices can be deleted because they do not declare properties, -all their properties appear in the labels of higher vertices- and
because no class of C owns exactly their set of properties.
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class descriptions, here the R matrix. Former versions of AressDDHL94a, DDHL95] as well as [GMM95] are
“incremental” ?* algorithms, that use directly an already built GSH(R). Today’s version of Ares hierarchy
representation [DDHL96] has an underlying Galois sub-hierarchy structure.

8 Comparison with related works

Related works may be studied from three viewpoints: the strategy used to reorganize hierarchies, the features
of the hierarchy and the handling of overloading.

8.1 Strategies

Besides a factorization algorithm, a decomposition principle is presented in [Cas94], which makes explicit the
different abstraction steps used in an inheritance edge. This decomposition is an interesting complement to the
factorization, and mixing them is a promising issue.

To build a hierarchy, different strategies can be considered:

e The Toolbozx approach, proposed by [Ber91], is based on a set of local operations allowing users to modify
a hierarchy.

e Factorization is not the single possible strategy for reorganization, Cas94 has described a decomposi-
tion algorithm able to “separate various abstraction steps merged in a single inheritance link” [Cas94].
Decomposition can be an interesting complement to the factorization, and mixing them is a promising
issue.

e Another approach has been called refactoring. It consists in the factorization of all instructions common
to several methods[Mo096]. Such factorizations are only based on syntactic criteria, they will produce
numerous methods and classes, the semantics of which being certainly quite unclear.

e Algorithms can be global or incremental.

Global algorithms [MGG90, LBSL91, LBSL90, Cas91, Moo095, MC96, CL96] build in a single step the

whole hierarchy from the binary relation Class — Property

Incremental algorithms insert a new class into an already existing hierarchy. Such a technique is proposed

by [Cas92, MS89, Run92, DDHL94a, DDHL95, GMM95, DDHL96].

[Cas92] proposes an interesting variation where the user limits the exploration to a part of the hierarchy.
All of these strategies may lead to the same results. For instance, given a set of classes, a whole hierarchy can be
built by successive applications of an incremental algorithm. Conversely, a global algorithm can always be used
to insert a class A in a hierarchy whose set of classes is £, starting from A and £ and forgetting the structure
of the hierarchy. Global algorithms are more adapted when the given data is the relation Class-Property -
for instance, when reorganizing an unsatisfactory hierarchy from scratch-, while incremental algorithms and
toolboxes fit evolution better.

8.2 Underlying hierarchy models

The underlying model used to represent hierarchies is more or less restrictive. [Cas92] does not impose any con-
straints on the input hierarchy but does not give any formal characterization of the result. In [LBSL91, LBSL90],
there is a strong constraint on hierarchies in which only leaves can represent instanciable classes, and the hier-
archies being produced using heuristics, there is no easy way to characterize the final result.

A second set of algorithms use implicitly ([Run92, MS89, MC96, CL96]), or explicitly ([GM93, GMMM95,
DDHL94a, DDHL95, DDHL96]) with further adaptations, the Galois lattice of the Class-Property relation to
encode hierarchies.

[Run92, MS89] use the whole lattice (precisely a sup-semi-lattice) and this raises some problems. Firstly be-
cause of space consumption and secondly, because this structure imposes some constraints on the hierarchy. For
example, Figure 2 shows how it can forbid the deletion of a class (Cs in Hj); indeed, if the deletion is achieved
(as in Hg) then C3 and C5 have two lowest common superclasses Cy and Cg and the hierarchy is no longer a
lattice.

More cleverly, [GM93] proposed to use a Galois sub-hierarchy as defined in section 7 to improve space complexity.
However, for the same example, the Galois sub-hierarchy imposes an opposite constraint: the class Cs must be
deleted even if it is meaningful (cf. section 2.3).

23This term may have several senses, it is used here to express the fact that classes are inserted one after the other.
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Two kinds of algorithms produce Galois sub-hierarchies, [MGG90, MC96, CL96] are global and [DDHL94a,
GMM95, DDHL95]?* are incremental.

The current version of our algorithm also produces a Galois sub-hierarchy and thus has formally well charac-
terized results. The main difference with a above ones lies in the handling of overloaded properties as explained
below.

8.3 Taking overloading into account

Initial studies [LBSL90, LBSLI1] did not take overloading into account. A first advance has been proposed in
[Cas92], which allowed a pure virtual method to be overriden by an implemented one which itself cannot be
overriden. A second step has been described in [MS89, Run92, GM93, DDHL95]: overloading can be taken into
account, provided there is an “oracle” able to compare two occurrences of the same generic property, and give
their lowest common generalization(s). Furthermore, these algorithms require, to handle overloading, that all
occurrences of all generic properties be stored somewhere (in the class-property binary relation table for global
ones and the classes for incremental ones).

The current version of Ares presented in this article integrates the idea of a computed comparison of overloaded
properties not reduced to simple equality. Only declared properties are stored in classes and LCGs are computed
when needed. This version also proposes a partial automation of the comparison of two properties based on
code and signatures, including cases of “self-referent” signatures.

9 Conclusion

We have presented an incremental algorithm able to automatically insert a class, defined by the set of its prop-
erties, into an existing class inheritance hierarchy. The algorithm takes an input hierarchy and a class and
produces a well characterized output hierarchy: it preserves the input hierarchy features such as its structure,
maximal factorization of properties, inheritance paths and the set of meaningful classes.

