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Abstract—This paper proposes an instrumented solution to

integrate feature diagrams with UML models to be used as

part of a general approach for designing software product lines

and for product generation. The contribution is implemented

in IBM R�Rational Software Architect (RSA). It is intended

to be used in the context of large, complex and multi-

domain projects, and at allowing model transformations to

derive products. Our RSA implementation makes it possible

to link feature diagrams with UML model artifacts. It allows

traceability between feature models and other different kinds

of models (requirements, class diagrams, sequence or activity

diagrams, etc.). It is used in a project dedicated to create smart

building optimization systems.

I. INTRODUCTION

IT projects are closely related to business domains. How-
ever, there exist few techniques to gather, link and manage
the knowledge related to each domain. Nowadays projects
are particularly confronted to problems where instrumenta-
tion of specific business domains is required to enhance their
efficiency. Examples of these projects are smart buildings,
grids, water management, health care or food systems. The
research presented in this paper is done in the context of
the RIDER project1, which brings together several actors
who works on improving energy efficiency of buildings. This
context requires to be able to link several domains, such
as building system components, IT infrastructure, air flow
modeling, building thermal management, database models,
etc. Each domain can be modeled by a different stakeholder,
or sometimes being based upon a standard. Software product
line approach is perfectly appropriate to manage the varia-
tions that can be found in building instrumentation systems.
The solutions presented in this paper are applied to the
RIDER project and benefit of its feedback. Our approach
is used as a part of a general approach for software product
lines and for product generation.

There exist several commercial tools such as [3], [9],
[21] that allow linking features to model artifacts extracted

1The RIDER project (“Research for IT as a Driver of EneRgy efficiency”)
is led by a consortium of several companies and research laboratories,
including IBM and the LIRMM laboratory, interested in improving building
energy efficiency by instrumenting it.

from various modeling tools; eclipse plug-ins [20], [1], [13],
[10], [27], [15], [12]; and standalone feature modeling tools
[22], [24], [26]. These tools do not implement the latest
feature modeling concepts and are not well integrated in
UML modeling tools. There also exist several UML profiles
[5], [30] and meta-models [29] implementations but they
address neither the latest UML specification nor all feature
model concepts that are useful in our context.

This paper is organized as follows. Section II presents a
new synthetic and expressive feature diagram model based
on the state of the art. Section III presents our feature
meta-model which synthesizes this state of the art. Section
IV explains how the corresponding UML profile has been
created and implemented using RSA, and shows an excerpt
of the project feature model. Section V will sum up what has
been presented and suggests some perspectives for further
study.

II. SYNTHESIS OF EXISTING FEATURE DIAGRAM
MODELS

Various feature diagram semantics and implementations
have been proposed since the initial one given in FODA
[16]. We use the following criteria to analyze them and to
define our model:
1 – Feature definition.
2 – Feature relationships. We identify four criteria to clas-
sify existing proposals regarding relations among features.

• 2.1 – Hierarchical relationships.
• 2.2 – Feature choice constraint relationships. necessary

to guide the user through feature selection (feature
dependency, or mutual exclusion).

• 2.3 – Mandatory and optional feature identification.
• 2.4 – Sub-feature selection semantics.

3 – Feature logical groups. Allowing to group arbitrary
features by business domains, or abstraction layers.
4 – Product and implementation information. To deter-
mine what kind of information can help implementing a
product from a set of selected features.



Table I
HIERARCHY RELATIONSHIP

Decomposition Specialization
Enrichment Realization

FODA [16] Consists of
FORM [18] Composed of Generalization Implemented by

Specialization
Fey et al. [11] Refine Provided by

Zhang et al. [29] Decompose Specialize
Detail

Czarnecki et al. [8] Relation

A. Feature Definitions

The initial definition of features was introduced by Kang
et al. in FODA [16] which is extended by the FORM [17]
method. Features are defined as being essential characteris-
tics of applications, described with domain vocabulary.

FORM has introduced four different perspectives to enrich
the semantics of feature diagrams: capability, operating envi-
ronment, domain technology and implementation technique.
Indeed, features are also able to model knowledge of the
various domain experts involved in the project. Fey et al.
[11] add the pseudo feature concept in order to allow
for specialization with non exclusive alternatives and to
avoid feature redundancy thanks to implicit inheritance.
Zhang et al. define features [28], [29] as being essentially
a cohesive set of individual requirements representing the
user-visible capability of a software system. Czarnecki et al.
[8], [6] consider that features are system properties relevant
for some stakeholder, and that any kind of functional or
non-functional characteristic of a described system can be
represented by a feature. This extends the intention definition
presented by Zhang et al. [28].

