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Abstract �– This paper presents a formal component-based 
language used to design and to implement control 
architectures. This language aims at providing concepts and 
notations to favor reusability of software components and 
quality during their design. It is based on an Object Petri Nets 
notation for behaviors and interactions descriptions, but also 
for execution purposes. 
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I.  INTRODUCTION 
 

Nowadays, the complexity of industrial and robotic 
control systems design is continuously increasing. Such 
systems are now often made of more or less �‘autonomous�’ 
control sub-systems, that put in place interactions between 
each-other in order to obtain a global task realization 
(production plan, robotic missions, etc.). Such systems have 
also to be more evolutive, allowing to easily change or 
modify some parts of their hardware and software 
architectures. In this field, there are many challenges to 
overcome, some of them are related to software architecture 
design and implementation. A software control architecture 
describes the different software components and interaction 
protocols that respectively impose a behavior to sub-
systems and describe their interactions (communications, 
synchronizations). Of course, each control system unity can 
be itself composed of many components and interactions 
(that describe the local behavior of the sub-system). 
Managing control activities (system behavior�’s parts) and 
interactions in these systems is a very complex task. It 
requires both quality of design, implementation reuse, and 
modularity of the architecture. 
  One major trend in software engineering techniques, is 
to consider that, during software architecture description, 
interactions are also as important as computations, like in 
architecture description languages (ADLs) [MED, 97] [ALD, 
03]. Computations and protocols descriptions are made 
separately, and are put together at architecture description 
time. This property is really interesting when dealing with 
interactions and control activities reuse, and with 
modularity of the architecture. Another trend, that appears 
for example in Wright ADL [ALL, 97], is to formalize 
architecture descriptions by the means of specific notations 

to describe component�’s behavior and connections 
(interaction protocols). This is a great advance for the 
�‘quality of design�’ management, because these notations 
allow for the use of formal analysis techniques. Concurrent 
object oriented languages [SIB, 98] also uses Object Petri 
Nets [SIB, 86] to model and to program complex object�’s 
behaviors.  All these modeling and implementation 
techniques could be combined in order to satisfy needs 
during the controller design process. 
 The paper presents a component-based modeling and 
implementation language that specifically deals with the 
management of a �‘quality-based�’ design, of software reuse 
and modularity of architectures. Section 2 gives an 
overview of the language. Section 3 and section 4 presents 
language notations used to describe respectively control 
activities and interaction protocols. CoSARC Language 
formal aspects are discussed in section 5. Section 6 shows 
the deployment influence on formal notation compilation 
and presents components execution and communication 
issues. Finally section 7 concludes this paper by citing 
actual works and perspectives. 
 
 

II. COMPONENT-BASED LANGUAGE OVERVIEW 
 

The CoSARC (Component-based Software 
Architecture of Robot Controllers) language is devoted to 
the design and implementation of control architectures. This 
language draws from existing software component 
technologies [SZY,99] such as Fractal [BRU, 02] and 
Architecture Description Languages such as Meta-H [BIN, 
96]. It proposes a set of structures to describe the software 
architecture in terms of a composition of cooperating 
software components. A software component is a reusable 
entity subject to �“late composition�”: the assembly of 
components is not defined at �‘component development 
time�’ but at �‘architecture description time�’. 
 The main features of components in the CoSARC 
language are internal properties, ports, interfaces, and 
connections. A component encapsulates internal properties 
(such as operations and data) that define the component 
implementation. A component�’s port is a point of 
connection with other components. A port is typed by an 
interface, which is a contract containing the declaration of a 



set of services. If a port is �‘required�’, the component uses 
one or more services declared in the interface typing the 
port. If a port is �‘provided�’, the component offers the 
services declared in the interface typing the port. All 
required ports must always be connected whereas it is 
unnecessary for provided ones. The internal properties of a 
component implement services and service calls, all being 
defined in the interfaces typing each port of a component. 
Connections are explicit architecture description entities, 
used to connect ports. A connection is used to connect 
�‘required�’ ports with �‘provided�’ ones. When a connection is 
established, the compatibility of interfaces is checked, to 
ensure ports connection consistency.  

