
Formalizing, Implementing and Reusing Controller�’s Behaviors and Interactions

R. Passama1,2, D. Andreu1, C. Dony2, T. Libourel2
1Robotics Department

2Computer sciences Department
LIRMM, 161 rue Ada 34392 Montpellier, France

E-mail : {passama, andreu, dony, libourel}@lirmm.fr

Abstract �– This paper presents a formal component-based
language used to design and to implement control
architectures. This language aims at providing concepts and
notations to favor reusability of software components and
quality during their design. It is based on an Object Petri Nets
notation for behaviors and interactions descriptions, but also
for execution purposes.

Keywords: Control Architecture, Components, Interactions,
Object Petri Nets.

I. INTRODUCTION

Nowadays, the complexity of industrial and robotic
control systems design is continuously increasing. Such
systems are now often made of more or less �‘autonomous�’
control sub-systems, that put in place interactions between
each-other in order to obtain a global task realization
(production plan, robotic missions, etc.). Such systems have
also to be more evolutive, allowing to easily change or
modify some parts of their hardware and software
architectures. In this field, there are many challenges to
overcome, some of them are related to software architecture
design and implementation. A software control architecture
describes the different software components and interaction
protocols that respectively impose a behavior to sub-
systems and describe their interactions (communications,
synchronizations). Of course, each control system unity can
be itself composed of many components and interactions
(that describe the local behavior of the sub-system).
Managing control activities (system behavior�’s parts) and
interactions in these systems is a very complex task. It
requires both quality of design, implementation reuse, and
modularity of the architecture.
 One major trend in software engineering techniques, is
to consider that, during software architecture description,
interactions are also as important as computations, like in
architecture description languages (ADLs) [MED, 97] [ALD,
03]. Computations and protocols descriptions are made
separately, and are put together at architecture description
time. This property is really interesting when dealing with
interactions and control activities reuse, and with
modularity of the architecture. Another trend, that appears
for example in Wright ADL [ALL, 97], is to formalize
architecture descriptions by the means of specific notations

to describe component�’s behavior and connections
(interaction protocols). This is a great advance for the
�‘quality of design�’ management, because these notations
allow for the use of formal analysis techniques. Concurrent
object oriented languages [SIB, 98] also uses Object Petri
Nets [SIB, 86] to model and to program complex object�’s
behaviors. All these modeling and implementation
techniques could be combined in order to satisfy needs
during the controller design process.
 The paper presents a component-based modeling and
implementation language that specifically deals with the
management of a �‘quality-based�’ design, of software reuse
and modularity of architectures. Section 2 gives an
overview of the language. Section 3 and section 4 presents
language notations used to describe respectively control
activities and interaction protocols. CoSARC Language
formal aspects are discussed in section 5. Section 6 shows
the deployment influence on formal notation compilation
and presents components execution and communication
issues. Finally section 7 concludes this paper by citing
actual works and perspectives.

II. COMPONENT-BASED LANGUAGE OVERVIEW

The CoSARC (Component-based Software
Architecture of Robot Controllers) language is devoted to
the design and implementation of control architectures. This
language draws from existing software component
technologies [SZY,99] such as Fractal [BRU, 02] and
Architecture Description Languages such as Meta-H [BIN,
96]. It proposes a set of structures to describe the software
architecture in terms of a composition of cooperating
software components. A software component is a reusable
entity subject to �“late composition�”: the assembly of
components is not defined at �‘component development
time�’ but at �‘architecture description time�’.
 The main features of components in the CoSARC
language are internal properties, ports, interfaces, and
connections. A component encapsulates internal properties
(such as operations and data) that define the component
implementation. A component�’s port is a point of
connection with other components. A port is typed by an
interface, which is a contract containing the declaration of a

set of services. If a port is �‘required�’, the component uses
one or more services declared in the interface typing the
port. If a port is �‘provided�’, the component offers the
services declared in the interface typing the port. All
required ports must always be connected whereas it is
unnecessary for provided ones. The internal properties of a
component implement services and service calls, all being
defined in the interfaces typing each port of a component.
Connections are explicit architecture description entities,
used to connect ports. A connection is used to connect
�‘required�’ ports with �‘provided�’ ones. When a connection is
established, the compatibility of interfaces is checked, to
ensure ports connection consistency.

