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Abstract—Software Product Lines (SPL) aim at deriving
software architectures or systems from a software artifact
base. Configuring the SPL to derive a new product is now
usually done by selecting appropriate software features in
a kind of models, called feature models. In some situations,
a feature represents a software artifact associated to an
element e of a context the software product will manage.
Such a feature and its associated software artifact may
be cloned according to the number of occurrences of e in
the context and constraints have to be respected. Hence,
the feature model proposed to users for configuration
has to be adapted in a new dedicated phase according
to the context elements. We propose a model-driven
engineering approach for transforming a generic feature
model according to a context model that a derived software
product will manage. More precisely this paper describes
an original model transformation able to generate context
specific feature models including duplicated features, and
removing inappropriate features. Our transformation is
validated on a smart building optimization software case
study.

I. INTRODUCTION

Configuration options of a software product line
(SPL) to generate a new product are nowadays com-
monly represented with a feature model [9]. A feature
represents components or functionalities that an instance
of the product line can offer. A feature model indicates
which choices (features) are mandatory or optional in
some conditions, and how one choice can impact an-
other one (feature inter-dependencies and constraints).
Software products (applications) are built from a SPL
by selecting features from such a feature model. A
set of selected features is commonly called a product
configuration.

In various situations, some features are semantically
associated to elements of a context generic model, that
describes concepts, that can be present in the context in
which (or for which) the application will be deployed.
For example in the case of a smart building energy-
optimization software, the feature “solar optimization”
is semantically associated to the context generic model
concept Solar-panel and should only be proposed
in a configuration feature model if the building to be

optimized (described by a model, instance of the context
generic model) has some solar panels (instances of
Solar-panel). As a corollary, such a software could
be configured to manage differently each occurrence
of a given electronic appliance or physical infrastruc-
ture [2].

Hence, a product configuration depends, on the one
hand, on the product features, and on the other hand,
on the number of occurrences of the context concept
instances. In a feature model, cloning features and iden-
tifying inappropriate ones is a long and error prone task
because each context-specific feature must be checked
regarding each context concept instance.

Various approaches have been proposed to configure
a feature model according to a context [6], [8]. In
this paper we propose an original solution to automat-
ically generate an optimized feature model (called a
context-specific feature model), that conforms to a given
deployment context. A context-specific feature model
only includes features that make sense in the context.
The features are appropriately cloned depending on the
number of context elements. Our model transformation
algorithm uses as inputs a generic feature model (repre-
sentative of a SPL global set of functionalities), a model
of context concepts and an instance of the model of the
context.

We validate our proposal in the context of the devel-
opment of a smart building management system soft-
ware product line (RIDER1 project [10]). The project
aims at creating a global intelligent system to perform
energy optimization.

Section II presents a motivating example from the
RIDER project. Section III presents a global view of
our approach. Section IV details the algorithms used for
performing the adaptation of feature models. Section V
discusses the related work, and Section VI concludes
this paper and gives several perspectives for this work.

1The RIDER project (“Research for IT as a Driver of EneRgy
efficiency”) – http://rider-project.com/ – is led by a consortium of
several companies and R&D laboratories, including IBM and the
LIRMM, interested in improving building energy efficiency.

http://rider-project.com/


II. MOTIVATING EXAMPLE – A SMART BUILDING
CASE STUDY

A RIDER software product purpose is to enhance
lighting, heating, ventilation and air conditioning usages
to save energy in buildings. A RIDER product is made
of interfaces with building management systems (BMS),
of several optional modules to add further functions
(physical simulation, optimization algorithms, visualiza-
tion tools, etc.), and a component allowing to orchestrate
input and output data. The data orchestration component
purpose is to decide how to manage incoming data and
energy optimization computation results. For example,
the physical simulation module requires data related
to spaces that are instrumented with temperature and
humidity sensors. A RIDER software product uses a
representation of the building it will drive. This rep-
resentation is also called building information model
(BIM). It is able to represent static (e.g., blueprints) as
well as dynamic (e.g., sensor measures) information.

An instance of the building model is used as a corner-
stone to leverage information from building managers
and energy optimization experts [7], [5]. It can gather
into a single model information such as 3D geometric
data for visualization, electric, and Heating Ventilation
and Air Conditioning (HVAC) blueprints, the various
building components along with their size and physical
properties for simulation purposes, but also cost and
project management-related information.