Components composition mechanism (by means of 
connections between their ports) supports the �“late 
composition�” paradigm. The step when using a component-
based language is to separate the definition of components 
from software architecture description (i.e. their 
composition). Components are independently defined/ 
programmed and are made available in a �‘shelf of 
components�’. According to the software architecture to be 
described, components are used and composed (i.e. their 
ports are connected by means of connections). The 
advantages of such a composition paradigm is to improve 
the reusability of components (because they are more 
independent from each other than objects), and the 
modularity of architectures (possibility to change 
components and/or connections). Obviously, the reuse of 
components is influenced by the standardization of 
interfaces typing their ports (which define the compatibility 
and so, the composability of components), but this is out of 
the scope of this paper. 

The CoSARC language provides different types of 
components but only two of them are presented in this 
paper: control components and connectors. Control 
components allow for control activities description and 
connectors allow for interaction description.  

 
 

III. CONTROL ACTIVITIES DESCRIPTION 
 
A Control Component describes a part of the control 

activities of a robot controller. It can represent several 
entities of the controller, as we decompose the controller 
into a set of interconnected control components, like for 
example: Commands (i.e. entity that executes a control law 
or a control sequence), Observers (i.e. entity in charge of 
sensor signal analysis, estimation, etc.), Event Generators 
(i.e. entity that monitors event occurrences), Supervisor, 
etc. A control component incorporates and manages a set of 
representation components which define the data it 
manages. In the following parts of this paper, representation 
components will be considered (to simplify) as objects.  

Control components are �‘active�’ entities. They can have 
one or more (potentially parallel) activities, and they can 

send messages to other control components (the 
communication being further detailed). Internal properties 
of a control component are attributes, operations, plus an 
asynchronous behavior. Each operation of a control 
component represents a context change during its 
execution. The asynchronous behavior of the control 
component is described by an Object Petri Net (OPN) [SIB, 
86], that models its �‘control logic�’ (i.e. the event-based 
control-flow). Tokens inside the OPN refer to objects used 
by the control component. The OPN structure describes the 
logical and temporal way the operations of a control 
component are managed (synchronizations, parallelism, 
concurrent access to its attributes, etc.). Operations of the 
control component are executed when firing OPN 
transitions. This OPN based behavior also describes the 
exchanges (message reception and emission) performed by 
the control component, as well as the way it synchronizes 
its internal activities according to these messages. Message 
arrival is represented as grey PN places and message 
emission as black PN places. Thus the OPN corresponds to 
the reaction of the control component according to the 
context evolution (received message, occurring events, 
etc.). 
 We chose OPN both for modeling and implementation 
purposes. The use of Petri nets with objects is justified by 
the need of formalism to describe precisely 
synchronizations, concurrent access to data and parallelism 
(unlike finite state machines) within control components, 
but also interactions between them. The use of Petri nets is 
common, for specification and analysis purposes, in the 
automation and robotic communities. Petri nets formal 
analysis has been widely studied, and provides algorithms 
[DAV, 05] for verifying the controller event-based model (its 
logical part). Moreover, Petri nets with objects can be 
executed by means of a token player, which extends its use 
to programming purposes. 
  
 Fig. 1 shows a simplified example of a control 
component behavior that corresponds to an entity that 
applies a control law to a vehicle, we named it 
VehiclePositionCommand.  It has three attributes: its periodicity, 
the Vehicle being controlled and the control law to be 
applied VehiclePositionControlLaw. The Vehicle and the 
VehiclePositionControlLaw are connected in the same way as 
described in Fig. 1, meaning that the VehiclePosition 
Command will apply the VehiclePosition ControlLaw to the 
Vehicle at a given periodicity.  
 This control component�’s provided port (cf. Fig. 1) is 
typed by the interface named VehiclePositionControl that 
declares services offered (to other control components) in 
order to be activated/deactivated/configured. Its required 
ports are typed by one interface each: VehicleMotorsAccess 
which declares services used to fix the value of the 
vehicle�’s motors and MobileWheelVelocityandOrientationAccess 
which declares services used to obtain the values of the 



orientation and velocity of the vehicle�’s wheels. These two 
interfaces are provided by ports of one or more other 
control components (depending on the decomposition of the 
control architecture). 
 