Components composition mechanism (by means of
connections between their ports) supports the �“late
composition�” paradigm. The step when using a component-
based language is to separate the definition of components
from software architecture description (i.e. their
composition). Components are independently defined/
programmed and are made available in a �‘shelf of
components�’. According to the software architecture to be
described, components are used and composed (i.e. their
ports are connected by means of connections). The
advantages of such a composition paradigm is to improve
the reusability of components (because they are more
independent from each other than objects), and the
modularity of architectures (possibility to change
components and/or connections). Obviously, the reuse of
components is influenced by the standardization of
interfaces typing their ports (which define the compatibility
and so, the composability of components), but this is out of
the scope of this paper.

The CoSARC language provides different types of
components but only two of them are presented in this
paper: control components and connectors. Control
components allow for control activities description and
connectors allow for interaction description.

III. CONTROL ACTIVITIES DESCRIPTION

A Control Component describes a part of the control

activities of a robot controller. It can represent several
entities of the controller, as we decompose the controller
into a set of interconnected control components, like for
example: Commands (i.e. entity that executes a control law
or a control sequence), Observers (i.e. entity in charge of
sensor signal analysis, estimation, etc.), Event Generators
(i.e. entity that monitors event occurrences), Supervisor,
etc. A control component incorporates and manages a set of
representation components which define the data it
manages. In the following parts of this paper, representation
components will be considered (to simplify) as objects.

Control components are �‘active�’ entities. They can have
one or more (potentially parallel) activities, and they can

send messages to other control components (the
communication being further detailed). Internal properties
of a control component are attributes, operations, plus an
asynchronous behavior. Each operation of a control
component represents a context change during its
execution. The asynchronous behavior of the control
component is described by an Object Petri Net (OPN) [SIB,
86], that models its �‘control logic�’ (i.e. the event-based
control-flow). Tokens inside the OPN refer to objects used
by the control component. The OPN structure describes the
logical and temporal way the operations of a control
component are managed (synchronizations, parallelism,
concurrent access to its attributes, etc.). Operations of the
control component are executed when firing OPN
transitions. This OPN based behavior also describes the
exchanges (message reception and emission) performed by
the control component, as well as the way it synchronizes
its internal activities according to these messages. Message
arrival is represented as grey PN places and message
emission as black PN places. Thus the OPN corresponds to
the reaction of the control component according to the
context evolution (received message, occurring events,
etc.).
 We chose OPN both for modeling and implementation
purposes. The use of Petri nets with objects is justified by
the need of formalism to describe precisely
synchronizations, concurrent access to data and parallelism
(unlike finite state machines) within control components,
but also interactions between them. The use of Petri nets is
common, for specification and analysis purposes, in the
automation and robotic communities. Petri nets formal
analysis has been widely studied, and provides algorithms
[DAV, 05] for verifying the controller event-based model (its
logical part). Moreover, Petri nets with objects can be
executed by means of a token player, which extends its use
to programming purposes.

 Fig. 1 shows a simplified example of a control
component behavior that corresponds to an entity that
applies a control law to a vehicle, we named it
VehiclePositionCommand. It has three attributes: its periodicity,
the Vehicle being controlled and the control law to be
applied VehiclePositionControlLaw. The Vehicle and the
VehiclePositionControlLaw are connected in the same way as
described in Fig. 1, meaning that the VehiclePosition
Command will apply the VehiclePosition ControlLaw to the
Vehicle at a given periodicity.
 This control component�’s provided port (cf. Fig. 1) is
typed by the interface named VehiclePositionControl that
declares services offered (to other control components) in
order to be activated/deactivated/configured. Its required
ports are typed by one interface each: VehicleMotorsAccess
which declares services used to fix the value of the
vehicle�’s motors and MobileWheelVelocityandOrientationAccess
which declares services used to obtain the values of the

orientation and velocity of the vehicle�’s wheels. These two
interfaces are provided by ports of one or more other
control components (depending on the decomposition of the
control architecture).