Each additional module function is modeled in the
RIDER feature model. Some of them are related to the
elements of the BIM. For example, 3D information is
required to provide 3D visualization features. If it is
missing then 3D visualization features are not available.
If the information is available on some parts of the
building, the visualization features are available only
on those parts. When configuring a new product, it is
important to know which parts of the building will be
properly optimized, and to know which new equipments
must be added to allow these features to properly work.
More generally, each feature requires to consider if it
can be duplicated, which context elements determine
how many times it can be duplicated, and which con-
straints must be satisfied by the context element to make
the feature available.

Next section introduces our approach and describes
the four models involved in this approach.

III. APPROACH OVERVIEW

Let us introduce in this section our terminology and
abstract our approach. A generic feature model (FM)
of a software product line application represents the

features globally available in the application (called
generic features). Each generic feature can have a
semantic relation (depends on) with one or several con-
text model concepts. A context-specific feature model

(CSFM) represents features relevant to a given context
model instance (called context-specific features). Each
context-specific feature (CSF) of such a model relates to
a generic feature of the FM and, if this generic feature
depends on a context concept, to one context concept
instance. Our purpose is to automatically generate a
CSFM, made of all possible CSFs, by analyzing as-
sociations between features of a generic feature model
with concepts of a context model (e.g., a building
meta-model) and their instances (elements of a concrete
building).

The obtained CSFM allows stakeholders to choose
CSFs for creating a product configuration adapted to
the environment.

Our approach integrates the four models shown in
Figure 1. The context model (CM) describes the context
information that a software product manages. It can
be presented by creating a domain specific language
(DSL) or a UML model. CM is a set of connected
concepts. In our case study, this model is the building
infrastructure model which contains concepts such as,
Building, Storey, Zone, Space, Sensor. It is created with
the help of context domain specialists. Some concepts
are hierarchically related with a specific relation. For
example, we have the hierarchical relation Building →
Storey → Space → Sensor.

Figure 1. Approach overview

The generic feature model (FM) is, for a given CM ,
a multiplicity-based feature model which is based upon
Czarnecki et al. [3] definition. We extended it to make
it possible to associate a feature to a CM concept. This
association has a multiplicity. It is composed of features
(denoted by f ) organized in a tree. The root of this
tree is denoted by rf . A feature associated with context
concepts can be duplicated according to the instances
of those concepts and their multiplicity. In our case
study, it is used to describe all the possible features of
an energy optimization software. In our approach, this
model is not directly used to configure a new product.
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Figure 2. CSFM generation example

This model must be first adapted to a specific context,
which is described by the context model instance.

A feature can be associated to none, one or several
concepts of the CM . It means that the feature can be
duplicated for each instance of an associated concept.
A constraint, associated to a feature, can be used to
determine which properties must have an instance to
duplicate a feature. For example, when CM is written
in UML, constraints are in OCL. A given feature f
can have a group g gathering its sub-features. A group
is used to specify how many grouped features can be
selected.

The context model instance (CMI) is an instance of
the context model. It describes instances of the concepts
of CM . If the CM is similar to a UML class diagram,
the CMI is similar to a UML instance diagram. The
elements of the CMI model are called instances. There
is also an hierarchical relation between the instances
of concepts hierarchically related. The CMI describes
the specific context that will be managed by a software
product. In our case study, it consists in modeling a
specific building that will be managed by a new energy
optimization software product, instance of the software
product line. It is created with the help of building
owners and managers.

The CSFM is a kind of feature model resulting from
the adaptation of FM to a given context CMI . It is
the set of context-specific features (CSF) that can be
chosen to build a new product to be used in a given
context. A CSF associates a feature f , to an instance i.
i must be an instance of one of the concepts associated
to f . If f is not associated to a concept then i = ∅.
The CSF are organized as a tree whose root is denoted
by rϕ. A CSF ϕ can have a group gϕ gathering its sub-
features. gϕ must be related to an existing group g of
the feature f , f being associated to ϕ. In our case study,
a realistic CMI , of a building b, can have hundreds of
instances that have to be considered to create the CSFM
to configure the product for b. Our approach proposes
an algorithm to generate this model automatically.

The models CM, FM, and CMI are provided as
input of our adaptation process. The output of the
process is a CSFM to be filled to create a new product

configuration. Groups and multiplicities are also adapted
in the CSFM. The constraints associated to concepts are
checked after having generated the CSFM. We do not
detail constraints checking here due to space limitation.
Figure 2 depicts excerpts of a CM , CMI , FM , and
a CSFM . The features TempOptim, ScheduleOptim

and PresenceOptim are associated to the concept Space

(only one link is shown to simplify the diagram). The
CSFM generation algorithm duplicated the feature
sub-tree whose root is TempOptim two times. The
duplicated CSF sub-trees are associated respectively to
the instances s1 and s2.