 The (simplified) OPN representing the asynchronous 
behavior of VehiclePositionCommand shown in Fig. 1, 
describes the periodic control loop it performs. This loop is 
composed of three steps:  
- the first one (firing of transition T1) consists in requesting 

sensors data,  
- the second one (firing of transition T2) consists in 

computing the reaction by executing MotorData 
computeVehicleMotorControl(Velocity,Orientation) operation (cf. 
Fig. 1) and then by fixing the values of the vehicle motors 
(token put in FixMotorValue black place), 
- and the third one (firing of transition T3) consists in 
waiting for the next period before a new iteration (loop). 
Grey and black Petri net places both represent, 
respectively, the reception and transmission of messages 
corresponding to service calls. For example, grey places 
startExecution and stopExecution correspond to a service 
declared in the VehiclePositionControl interface, whereas the 
black place RequestVelAndOrient and the grey place 
ReceiveVelAndOrient correspond to a service declared in the 
VehicleWheelVelocityandOrientationAccess interface. 

 
 

 
 
 
 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 1: Simple example of a control component 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Simple connector example, connecting two control components 
  

IV. INTERACTIONS DESCRIPTION 
 

Connections of control components are reified into 
components named connectors. An example of a (simple) 
connector, named RequestReplyConnection, is shown in Fig.2. 
It is used to connect the control component of Fig.1 with a 
control component that provides the VehicleWheel-
VelocityandOrientationAccess service. Connectors contain the 
protocol according to which connected control components 
interact. Being a component, a connector is an entity 
definable and reusable by a user that can implement any 
(application level) interaction protocols, even those that 
potentially involves a large number of message exchanges, 
synchronizations and constraints. Once defined, connectors 
can be reused for different connections into the control 
architecture. This separation of the interaction aspect from 
the control one, appears to be very important in order to 
create generic protocols adapted to domain specific 
architectures. One good practical aspect of this separation is 
that it leads to distinguish interactions description with 
control activities description, whereas describing both 
aspects inside the same entity type would reduce their 
independent reuse.  
 A connector incorporates sub-components named roles 
(as attributes). Each role defines the behavior�’s part that a 
control component adopts when interacting through the 
protocol defined by the connector. We then say that a 
control component �“plays�” or �“assumes�” a role. For 
example, the connector of Fig. 2 describes a simple 
interaction between a RequesterRole and a ReplierRole. The 
control component assuming the Requester role sends a 
request message to the control component assuming the 
Replier role, which then sends the reply message to the 
Requester (once the reply has been computed). For each role 
it incorporates, a connector associates one of its required or 
provided ports. A connector�’s port is typed by an interface 
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that defines the message exchanges allowed between the 
connector on one side and the control component to be 
connected on the other side. Fig. 2 shows that the connector 
has one provided port (left) typed by the Requester interface 
and one required port (right) typed by the Replier interface. 
The Replier interface defines the message exchanges 
between the connector and the VehicleIOController control 
component. VehicleIOController receives a request from the 
connector, computes it internally, and then sends the reply. 
The connection between the control components and the 
connector has been possible because of the compatibility of 
ports: an interface typing a connector�’s port (provided or 
required) must be referenced by the interface of the control 
component�’s port to which it is connected. Fig. 2 shows that 
VehicleWheelsVelocityAndOrientationAccess interface references 
the Requester interface which allows the connection of 
VehiclePositionCommand�’s port; VelocityAndOrientationAccess 
interface references the Replier interface which allows the 
connection of  VehicleIOController�‘s port (cf. Fig. 2). Finally, 
compatibility of control components ports is verified 
according to interface names. Fig. 2 shows that the 
connection has been possible because 
VehicleWheelsVelocityAndOrientationAccess service is required 
and provided by the two control components ports 
connected (i.e. each interface has the same name). 