 The (simplified) OPN representing the asynchronous
behavior of VehiclePositionCommand shown in Fig. 1,
describes the periodic control loop it performs. This loop is
composed of three steps:
- the first one (firing of transition T1) consists in requesting

sensors data,
- the second one (firing of transition T2) consists in

computing the reaction by executing MotorData
computeVehicleMotorControl(Velocity,Orientation) operation (cf.
Fig. 1) and then by fixing the values of the vehicle motors
(token put in FixMotorValue black place),
- and the third one (firing of transition T3) consists in
waiting for the next period before a new iteration (loop).
Grey and black Petri net places both represent,
respectively, the reception and transmission of messages
corresponding to service calls. For example, grey places
startExecution and stopExecution correspond to a service
declared in the VehiclePositionControl interface, whereas the
black place RequestVelAndOrient and the grey place
ReceiveVelAndOrient correspond to a service declared in the
VehicleWheelVelocityandOrientationAccess interface.

Fig. 1: Simple example of a control component

Fig. 2: Simple connector example, connecting two control components

IV. INTERACTIONS DESCRIPTION

Connections of control components are reified into
components named connectors. An example of a (simple)
connector, named RequestReplyConnection, is shown in Fig.2.
It is used to connect the control component of Fig.1 with a
control component that provides the VehicleWheel-
VelocityandOrientationAccess service. Connectors contain the
protocol according to which connected control components
interact. Being a component, a connector is an entity
definable and reusable by a user that can implement any
(application level) interaction protocols, even those that
potentially involves a large number of message exchanges,
synchronizations and constraints. Once defined, connectors
can be reused for different connections into the control
architecture. This separation of the interaction aspect from
the control one, appears to be very important in order to
create generic protocols adapted to domain specific
architectures. One good practical aspect of this separation is
that it leads to distinguish interactions description with
control activities description, whereas describing both
aspects inside the same entity type would reduce their
independent reuse.
 A connector incorporates sub-components named roles
(as attributes). Each role defines the behavior�’s part that a
control component adopts when interacting through the
protocol defined by the connector. We then say that a
control component �“plays�” or �“assumes�” a role. For
example, the connector of Fig. 2 describes a simple
interaction between a RequesterRole and a ReplierRole. The
control component assuming the Requester role sends a
request message to the control component assuming the
Replier role, which then sends the reply message to the
Requester (once the reply has been computed). For each role
it incorporates, a connector associates one of its required or
provided ports. A connector�’s port is typed by an interface

VehiclePositionControl
: Executor
In StartExecution()
In StopExecution()

VehicleMotorsAccess
: Sender
Out FixMotorsValues(MotorCommand)

VehicleWheelsVelocityAndOrientationAccess
: Requester
Out RequestVelAndOrien()
In ReceiveVelAndOrient(Velocity, Orientation)

VehiclePositionCommand
Attributes:
int period;
VehiclePositionControlLaw law;
Vehicle v;
Operations: //�…
 MotorData computeVehicleMotorControl
(Velocity, Orientation)
Asynchronous Behavior:

RequestVel
AndOrient

FixMotors
Value

<v, law>

[period,]

T1

T2
T3

ReceiveVel
AndOrient

stopExecution

startExecution

VehicleWheelVelocityand
OrientationAccess

: Requester
Out RequestVelAndOrien()
In ReceiveVelAndOrient(Vel, Ori)

Vehicle
Position

Command

Vehicle
I/O

controller

Requester< anyReq, anyRep>
In sendRequest(anyReq)
Out receiveReply(anyRep)

Replier< anyReq, anyRep>
Out receiveRequest(anyReq)
In sendReply(anyRep)

Requester
Role

Replier
Role

RequestReplyConnection
<anyReq = void,

anyRep = Velocity, Orientation>

[1..*] [1..1]