Furthermore, handling of overloading in the algorithm has been studied and partially achieved. The problem
has been split into two subproblems: (1) the comparison of occurrences of generic properties and (2) the use of
the results of these comparisons in the algorithm. Provided that the first subproblem is solved, the algorithm
works with overloading according to the above descriptions. Concerning the first subproblem, we have recalled
the limits of automation, i. e. we explained why it will never be able to completely deal with the comparison of
generic properties without the assistance of a human expert. These limits being defined, we have given a first
categorization of properties and some rules to compare them automatically in a certain number of well defined
cases, notably in self-referent signatures cases.

We have presented two case-study, one in a typed world that highlights the Ares possibilities in the handling
of overloaded properties, another in an untyped world showing both the interest of reorganization and some of
the limits of the algorithm.

These limits define our future works.

The first issue (highlighted by the Smalltalk case study) is related to the limitation of the number of factor-
ization classes. The solution requires a relaxation of the maximal factorization criteria and implies important
modifications of the algorithm.

We also plan to extend the number of handled cases of automatic comparison of generic properties. Code
comparison can be extended to the cases where a code is included in another and where two codes have
common subsets. In this, we will not exactly follow the refactoring school ([0J93] and [M0096]) since we plan
to limit ourselves to refactoring sub-parts of occurrences of same generic properties. This study is in progress.
Another difficult issue would be to combine this work with linearization algorithms [DHHM94] used to solve
conflicts in hierarchies with multiple inheritance.

Finally, one of our main current concerns is to apply it to large scale hierarchies produced in foreign applications.
This requires interfacing the algorithm, and secondly implementing post-processors that will optimize its results.

241n [DDHLY5] a slight modification is required to avoid the deletion of meaningful classes.
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Figure 17: Mixing code and signature comparison

A Appendix: ten properties comparisons cases.

This appendix summarizes the 10 possible cases of properties comparison that Aresis able to handle. The issue is
to compute the lowest common generalization of two occurrences of the same generic property: LOG(pa(Sa)[Codea],pc(Sc)[Cod
(pa being declared in the class A to be inserted and pc in a class C).

1. p4 and pc have the same signature and the same code :
LCG(pa,pc) = pa = pc-

pa and pco are the same property,

2. p4 and pc have the same code, and their signatures are potentially equal.
c¢f. Section 4.1.2

3. pa and pc have the same code, and their signatures are comparable. In whole generality, one of
the properties is a specialization of the other, if for example S4 < S¢, then LCG(pa,pc) = pc-

In the “car-truck” example (cf. Section 3.3, Figure 5), no hypothesis have been made regarding the code of the
two properties registerDriver. If we consider that they have the same code, this is an example of our current
case 3, and we compute:

LCG(register Driver(Driver)[codel],

register Driver(Truck Driver)|[codel])

= register Driver(Driver)[codel] = p,,

pm will be declared on the superclass of the two classes C'ar and Truck, whatever it is. Knowing whether or not
the other property (here register Driver(TruckDriver)[codel]) should be considered the same and subsequently
be removed from the other class, is an optimization of the algorithm and is language and application dependent.

4. ps and pc have the same code, and their signatures are potentially comparable : both signatures
have at least one anchored type at the same position.

For instance, if

pais pa(Th, ... T, X, ..., T;, A, ..., Ty)[codel],

pc is pc(Th, ..., T3, Y, .., T;,C, ..., Ty,)[codel],

with Y < X. Then LOG (pa, pc)

=p(Th,....T;, X, ..., Tj, sup(A, C), ..., Tp,)[codel].

This case is very similar to Case 2, but sup(A, C) is more constrained, it cannot be C.

5. p4 and pc have the same code, and their signatures are incomparable.

For instance, if

pa is pa(Ty, ..., Ty, ..., Tp)[codel], and

pc is pa(TY, ..., T}, ..., T} )[codel], then
LCG(pa,pc) is

p(sup(T1,TY), ..., sup(T3,T}), ..., sup(Ty, T})) [codel].
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6. ps and pc have the same signatures, and their codes are different.
Cf. Section 4.1.2

7. p4 and pc have different codes, and their signatures are potentially equal.
For instance, if

pa is pa(Ty, ..., T, A, ..., Tp)[codel], and

pc is pa(Th, ..., T;, C, ..., Ty)[code?], then

LCG(pa,pc) =p(Ty,...,T;, sup(A,C), ..., Ty,)[= 0]

The Magnitude hierarchy (cf. Section 3.3, Figure 7) includes an example of such a case, where A is Time,
C is Date, and the considered properties are < of Date and Time. The computed LCG to be stored in the
factorization class is < (sup(Date, Time))[= 0]. This factorization class being determined (¢f. the discussion
on Case 2), the final property to factorize is < (M agnitude)[= 0]

8. ps and pc have different codes, and their signatures are comparable.
Cf. Section 4.1.2

9. pa and pc have different codes, and their signatures are potentially comparable —both signatures
have at least one anchored type at the same position.

For instance, if

pais pa(Th, ... T, X, ..., T;, A, ..., Ty)[codel], and
pc is pc(Th, ..., T3, Y, .., T}, C, ..., Ty,)[code?],
with Y < X, then LCG(pa,pc)
=p(T,...T;, X, ..., Tj, sup(A, C), ..., T,)[codel].

10. p4 and pc have different codes, and their signatures are incomparable.

For instance, if

pais pa(Ty, ..., Ti, ..., T)[codel], and

pc(Ty,....,T},...,T))[code2], then LCG(pa,pc)

= p(sup(Th,T}), ..., sup(T;, T}), ..., sup(Ty, T},))[= 0]

This is a case where further researches are necessary, indeed such a rule may lead, in certain cases, to the
creation of uninteresting (only containing deferred properties) factorization classes. The issues here are (1) how
to obtain a more precise rule and (2) how to optimize the hierarchy thereafter.
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