A connector can be a very adaptative entity. First, the 
number of roles played by components can be 
parameterized. Connector�’s initialisation operation is useful 
to manage the number of roles played, according to the 
number of control components ports to be connected by the 
connector and according to their interfaces. A cardinality is 
associated with each role to define constraints on the 
number of role instances. For example, the ReplierRole has to 
be instantiated exactly one time, and the RequesterRole can 
be instantiated one or more time. The second adaptative 
capacity of connector is the ability to define generic 
(templates-like) parameters that allow parameterizing the 
connector with types. This is particularly important to 
abstract, as far as possible, the connector description from 
data types used in message exchanges. In Fig.2, the 
connector has two generic parameters: anyReq, representing 
the list of the types of the parameters transmitted with the 
request and anyRep, representing the list of types of the 
parameters transmitted with the reply. RequestReply 
Connection is parameterized as follow : anyReq is valued to 
void, because no data is transmitted with the message; 
anyRep is valued with the Velocity and Orientation types pair, 
because these are the two pieces of information returned by 
the reply. Protocols being describes into a composition of 
roles, roles are parameterized entities too. 

A role is a sub-component, part of a connector, that 
itself has ports, attributes, operations and an asynchronous 
behavior, like control components (Fig. 3). But unlike, 
control components, roles description is completely 
bounded to connectors one. A role has a provided or a 

required port exported by the connector to make it �“visible�” 
outside the connector (and then, connectable with control 
component�’s ports). Other ports of roles are internal (Fig. 
2) to the connector and are connected by connector�’s 
initialization operation. A role implements the message 
exchange between the port of the connected control 
component and its (own) associated port, as well as the 
message exchange with the other role(s) of the connector 
(i.e. exchanges inside the connector). Constraints described 
in the OPN of the ReplierRole (Fig. 3) ensure that only one 
request will be sent by the Requester until it receives a reply,  
and that the Replier will process only one request until it 
sends the reply to the Requester. The OPN of ReplierRole 
ensures that only one request will be proceed at a time by 
the component assuming this role. It also describes the way 
it identify and memorizes the requester in order to send it 
the reply. A specific object of type Id, that contains all 
necessary configuration information to this end, can be 
transmitted, during messages exchanges.  RequesterRole 
sends its own identifier object to the ReplierRole, with 
transmitRequest message (the state of the Id is �“informing�”). 
The ReplierRole uses this Id to identify its clients and then 
sends it the reply computed by the control component 
behavior. In this case, the Id is used to configure 
communications (its state is �“routing�”), and not as 
registering data. When more than one RequesterRole exist, 
each has a port typed by the Transmitter interface that is 
connected to the corresponding provided port of the unique 
ReplierRole. Then their Id are used by the replier to select the 
receiver of the computed reply. The initialization of role Ids 
is made by the initialization operation of the connector. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Description of Requester and Replier Roles  
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The RequestReply Connection connector can be used to 
establish connections between different control 
components, if the interaction to be described corresponds 
to this protocol, and if ports are compatible. To design a 
mobile robot architecture, we defined (and used several 
times) different types of connectors supporting protocols 
like EventNotification or DataPublishing. 
 
 

V. FORMAL ASPECTS 
 

The CoSARC language is based on an extension of 
Object Petri Nets (OPN) to provide developers a mean to 
create models of controller�’s behaviors and their 
interactions. OPN are supported by a set of techniques to 
analyze formal properties of a model, which allows to check 
for its validity (e.g. liveness of behaviors, dead-lock free 
interactions, verification of invariants). This is a very 
important aspect for bringing quality during controllers 
design. For analysis purposes, OPN can be translated into 
beavirally equivalent Coloured Petri Nets [LAK, 95]. OPN 
modeling is at the basis of all formal aspects of the 
CoSARC language. First, it is used for independent 
reasoning on behaviors and protocols. Second it is used to 
formalize the composition of control components by means 
of connectors. To this end, we define two possible 
Communicating OPN (COPN) management operations: 
elimination of unused Input/Output PN places and fusion of 
Input and Output PN places. These operations are used to 
transform COPN models, used during control component�’s 
behaviors and connector�’s protocols description, into an 
OPN (that could be then analyzed, after translation, using 
analysis techniques of Coloured Petri nets). 