VehicleWheelVelocityand
OrientationAccess

: Replier
Out ReceiveVelAndOrienReq()
In sendVelAndOrientRep(Vel, Ori)

that defines the message exchanges allowed between the
connector on one side and the control component to be
connected on the other side. Fig. 2 shows that the connector
has one provided port (left) typed by the Requester interface
and one required port (right) typed by the Replier interface.
The Replier interface defines the message exchanges
between the connector and the VehicleIOController control
component. VehicleIOController receives a request from the
connector, computes it internally, and then sends the reply.
The connection between the control components and the
connector has been possible because of the compatibility of
ports: an interface typing a connector�’s port (provided or
required) must be referenced by the interface of the control
component�’s port to which it is connected. Fig. 2 shows that
VehicleWheelsVelocityAndOrientationAccess interface references
the Requester interface which allows the connection of
VehiclePositionCommand�’s port; VelocityAndOrientationAccess
interface references the Replier interface which allows the
connection of VehicleIOController�‘s port (cf. Fig. 2). Finally,
compatibility of control components ports is verified
according to interface names. Fig. 2 shows that the
connection has been possible because
VehicleWheelsVelocityAndOrientationAccess service is required
and provided by the two control components ports
connected (i.e. each interface has the same name).

A connector can be a very adaptative entity. First, the
number of roles played by components can be
parameterized. Connector�’s initialisation operation is useful
to manage the number of roles played, according to the
number of control components ports to be connected by the
connector and according to their interfaces. A cardinality is
associated with each role to define constraints on the
number of role instances. For example, the ReplierRole has to
be instantiated exactly one time, and the RequesterRole can
be instantiated one or more time. The second adaptative
capacity of connector is the ability to define generic
(templates-like) parameters that allow parameterizing the
connector with types. This is particularly important to
abstract, as far as possible, the connector description from
data types used in message exchanges. In Fig.2, the
connector has two generic parameters: anyReq, representing
the list of the types of the parameters transmitted with the
request and anyRep, representing the list of types of the
parameters transmitted with the reply. RequestReply
Connection is parameterized as follow : anyReq is valued to
void, because no data is transmitted with the message;
anyRep is valued with the Velocity and Orientation types pair,
because these are the two pieces of information returned by
the reply. Protocols being describes into a composition of
roles, roles are parameterized entities too.

A role is a sub-component, part of a connector, that
itself has ports, attributes, operations and an asynchronous
behavior, like control components (Fig. 3). But unlike,
control components, roles description is completely
bounded to connectors one. A role has a provided or a

required port exported by the connector to make it �“visible�”
outside the connector (and then, connectable with control
component�’s ports). Other ports of roles are internal (Fig.
2) to the connector and are connected by connector�’s
initialization operation. A role implements the message
exchange between the port of the connected control
component and its (own) associated port, as well as the
message exchange with the other role(s) of the connector
(i.e. exchanges inside the connector). Constraints described
in the OPN of the ReplierRole (Fig. 3) ensure that only one
request will be sent by the Requester until it receives a reply,
and that the Replier will process only one request until it
sends the reply to the Requester. The OPN of ReplierRole
ensures that only one request will be proceed at a time by
the component assuming this role. It also describes the way
it identify and memorizes the requester in order to send it
the reply. A specific object of type Id, that contains all
necessary configuration information to this end, can be
transmitted, during messages exchanges. RequesterRole
sends its own identifier object to the ReplierRole, with
transmitRequest message (the state of the Id is �“informing�”).
The ReplierRole uses this Id to identify its clients and then
sends it the reply computed by the control component
behavior. In this case, the Id is used to configure
communications (its state is �“routing�”), and not as
registering data. When more than one RequesterRole exist,
each has a port typed by the Transmitter interface that is
connected to the corresponding provided port of the unique
ReplierRole. Then their Id are used by the replier to select the
receiver of the computed reply. The initialization of role Ids
is made by the initialization operation of the connector.

Fig. 3: Description of Requester and Replier Roles

Port
internal

to the
connector

RequesterRole<anyReq, anyRep>
sendRequest

receiveReply

transmitRequest

transmitReply

Trasmitter < anyReq, anyRep>
Out transmitRequest(Id,anyReq)
In transmitReply(Id, anyRep)

Requester< anyReq, anyRep>
In sendRequest(anyReq)
Out receiveReply(anyRep)

<id>
<id, anyReq>
<id, anyRep>

< anyReq>

< anyRep>

Port
exported
by the
connector

ReplierRole<anyReq, anyRep>

sendReply

receiveRequest transmitRequest

transmitReply

Trasmitter < anyReq, anyRep>
In transmitRequest(Id,anyReq)
Out transmitReply(Id, anyRep)

Replier< anyReq, anyRep>
Out receiveRequest(anyReq)
In sendReply(anyRep)

<id, anyReq>

<id, anyRep>

< anyReq>
< anyRep>

Port
exported

by the
connector

Port
internal
to the
connector

< Id>

The RequestReply Connection connector can be used to
establish connections between different control
components, if the interaction to be described corresponds
to this protocol, and if ports are compatible. To design a
mobile robot architecture, we defined (and used several
times) different types of connectors supporting protocols
like EventNotification or DataPublishing.