The next section presents the algorithm generating
CSFMs.

IV. CONTEXT-SPECIFIC FEATURE MODEL
GENERATION ALGORITHM

The CSFM generation algorithm traverses the feature
model in depth-first order. We consider that the models
FM,CMI,CM, and CSFM (which is empty at the
beginning) are global data common to all following
algorithms.

Algorithm 1 initializes the CSFM generation algo-
rithm and returns the resulting CSFM. It creates the
root context specific feature and, for each sub-feature of
the root feature of the feature model, calls the recursive
procedure featureTreeTraversal to build the CSFM.

Algorithm 1: Main procedure of the CSFM gener-
ation algorithm

Input: The models CM, CMI, et FM

Result: A CSFM model built according to the CM,
CMI, et FM models

Initialize an empty CSFM.
rϕ is the root CSF of CSFM, it is associated to the
root feature rf of FM.
foreach sub-feature f of the FM root feature rf do

featureTreeTraversal(f, rϕ)
end

The procedure featureTreeTraversal builds the CSFM
recursively. It requires two parameters: A feature f for
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which related CSFs will be created, a CSF ϕparent

which will be the parent of the created CSFs.

Procedure featureTreeTraversal(f , ϕparent)
Input: A feature f from which the FM is

traversed. A parent CSF ϕparent, such that
f parent feature is associated to ϕparent.

Result: Updates the CSFM according to the CM,
CMI, and FM models.

if f is not associated to a concept and ϕparent is

not associated to an instance then
ϕ = addSpecificFeature(f,ϕparent,∅)

foreach sub-feature f �
of f do

featureTreeTraversal(f �
, ϕ)

end
if the CSF parent ϕparent is not associated to an

instance and f is associated to a concept then
foreach instance i that is an instance of the

concept associated to f do
ϕ =
addSpecificFeature(f,ϕparent, i)
foreach sub-feature f �

of f do
featureTreeTraversal(f �,ϕ)

end
end

if the CSF ϕparent is associated to an instance

and f is associated to a concept then
foreach instance i which is either the same

instance that is associated to ϕparent and that

is an instance of the concept associated to f ,

or an instance that is hierarchically below the

instance associated to ϕparent and that is an

instance of a concept associated to f do
ϕ =
addSpecificFeature(f,ϕparent, i)
foreach sub-feature f �

of f do
featureTreeTraversal(f �,ϕ)

end
end

The CSFs are created differently in three cases:
1) The evaluated feature f is not associated to any

concept and the parent CSF ϕparent is not asso-
ciated to an instance. Then, one CSF is created,
and the procedure is called recursively for each
sub-feature of f .

2) The parent CSF ϕparent is not associated to an
instance and the evaluated feature f is associated
to a concept. Then, a CSF is created for each
instance whose concept is associated to f , and the
procedure is called recursively for each instance

and for each sub-feature of f .
3) The parent CSF ϕparent is associated to an in-

stance and the evaluated feature f is associated
to a concept. A CSF is added either with the
same instance as ϕparent or with each context
concept instance which is hierarchically below the
instance associated to ϕparent. The procedure is
then called recursively for each sub-feature of f
and for each instance hierarchically below ϕparent

instance.
The function addSpecificFeature creates, and returns,

a new CSF in the CSFM. It requires three parameters:
the feature f which will be referenced by the CSF, the
parent CSF ϕparent, and an instance that will be also
referenced by the CSF. As seen before, a CSF references
a feature, and either an instance or nothing. First, a new
CSF ϕ is created. Its parent CSF is ϕparent, and it is
associated to f and i. The lower bound of its multiplicity
is equal to the maximum between the lower bounds of
the multiplicity on the relationship between the concept
whose i is the instance and f , and of the multiplicity
on f . The upper bound of its multiplicity is equal to the
minimum between the upper bounds of the multiplicity
on the relationship between the concept whose i is the
instance and f , and of the multiplicity on f .

Then, the procedure addNewCSFtoGroup is called to
add the new CSF to a group if f belongs to a group in
the FM . If the new CSF is associated to an instance,
it also must belong to a group whose multiplicity is
the same as the feature associated to the new CSF.
This group does not exist in the FM . Its purpose is to
transpose in the CSFM the multiplicity of the feature f
to guarantee that the number of CSF that can be chosen
in a configuration respects f multiplicity.