Formally, we define a COPN by the following 5-uplet:  
   COPN = < P, T, A, Class, V > 

- P is a finite state of places, constituted by the union of 
three sets: Pi the set of internal places, Pe the set of 
input places and of Ps the set of output places. A place 
is an 2-uplet Pla=<Stp, M>, where Stp is a set of n-
uplets containing elements of Class (i.e. types admitted 
bu Pla) and M the initial marking of the place �– i.e. a 
set of n-uplet containing objects, instances of classes of 
Class. M is null for places of  Pe and of Ps. 

- T is a finite set of transitions.  Each transition is a 2-
uplet Tra=<Atc, Ata>, where Atc is a condition that 
takes for arguments one or more variables of V, and 
Ata an action (operation) that takes for arguments one 
or more variables of V. To simplify we don�’t consider 
Atc and Ata properties of transitions, because they are 
no relevant for analysis purpose. 

- A is a finite set of arcs. Each arc is a 3-uplet 
Arc=<Prec, Foll, Vars>, where Prec and Foll are 
respectively the preceding and the following nodes (a 

place or a transition) of the arc, and Vars is a formal 
sum of n-uplets containing elements of V.  

- Class is a finite set of object classes, organized in a 
hierarchy. Classes of Class can eventually be shared 
among different COPN. 

- V is a set of variables, each being typed by a class of 
Class. Each variable has an unique identifier composed 
of its own name plus the COPN identifier. 
 
An OPN is defined by a similar 5-uplet :  OPN = < P, T, 

A, Class, V >, where P is only made of the Pi set (no input 
neither output place in the OPN). The two COPN 
management operations are: 
- elim: COPN  OPN, the operation that produces an OPN 

by eliminating Input and Output PN places from a given 
COPN. Formally, given a COPN copn and an OPN opn, it 
is equivalent to apply sequentially the following 
statements:   
 P (opn)  Pi (copn)  
 T (opn)  T (copn) 
 A (opn)  {a  A(copn) | (Prec(a)  Pe(copn))   ( 
Foll(a)  Ps (copn)) } 
 Class (opn)  Class (copn) 
 V (opn)  {v  V(copn) | (  a  A(opn) | v  
Vars(a)) } 

 
- fuse: set{COPN}  REG  COPN, the operation that 

produces a COPN from the composition of a set of 
COPN. This operation consists in merging output and 
input places of a set of COPN, in order to create new 
internal places. The domain REG contains a set of �‘place 
relations�’ (reg) in which each relation r determines a 
fusion between a set of input places and a set of output 
places. An element r of reg is a set of input and output 
places. The Pfusion function take an element r for 
argument to produce an internal place by fusion of input 
and output places of r. Formally, given a set of COPN 
SCopn, a resulting COPN RCopn and a set of �‘place 
relations�’ reg, the fuse function is equivalent to the 
following statement: 
 Pi(RCopn)  k{Pi(SCopnk)}+ j{Pfusion(regj) } 
 Pe(RCopn)  i{p  Pe(SCopni) | r  reg, p  r} 
 Ps(RCopn)  i{p  Ps(SCopni) | r  reg, p  r} 
 T(RCopn)  i{T(SCopni)} 
 A(RCopn)  i{ a  A(SCopni) | r  reg, (Prec(a) 

 r)  (Foll(a)  r} + i{a  A(SCopni) | (Prec(a) 
 Pfusion(r) if   r  reg | Prec(a)  r)   

(Foll(a)  Pfusion(r) if   r  reg | Foll(a)  r)} 
 Class(RCopn)  i{Class(SCopni)} 
 V(RCopn)  i{V(SCopni)} 

 



with Pfusion: set{place}  place the function that 
creates an internal place by the fusion of places passed for 
arguments. Formally, given a set of places Spla and a 
resulting place Rpla, it is equivalent to the following 
statements: 

 Stp(Rpla)  i{Stp(Splai)} 
 M (Rpla)   

 
Mechanisms allowing to build analyzable OPNs from 
COPN of components are all based of the elim and fuse 
operations; they are used for behaviors, protocols, and 
composition analysis. 
 