V. FORMAL ASPECTS

The CoSARC language is based on an extension of
Object Petri Nets (OPN) to provide developers a mean to
create models of controller�’s behaviors and their
interactions. OPN are supported by a set of techniques to
analyze formal properties of a model, which allows to check
for its validity (e.g. liveness of behaviors, dead-lock free
interactions, verification of invariants). This is a very
important aspect for bringing quality during controllers
design. For analysis purposes, OPN can be translated into
beavirally equivalent Coloured Petri Nets [LAK, 95]. OPN
modeling is at the basis of all formal aspects of the
CoSARC language. First, it is used for independent
reasoning on behaviors and protocols. Second it is used to
formalize the composition of control components by means
of connectors. To this end, we define two possible
Communicating OPN (COPN) management operations:
elimination of unused Input/Output PN places and fusion of
Input and Output PN places. These operations are used to
transform COPN models, used during control component�’s
behaviors and connector�’s protocols description, into an
OPN (that could be then analyzed, after translation, using
analysis techniques of Coloured Petri nets).

Formally, we define a COPN by the following 5-uplet:
 COPN = < P, T, A, Class, V >

- P is a finite state of places, constituted by the union of
three sets: Pi the set of internal places, Pe the set of
input places and of Ps the set of output places. A place
is an 2-uplet Pla=<Stp, M>, where Stp is a set of n-
uplets containing elements of Class (i.e. types admitted
bu Pla) and M the initial marking of the place �– i.e. a
set of n-uplet containing objects, instances of classes of
Class. M is null for places of Pe and of Ps.

- T is a finite set of transitions. Each transition is a 2-
uplet Tra=<Atc, Ata>, where Atc is a condition that
takes for arguments one or more variables of V, and
Ata an action (operation) that takes for arguments one
or more variables of V. To simplify we don�’t consider
Atc and Ata properties of transitions, because they are
no relevant for analysis purpose.

- A is a finite set of arcs. Each arc is a 3-uplet
Arc=<Prec, Foll, Vars>, where Prec and Foll are
respectively the preceding and the following nodes (a

place or a transition) of the arc, and Vars is a formal
sum of n-uplets containing elements of V.

- Class is a finite set of object classes, organized in a
hierarchy. Classes of Class can eventually be shared
among different COPN.

- V is a set of variables, each being typed by a class of
Class. Each variable has an unique identifier composed
of its own name plus the COPN identifier.

An OPN is defined by a similar 5-uplet : OPN = < P, T,

A, Class, V >, where P is only made of the Pi set (no input
neither output place in the OPN). The two COPN
management operations are:
- elim: COPN OPN, the operation that produces an OPN

by eliminating Input and Output PN places from a given
COPN. Formally, given a COPN copn and an OPN opn, it
is equivalent to apply sequentially the following
statements:
 P (opn) Pi (copn)
 T (opn) T (copn)
 A (opn) {a A(copn) | (Prec(a) Pe(copn)) (
Foll(a) Ps (copn)) }
 Class (opn) Class (copn)
 V (opn) {v V(copn) | (a A(opn) | v
Vars(a)) }