The definition proposed by Czarnecki et al. allows more
freedom of expressiveness in feature diagrams. Its combi-
nation with FODA perspectives allows us to apply feature
diagrams to the numerous domains involved in a project. The
property concept introduced by Fey et al. and the attribute
concept presented by Czarnecki et al. are semantically very
close. It could be assessed that a property expresses the same
information that an attribute, i.e., a measurable characteristic.
We will use the property concept to describe specific feature
typed values (e.g., a room volume, etc.) and how one
property can influence another one.

We extend this concept to allow the customer to choose
the property value. Therefore, we will add the necessary
semantics to restrict the possible choices to consistent ones.

B. Feature Relationships

1) Hierarchical Relationships: Features and sub-features
can be bound by either decomposition or specialization.
Table I illustrates the different variations on these con-
cepts. The FODA consists-of relationship [4], [16], [25]
is designed to represent decomposition. One parent feature
can have several sub-features grouped either by an AND or

XOR decomposition semantics. FORM [17], [18] introduces
the relations Composed-of, to describe the constituents of
a feature; Generalization / Specialization, to specialize or
generalize a feature; and Implemented-by, to define how
a high-level feature can be implemented by a lower-level
one. Fey et al. [11] uses two kinds of hierarchical links
between features: refine, to detail a given feature at a
lower abstraction level; and provided-by, to link a pseudo-
feature with the features which it realizes. Pseudo-features
express an abstract functionality, quality or characteristic.
Fey et al. make it possible to build directed acyclic graphs,
which is impossible with FODA, by allowing one feature to
refine several ones. Zhang et al. [29] identify three different
kinds of hierarchy relationships: decomposition, to refine a
feature into its constituents; detailization, to identify feature
attributes; and specialization, to add further details into a
feature. Czarnecki et al. [8], [6], [7] decided not to consider
relationships between features in favor of entity-relationship
or class diagrams.

We have chosen to keep the hierarchy relationships cat-
egorized in Table I. with the following concepts: decom-
position, which consists in detailing the sub-features that
compose the parent feature; specialization, which encom-
passes the concepts of enrichment for sub-features that add
functions to the parent feature, and Realization (or imple-
mentation) that describes how a feature can be implemented.

2) Feature Choice Constraint Relations: FODA [16] uses
the concept of composition rules to describe how features
relate to one another: one feature can require another one, or
two features can be mutually exclusive. Riebisch et al. [23]
introduce the hint relationship which recommend features to
the user.

We have kept the constraints require and conflict to ensure
a coherent product generation. Furthermore the hint relation
is also convenient to make recommendation to the user
during the feature selection process.

3) Mandatory and Optional Features Identification: In
the FODA [16] and FORM [18] specifications and tools, all
features are mandatory by default; optionality is represented
as a feature property as in [23], [14], [29]. Czarnecki et
al. [6] use cardinalities to express optionality. For instance,
a (1,1) cardinality describes a mandatory feature and (0,1)
describes an optional one. Setting a cardinality greater than
1 specify how often the sub-features of a parent can be
duplicated.

We keep for our model the cardinality based relationship
introduced by Czarnecki et al. [6] that brings an interesting
enhancement to the initial definition, useful to describe more
complex products from a product line.

4) Sub-feature Selection Semantics: FODA [16] and
FORM [18] methods propose two ways to manage sub-
feature selection. A simple link between the parent and
its sub-features means that there is no choice constraint;
equivalent to an or binary choice. A semi circle drawn



across the links means that there is an alternative choice;
equivalent to the xor binary choice. Likewise, Fey et al.
[11] express with a simple link that the choice is an or, but
the alternative choice is expressed with a complete graph
of mutually exclusive constraints among all sub-features.
Riebisch et al. [23] and Czarnecki et al. [8] use cardinalities
to define how many sub-features can be chosen.

The most convenient semantics relies on cardinality based
selection semantics. It allows a maximum flexibility to de-
scribe how many sub-features can be selected. Furthermore,
we chose to keep the “or”, “and”, and “xor” groups to
ease the feature models semantics understanding for non-IT
specialists end-users.

C. Feature Logical Groups
The FORM [18] method classifies features into four

categories called layers, from a functional point of view.
Riebisch et al. [23] use logical groups to represents aspects
valuable to the customer and explain that abstract features
could be used to encapsulate features related to a given
concept. Fey et al. [11] present feature-sets to group features
from an arbitrary point-of-view. Zhang et al. [29] present the
binding-time concept to represent the phases of the software
life-cycle in which each feature must be chosen. Czarnecki
et al. [6], [8] use abstract features to reference other feature
diagrams to reuse a set of features. They also introduce
different types of features that can be considered as feature
groups.