A. Behavioral analysis model 

The behavioral analysis consists in independently 
analyzing the asynchronous behaviors of control 
components and roles. In order to get the analyzable OPN 
of a control component behavior, or a role behavior, the 
elim operation has to be applied on the COPN description 
of their asynchronous behaviors. This provides a behavior 
without any input or output place (messages calls and 
reception are of no relevance). 

The main interest of this mechanism is that it allows the 
verification of properties on each behavior. 

 
B. Protocol analysis model 

The protocol analysis consists in analyzing the protocol 
incorporated inside a connector. In order to get the 
analyzable OPN of a connector protocol, different steps 
have to be done.  

The first one consists in deciding roles composition 
which leads to determine the set of �‘place relations�’ 
between the role�’s input and output places. To this end we 
have to consider that: 
- Role�’s ports refer to input and output places of their 

behaviors. 
- Connector�’s internal connections are established 

between ports of roles. 
So, the set of �‘place relations�’ between input and output 
places can be easily found thanks to ports interfaces 
matching. For example, the assembly between the 
RequesterRole and the ReplierRole (Fig. 3) is defined by 
connecting their ports typed by the Transmitter interface. 
This results in identifying the input and output places that 
are responsible of transmitRequest and transmitReply message 
exchanges, corresponding respectively to the fusion of 
places P5 (RequesterRole) and P7 (ReplierRole) and to the 
fusion of places P6 (RequesterRole) and P8 (ReplierRole) 
(Fig. 4). 

Once the �‘place relations�’ have been established, the 
second step consists in applying the fuse operation to all the 
roles of the connector. This leads to the building of the 
COPN model of the connector protocol. 
 The third step consists in applying the elim function to 
this COPN model in order to obtain a global OPN 

analyzable model (without message emission or reception 
between roles and control components). 
 The protocol analysis model is useful, for example, to 
detect connector�’s internal dead-locks or verify the respect 
of invariants. 
 
C. Composition analysis model 

The last mechanism consists in analysing the 
composition of control �– i.e. analysing the global behavior 
issued from the composition of behaviors of control 
components and protocols of connectors. 

The first step to create the analyzable OPN model of 
the composition is to build the connector�’s protocol OPN 
model, by following the two first steps of protocol analysis 
model creation mechanism. 

The second step consists in identifying �‘place relations�’ 
between the role�’s input and output places on one hand, and 
control component�’s ones, on the other hand. To this end 
we have to consider that: 
- Role�’s ports refer to input and output places of their 

behaviors. 
- Control component�’s ports refer to input output places of 

their behaviors. 
- When a control component plays a role, one of its ports is 

connected to the corresponding port of a connector�’s role. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: formal composition model - COPN place fusion and elimination 
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So, the set of �‘place relations�’ between input and output 
places can be easily found thanks to port�’s interfaces 
matching. For example, the RequesterRole�’s provided port is 
type by the Requester interface and VehiclePosition 
Command�’s port is typed by the VehicleWheelsVelocity 
AndOrientationAccess interface, which is compatible with the 
Requester interface (Fig.1 , Fig.2). This results in 
identifying the input and output places that are responsible 
of sendRequest and receiveReply message exchanges, 
corresponding respectively to the fusion of places P1 and 
P3 and to the fusion of places P2 and P4  (Fig. 4). 

Once the �‘place relations�’ have been established, the 
third step consists in applying the fuse operation on 
connector�’s and control component�’s behaviors. This leads 
to the building of the COPN model of the composition. The 
last step consists in applying the elim function to this 
COPN model in order to obtain a global analysable OPN 
model of the composition (cf. down of Fig.4). 

Thanks to this model, developers can analyze inter-
component synchronizations, allowing then to check, for 
example, that those interconnections do not introduce any 
dead-lock, or that the global behavior respects invariants. 
 

VI. DEPLOYMENT DESCRIPTION & EXECUTION ISSUES 
 

Control components and connectors are not only 
modeling entities but also programming ones. The 
execution model of the CoSARC language is configured by 
the deployment of components assemblies (i.e. the software 
architecture). The unit of deployment is the container, 
which is a system process deployed on a processing node 
(Fig. 5). A container is able to execute control components 
and the roles they play. It incorporates a COPN execution 
mechanism, named token player, that deals with tokens 
inference, operations execution (even threaded execution is 
possible) and data objects exchanges. It also incorporates an 
Interaction Engine that interfaces the Token-player 
activities with the activities of other containers, by allowing 
inter-container communications. Any number of control 
components and roles can be placed into one container, and 
many containers can be deployed on the same processing 
node.  