- fuse: set{COPN} REG COPN, the operation that

produces a COPN from the composition of a set of
COPN. This operation consists in merging output and
input places of a set of COPN, in order to create new
internal places. The domain REG contains a set of �‘place
relations�’ (reg) in which each relation r determines a
fusion between a set of input places and a set of output
places. An element r of reg is a set of input and output
places. The Pfusion function take an element r for
argument to produce an internal place by fusion of input
and output places of r. Formally, given a set of COPN
SCopn, a resulting COPN RCopn and a set of �‘place
relations�’ reg, the fuse function is equivalent to the
following statement:
 Pi(RCopn) k{Pi(SCopnk)}+ j{Pfusion(regj) }
 Pe(RCopn) i{p Pe(SCopni) | r reg, p r}
 Ps(RCopn) i{p Ps(SCopni) | r reg, p r}
 T(RCopn) i{T(SCopni)}
 A(RCopn) i{ a A(SCopni) | r reg, (Prec(a)

 r) (Foll(a) r} + i{a A(SCopni) | (Prec(a)
 Pfusion(r) if r reg | Prec(a) r)

(Foll(a) Pfusion(r) if r reg | Foll(a) r)}
 Class(RCopn) i{Class(SCopni)}
 V(RCopn) i{V(SCopni)}

with Pfusion: set{place} place the function that
creates an internal place by the fusion of places passed for
arguments. Formally, given a set of places Spla and a
resulting place Rpla, it is equivalent to the following
statements:

 Stp(Rpla) i{Stp(Splai)}
 M (Rpla)

Mechanisms allowing to build analyzable OPNs from
COPN of components are all based of the elim and fuse
operations; they are used for behaviors, protocols, and
composition analysis.

A. Behavioral analysis model

The behavioral analysis consists in independently
analyzing the asynchronous behaviors of control
components and roles. In order to get the analyzable OPN
of a control component behavior, or a role behavior, the
elim operation has to be applied on the COPN description
of their asynchronous behaviors. This provides a behavior
without any input or output place (messages calls and
reception are of no relevance).

The main interest of this mechanism is that it allows the
verification of properties on each behavior.

B. Protocol analysis model

The protocol analysis consists in analyzing the protocol
incorporated inside a connector. In order to get the
analyzable OPN of a connector protocol, different steps
have to be done.

The first one consists in deciding roles composition
which leads to determine the set of �‘place relations�’
between the role�’s input and output places. To this end we
have to consider that:
- Role�’s ports refer to input and output places of their

behaviors.
- Connector�’s internal connections are established

between ports of roles.
So, the set of �‘place relations�’ between input and output
places can be easily found thanks to ports interfaces
matching. For example, the assembly between the
RequesterRole and the ReplierRole (Fig. 3) is defined by
connecting their ports typed by the Transmitter interface.
This results in identifying the input and output places that
are responsible of transmitRequest and transmitReply message
exchanges, corresponding respectively to the fusion of
places P5 (RequesterRole) and P7 (ReplierRole) and to the
fusion of places P6 (RequesterRole) and P8 (ReplierRole)
(Fig. 4).

Once the �‘place relations�’ have been established, the
second step consists in applying the fuse operation to all the
roles of the connector. This leads to the building of the
COPN model of the connector protocol.
 The third step consists in applying the elim function to
this COPN model in order to obtain a global OPN

analyzable model (without message emission or reception
between roles and control components).
 The protocol analysis model is useful, for example, to
detect connector�’s internal dead-locks or verify the respect
of invariants.

C. Composition analysis model

The last mechanism consists in analysing the
composition of control �– i.e. analysing the global behavior
issued from the composition of behaviors of control
components and protocols of connectors.

The first step to create the analyzable OPN model of
the composition is to build the connector�’s protocol OPN
model, by following the two first steps of protocol analysis
model creation mechanism.

The second step consists in identifying �‘place relations�’
between the role�’s input and output places on one hand, and
control component�’s ones, on the other hand. To this end
we have to consider that:
- Role�’s ports refer to input and output places of their

behaviors.
- Control component�’s ports refer to input output places of

their behaviors.
- When a control component plays a role, one of its ports is

connected to the corresponding port of a connector�’s role.

Fig. 4: formal composition model - COPN place fusion and elimination

RequestReply
Connection

Requester Role

Replier Role

Vehicle
I/O controller

VehiclePositionCommand

P1

P2

P3

P4

P5

P6

P7

P8 P9

P10

P11

P12

P1–P3

P2–P4

P5–P7

P6–P8

P10–P11

P9–P12

So, the set of �‘place relations�’ between input and output
places can be easily found thanks to port�’s interfaces
matching. For example, the RequesterRole�’s provided port is
type by the Requester interface and VehiclePosition
Command�’s port is typed by the VehicleWheelsVelocity
AndOrientationAccess interface, which is compatible with the
Requester interface (Fig.1 , Fig.2). This results in
identifying the input and output places that are responsible
of sendRequest and receiveReply message exchanges,
corresponding respectively to the fusion of places P1 and
P3 and to the fusion of places P2 and P4 (Fig. 4).