The binding-time concept can be extended according to
the software development process chosen by the final user
to allow him to assign features or groups of features to
a development phase. It can be modeled by the feature
set concept presented by Fey et al. The different kinds
of features presented by Riebisch et al. [23] could be
easily modeled by sub-layers. Hence, we choose to keep
the layer concept to organize features in logical groups
and sub-groups accordingly to the type of information they
represent. We propose to enhance Fey et al. feature-set
concept by adapting Zhang et al. [29] constraints meta-
model to describe constraints inside a group of features,
and constraints between two groups of features. The feature-
sets could also be used along with the Kano method [19]
to help the user choosing a set of product features that
yield high customer satisfaction. The customer preference
categories can be modeled as feature-sets encompassing the
corresponding features. We also keep the feature-sets idea to
reference sub-parts of a feature diagram. Hence, a feature-
set could be a leaf of the diagram that encompasses another
feature hierarchy. Staged configuration can be modelled by
creating one feature-set for each configuration stage, and
associating it with a group of stakeholders that have the same
business concern. Czarnecki et al. [6], [8] have presented
four types of features that have been integrated in our
meta-model proposal: concrete features can be stored in the

implementation layer; aspectual features can be stored in
a sub layer of implementation layer; abstract features, e.g.
performance requirements, can be represented by feature
properties; and grouping features can be modeled as a
feature set.

D. Product and Implementation Information

Riebisch et al. [23] argue that the feature hierarchy must
be organized to make easier the choice of features by using
composition relations and require associations. Zhang et al.
[29] present a feature attribute for representing the feature
binding-state. It must be used in a binding-time context, i.e.
when features are implemented in the software product at a
given software life-cycle phase. Mathematical relationships
have been presented to describe the relative impact of one
feature to another.

III. A SYNTHESIS META MODEL FOR FEATURE
DIAGRAMS

This section describes a meta model synthesizing the
choices we presented and motivated in the previous section.
This work extends the work of Asikainen et al. [2] in order
to apply our work in the context of a rich industrial project.

As depicted in Figure 1, a product line contains features,
and a feature belongs to one product line. A product belongs
to one product line and can be composed of as many
features as needed. Features associated to a product must
be analyzed in order to check whether all constraints, like
mutual exclusion between features or require relations, are
satisfied.

Figure 1. Product lines relation to features and products

Mutual exclusion and require relations link features re-
gardless of their position in the hierarchy, they are modeled
by the conflictingFeature and requiredFeature relationships.
Furthermore, we add the recommendedFeature role used to
advise a user to choose another feature pertinent in the
product. These roles are depicted in Figure 1 in reflective
association on the Feature class.

Feature properties (Figure 2) are used to describe either a
feature parameter related to its inner requirements (e.g. the
bandwidth capacity of a network) or a characteristic chosen
by the user during the product definition (e.g. the frequency
of automatic backups of a word processing software).



Features can a variability type (VariabilityKind) which is
further described below:

• fixed, A property value is fixed throughout all products
of the product line.

• variable, A property value can change, within a prod-
uct, depending on other features properties, e.g. the text
buffer size of a text field in the user interface can vary
accordingly to the type of information we want to store
(i.e., name or address).

• family-variable, A property can vary from product
to product accordingly to the selected features, e.g.
the phone book capacity depends on the presence of
internal memory property and the sim card capacity.

• user-defined, A property value can be freely chosen in a
given product, e.g., the frequency of automated backups
in a word processing software.

Figure 2. Feature properties

The hierarchy relationships and sub-feature groups are
depicted in Figure 3. The relations between a feature and its
sub-features are grouped by the RelationshipGroup class that
contains the cardinalities necessary to restrict the number of
sub-features to choose. Cardinalities can be chosen freely,
but some groups have fixed cardinalities: OrGroup, (0,*);
AndGroup, (*,*); and XorGroup, (0,1). The DirectedBina-
ryRelationship class represents the kind of association that
links a parent feature and a sub-feature. It is specialized
either by Enrich, Implement, or Detail classes.