The description of software architecture deployment is 
useful, in our context, to describe precisely components 
execution issues, particularly it helps determining where 
and how COPN are executed. The deployment is realized 
by the following steps: 
 The component placement step consists in defining in 

which container each control component is executed 
(Fig.5). When a control component is placed in a container, 
it executes its behavior �– i.e. its COPN code. 
  The role assignment step consists in defining where 

roles are executed. This can be automatically deduced from 
the preceding step by applying the following rule: when a 
control component plays a role, this role is executed in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 : Component deployment in containers and COPN execution. 
 
same container as the control component. 
 
 The behavior execution model definition step consists 

in producing a global COPN that will be executed by the 
token-player of a container (Fig.5). A container COPN 
model can be made of the disjoined union of the complete 
control component behavior. A complete behavior is a 
COPN model of the fusion of a control component�’s and 
role�’s asynchronous behaviors. This fusion is deduced from  
preceding steps, by applying the following statements : 

 
foreach role r played by control component c    

add to reg the place relations between 
the places of r and the places of c, 
deduced from the connection of their 
ports. 

end 
Apply the fuse operation with the set made 
of the behavior of c and behaviors of all 
roles it plays, as first argument, and with 
reg as second argument. 
 
A global COPN executed by a container is thus made of as 
many complete behaviors as control component it has to 
execute. These behaviors can communicate between each 
others (if connections between their roles exist) and they 
can communicate with behaviors contained in other 
containers. 
 
 The container communication configuration step 

consists in defining communications between (and inside) 
Interaction Engines of containers, according to connectors 
internal connections between ports of roles (Fig. 6). For 
example, the RequesterRole r1 and the ReplierRole r2 are 
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Fig. 6 : Configuring containers communications with connector and 
deployment information. 

 
connected by their ports typed by the Transmitter interface. 
The interaction described in the two Transmitter interfaces 
(Figs. 2 and 3) implies that r1 sends transmitRequest 
messages to r2 and that r2 sends transmitReply messages to r1 
(once their ports are connected). Configuring 
communications supported by an Interaction Engine is 
completely deduced from the two first steps by applying the 
following operation:  
 
foreach port p of a role r executed by a 
container c    

foreach port p’ of a role r’ executed in 
container c’ 

if p connected with p’ 
configure message reception and 
emission between c and c’ with 
information of p and p’ interfaces. 

end 
end 
 

An Interaction Engine is completely configured when 
the matching is done between the message reception and 
emission points on one hand, and respectively input and 
output places of COPN played by the token player on the 
other hand. This information is directly extracted from ports 
description (ports reference input and output places 
associated to message transmission). The Interaction Engine 
can then, packs tokens arriving from the token-player into 
emitted messages, and unpacks token from message 
arrivals. 
 Once all containers have been configured by following 
these steps, the controller can be executed.  
 

 
 
 
 

VII. CONCLUSION 
 

This paper has presented a development methodology 
based on a formal component-based language. The use of 
this language is to bring quality and reusability of complex 
behaviors and interactions inside control architectures. The 
reuse principle relies on the software component paradigm 
ones: behaviors and interactions description are separated 
and only merged at architecture description time. Relying 
on an Object Petri Net Model (OPN) notation for behaviors 
and interactions description, we show in which way this 
formalism allow to bring quality of the design process, by 
allowing the use of PN analysis techniques for diverse 
aspects of architectures (e.g. components assemblies). This 
quality centred process is reinforced by the fact that OPN 
models are directly translated into an equivalent semantics 
structure that is executable by a token-player. Finally the 
architecture deployment description allows to configure 
execution and aspects of components. 
 A prototype of the language execution environment has 
been created to validate some middleware mechanisms and 
a complete version is under development. The language 
specification is complete and a dedicated development 
environment is under development. 
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