Once the �‘place relations�’ have been established, the
third step consists in applying the fuse operation on
connector�’s and control component�’s behaviors. This leads
to the building of the COPN model of the composition. The
last step consists in applying the elim function to this
COPN model in order to obtain a global analysable OPN
model of the composition (cf. down of Fig.4).

Thanks to this model, developers can analyze inter-
component synchronizations, allowing then to check, for
example, that those interconnections do not introduce any
dead-lock, or that the global behavior respects invariants.

VI. DEPLOYMENT DESCRIPTION & EXECUTION ISSUES

Control components and connectors are not only
modeling entities but also programming ones. The
execution model of the CoSARC language is configured by
the deployment of components assemblies (i.e. the software
architecture). The unit of deployment is the container,
which is a system process deployed on a processing node
(Fig. 5). A container is able to execute control components
and the roles they play. It incorporates a COPN execution
mechanism, named token player, that deals with tokens
inference, operations execution (even threaded execution is
possible) and data objects exchanges. It also incorporates an
Interaction Engine that interfaces the Token-player
activities with the activities of other containers, by allowing
inter-container communications. Any number of control
components and roles can be placed into one container, and
many containers can be deployed on the same processing
node.

The description of software architecture deployment is
useful, in our context, to describe precisely components
execution issues, particularly it helps determining where
and how COPN are executed. The deployment is realized
by the following steps:
 The component placement step consists in defining in

which container each control component is executed
(Fig.5). When a control component is placed in a container,
it executes its behavior �– i.e. its COPN code.
 The role assignment step consists in defining where

roles are executed. This can be automatically deduced from
the preceding step by applying the following rule: when a
control component plays a role, this role is executed in the

Fig. 5 : Component deployment in containers and COPN execution.

same container as the control component.

 The behavior execution model definition step consists

in producing a global COPN that will be executed by the
token-player of a container (Fig.5). A container COPN
model can be made of the disjoined union of the complete
control component behavior. A complete behavior is a
COPN model of the fusion of a control component�’s and
role�’s asynchronous behaviors. This fusion is deduced from
preceding steps, by applying the following statements :

foreach role r played by control component c

add to reg the place relations between
the places of r and the places of c,
deduced from the connection of their
ports.

end
Apply the fuse operation with the set made
of the behavior of c and behaviors of all
roles it plays, as first argument, and with
reg as second argument.

A global COPN executed by a container is thus made of as
many complete behaviors as control component it has to
execute. These behaviors can communicate between each
others (if connections between their roles exist) and they
can communicate with behaviors contained in other
containers.

 The container communication configuration step

consists in defining communications between (and inside)
Interaction Engines of containers, according to connectors
internal connections between ports of roles (Fig. 6). For
example, the RequesterRole r1 and the ReplierRole r2 are

Vehicle
Position

Command

Vehicle
I/O

controller

RequestReplyConnection
<anyReq = void,

anyRep = Velocity, Orientation>

Control
componen
t

Processing node
Container 1

Container 2

P1–P3

P2–P4

P5

P6

Executed COPN

Fig. 6 : Configuring containers communications with connector and
deployment information.

connected by their ports typed by the Transmitter interface.
The interaction described in the two Transmitter interfaces
(Figs. 2 and 3) implies that r1 sends transmitRequest
messages to r2 and that r2 sends transmitReply messages to r1
(once their ports are connected). Configuring
communications supported by an Interaction Engine is
completely deduced from the two first steps by applying the
following operation:

foreach port p of a role r executed by a
container c

foreach port p’ of a role r’ executed in
container c’

if p connected with p’
configure message reception and
emission between c and c’ with
information of p and p’ interfaces.

end
end

An Interaction Engine is completely configured when
the matching is done between the message reception and
emission points on one hand, and respectively input and
output places of COPN played by the token player on the
other hand. This information is directly extracted from ports
description (ports reference input and output places
associated to message transmission). The Interaction Engine
can then, packs tokens arriving from the token-player into
emitted messages, and unpacks token from message
arrivals.
 Once all containers have been configured by following
these steps, the controller can be executed.