Figure 4 shows how layers and feature sets can be associ-
ated with the project stakeholders. A stakeholder represents
any kind of people (e.g. domain experts, IT architects, etc.)
allowed to choose features. Feature sets and layers can be
attached to a concern specific to the project, e.g. network
architecture, or business requirements. A Layer represents a
specific view onto the software application, a feature can be
in only one layer at a time. A FeatureSet inherits from the
Feature class, and allows grouping features from an arbitrary
point of view, e.g., a business domain, or representing the
features that must be implemented to fulfill a norm.

Figure 5 depicts how constraints can be applied to feature
sets: mutex, when only one feature can be selected in the fea-
ture set; None, when there is no constraint among features;

Figure 3. Groups and hierarchy relationships

Figure 4. Stakeholders concerns

All, when all features or none of them can be selected. The
ConstraintRelation class describes the relation between two
feature sets: one feature set can require another one, two
feature sets can mutually require each other, or be mutually
exclusive. A BindingPredicate is used to represent how a
constraint must be applied on each constrained feature-set.
The choice of the specialized class must be made according
to the kind of feature-set.

IV. UML PROFILE IMPLEMENTATION

A. Description
Our profile integrates the previously described feature

meta-model into the UML meta-model hierarchy with an
appropriate semantics. We describe here which UML meta-
classes we have chosen to extend, which information has
been added with the stereotypes and how we have restricted
the semantics of extended meta-classes thanks to OCL
constraints. However, the profile could be implemented in
different ways by choosing to extend different meta-classes.
We chose the meta-classes that had the closest semantics
to our concepts, added the required information with the
stereotypes and restricted the initial semantics of meta-
classes to what is necessary for our profile with the Object
Constraint Language (OCL) constraints.

Contrary to [5] we have based our feature diagram profile
on the Components UML meta-class. A component, as a



Figure 5. Constraints on feature sets

feature, can be seen as a high level view of a software
element and, as such, is the concept the closest to what
we want to express. Components have ports, which can
be linked together. Ports are thus reasonably well suited
to support the relationships between features and other
elements defined in section III. It is the UML 2 concept
the closest to what we want to express because it is a high
level view of the structure of a software element. This first
choice influences the other meta-classes selection.

Table II
STEREOTYPES EXTENSIONS

Stereotype Extended Meta-class

Feature Component
Stakeholder Actor

Concern Class
ModelRelationship Dependency

Layer Package
ProductLine Component

Product Component
Property Port

RelationshipGroup Port
Modification Usage

DirectedBinaryRelationship Association
BindingPredicate Port

ConstraintRelation Association

The port meta-class allows us to represent the interaction
of a feature with other elements. It can be linked to other
ports or components. The modification of a property value
can be modeled by textual or OCL constraints placed upon
the relationship between two properties.

We choose to create a Rational Software Architect plug-in
to leverage its UML modeler, modeling editors, views and
tools. All managed models are instances of EMF models.
Hence using Rational Software Architect allows simplifying
tasks like creating a specific plug-in for integrating feature
modeling capabilities into standard EMF-based UML mod-
els and diagrams. The plug-in is currently used in the RIDER
project.

There is no room enough to explicit all our design choices,

Figure 6. Stakeholders and feature sets

Table 6 gives an abstract of our specialization choices.

B. Example

Figure 6 shows an excerpt of a RIDER feature diagram
using our profile. It presents feature diagrams expressed by
two stakeholders having different concerns on a RIDER
smart building project. One focusing on HVAC (Heating
Ventilation Air Conditioning) domain and the second on
data centers and office building optimization problems.
Each feature set encompasses several features that are not
shown in this example (for reasons of space limitation).
We represented require constraints between feature sets.
As discussed before, this allows us to describe high level
constraints which apply on groups of features. Properties add
further information about the context in which the product
is designed for (such as the building volume).

The feature selection process is achieved by showing
feature diagrams to the user accordingly to his concerns
thanks to model transformations.

V. CONCLUSION AND PERSPECTIVES

We propose a synthesis of existing models, that we
enhanced to fit the requirements of the project in which
this research is applied, and their profile implementation in



UML 2. The models presented in this paper have been instru-
mented with Rational Software Architect in order to provide
a tool able to easily produce feature diagrams using the
described profile. This synthesis is achieved by classifying
the existing concepts into categories. This approach allows
a full integration of feature diagrams into UML models and
facilitates model transformations. In comparison with [2] we
add several concepts such as layers, stakeholder concerns,
feature-sets, and group constraints.

For the time being, we still need to guide users to
organize features into layers and sub-layers in order to
best integrate them into the software development life-cycle.
Hence, the next steps will be to create a framework able
to use the full potential of our feature meta-model, and to
develop automated model transformation functionalities to
automatically generate UML models.
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