VII. CONCLUSION

This paper has presented a development methodology
based on a formal component-based language. The use of
this language is to bring quality and reusability of complex
behaviors and interactions inside control architectures. The
reuse principle relies on the software component paradigm
ones: behaviors and interactions description are separated
and only merged at architecture description time. Relying
on an Object Petri Net Model (OPN) notation for behaviors
and interactions description, we show in which way this
formalism allow to bring quality of the design process, by
allowing the use of PN analysis techniques for diverse
aspects of architectures (e.g. components assemblies). This
quality centred process is reinforced by the fact that OPN
models are directly translated into an equivalent semantics
structure that is executable by a token-player. Finally the
architecture deployment description allows to configure
execution and aspects of components.
 A prototype of the language execution environment has
been created to validate some middleware mechanisms and
a complete version is under development. The language
specification is complete and a dedicated development
environment is under development.

REFERENCES

[ALD, 03] J. Aldrich and al. �“Language support for connector
abstraction�”. In Proceedings of ECOOP'2003, pp.74-102, 2003.

[ALL, 97] R. Allen. " A Formal Approach to Software
Architecture", PhD thesis, Cannergie Mellon University, May 1997.

[BIN, 96] P. Binns and al. �“Domain Specific Architectures for
Guidance, Navigation and Control�”. Int. Journal of Software Engineering
and Knowledge Engineering, vol. 6, no. 2, pp.201-227, World Scientific
Publishing Company, June 1996.

[BRU, 02] E. Bruneton, T. Coupaye, and J.B. Stefani. �“Recursive and
dynamic software composition with sharing�”. In 7th Int. Workshop on
Component-Oriented Programming (WCOP02) at ECOOP 2002, Malaga,
Espagne, June 2002.

[DAV, 05] R. David and H. Alla. �“Discrete, Continuous, and Hybrid
Petri nets�”. Springer-Verlag, 2005.

[LAK, 95] C. Lakos. �“From Coloured Petri nets to Object Petri nets�”.
Proc. Of the 16th Int. Conf. on Application and Theroy of Petri nets.
Lecture Notes in Computer Science 935, pp. 278-297, Torino, Italy, 1995.

[MED, 97]] N. Medvidovic and R.N. Taylor. A framework for
Classifying and Comparing Software Architecture Description Languages,
in Proceedings of the 6th European Software Engineering Conference, 5th
ACM SIGSOFT Symp. on the Foundations of Software Engineering
(ESEC/FSE), Springer-Verlag, pp. 60-76, 1997, Zurich, Switzerland.

[PAS, 03]. R. Passama, D. Andreu, C. Dony, T.Libourel. �“Control
System Design using PNO Based Programmable Components�”. In
proceedings of IMACS Multiconference in Computational Engineering in
Systems Applications , 2003, p. 6

[SIB, 85] C. Sibertin-Blanc. �“High-level Petri Nets with Data
Structure�”. In proceedings of the 6th European workshop on Application
and Theory of Petri Nets, pp.141-170, Espoo, Finland, June 1985.

[SIB, 98] C. Sibertin-Blanc. CoOperative Objects : Principles, Use
and Implementation . Concurrent Object-Oriented Programming and Petri
Nets, G. Agha & F. de Cindio Eds, Computer Science XX, 1998.

[SZY,99] C. Szyperski (1999). Component Software: Beyond Object
Oriented Programming, Addison-Wesley publishing,1999.

Vehicle
Position

Command

Vehicle
I/O

controlle

RequestReplyConnection

Requester
Role

Replier
Role

Processing Node

Container 1Container 2

Container 2 Container 1

Token
Player

Token
Player

P5

P6

P7

P8

Interaction
Engine

Interaction
Engine

transmitRequest(Id,void)

transmitReply(Id,
Velocity, Orientation)

<void>

<vel,
ori>

<vel,
ori>

<void>