The procedure addNewCSFtoGroup updates the
CSFM by creating groups considering those existing in
the FM. It takes two parameters: the new CSF ϕ, and its
parent ϕparent. If the feature f associated to ϕ belongs
to a feature group g then ϕ must also belong to a group
gϕ related to g. The group is created only when there
is at least two CSF in it. Otherwise, the CSF is either
mandatory or optional according to f multiplicity.

V. RELATED WORK

Formal semantics of feature models have been de-
fined in [13] for many different kinds of feature mod-
els. We chose a semantics based upon Czarnecki et
al. cardinality-based feature models [3] as described
in [14]. They created a staged configuration process [4]
in which they specialize the feature model to restrict
the multiplicity of features. It is not applicable to our
situation, because a CSFM is not a specialization of
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Function addSpecificFeature(f , ϕparent, i) : ϕ
Input: a feature f , a CSF ϕparent, and an

instance i
Output: Updates the CSFM with a new CSF, and

returns the new CSF.
Creates a new CSF ϕ, sub-CSF of ϕparent,
associated to the feature f and the instance i.
The lower bound of its multiplicity is equal to the
maximum between the lower bounds of the
multiplicity on the relationship between the
concept whose i is the instance and f , and of the
multiplicity on f . The upper bound of its
multiplicity is equal to the minimum between the
upper bounds of the multiplicity on the
relationship between the concept whose i is the
instance and f , and of the multiplicity on f .
The procedure addNewCSFtoGroup(ϕ,ϕparent)
is called to add ϕ to a group is f belongs to a
group in the FM .
if ϕ is associated to an instance then

if there is no existing CSF group in ϕparent in

which there is other CSF associated to the

same feature then
Adds ϕ to the CSF group.

else
Creates a CSF-group with the same
multiplicity as f , and adds ϕ to this group.

end
end
return ϕ

Procedure addNewCSFtoGroup(ϕ, ϕparent)
Input: The CSF ϕ and ϕparent such that ϕ must

be a sub-CSF of ϕparent.
Result: Updates the CSFM to make ϕ a sub-CSF

of ϕparent.
Let f being the feature associated to ϕ.
if f belongs to a feature group g then

if there is a CSF group gϕ in ϕparent related

to g then
Adds ϕ to the group gϕ.

else
Creates a new CSF group related to the
group g, and adds ϕ and ϕ� to this group.

end
end

a generic feature model. Indeed, each context-specific
feature adds information about the context concept
instance it is associated with. Even if our case study
does not require a staged-configuration process, it could
be applied to our work. The generic feature model
could be specialized into a refined generic feature model
before generating the CSFM, and the CSFM could be
specialized into a refined CSFM and configured through
a staged configuration process.

There are several solutions allowing to perform prod-
uct configuration choices according to a given context.
Voelter et al. [15] detail an approach where negative
and positive variability are used to remove or add
concepts to a custom DSL which seems to correspond
to our business model. However, their approach could
not solve our concerns because we needed to adapt the
feature model. We address the opposite concern, we
adapt the feature model to an imposed business model.

Acher et al. [1] work in the context of self adaptive
and dynamic systems. They are interested by run time
adaptation while we are concerned by the design time
adaptation. They bind a context model, modeled with a
feature model, with a feature model describing the ap-
plication. Changes applied in the context feature model
are automatically reflected on the application config-
uration model thanks to ECA rules [12]. We propose
to adapt the feature model rather than a configuration
model. In our case, the context is a business model
provided by some stakeholders. This model is also used
by the application to describe the managed data and not
specifically created for the product line specification.

Quinton et al. [11] derive software products in the
context of applications for mobile phones. They con-
sider a feature model for the application and a feature
model for mobile devices. They configure and gener-
ate an application model using the application feature
model, and then check if the model is consistent with
a set of mobile devices represented by the mobile
device feature model. We address a different problem:
the business model (e.g., a building model) is imposed
and we have to propose to the stakeholders a feature
model adapted to the business model, in order to allow
them to configure an application consistent with their
environment.

VI. CONCLUSION

We presented in this paper an approach able to adapt
generic feature models to a business context. It allows
us to produce a CSFM according to a context model
instance representing the context in which the future
product will run. Our approach allows to automatically
determine whether each feature related to a context
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concept can be cloned in a given context by checking
constraints against context concept instances. Hence,
each generated product configuration is specific to the
instance of the context model it has been made with.
Then, it enables us to generate software product ar-
chitectures and implementations specific to a context.
This approach automates a process that would otherwise
requires to compare hundreds of features with hundreds
of context concept instances.

Our methodology has been designed in a generic way
to be reused in different domains. The prototype has
been implemented with UML models and UML profiles,
for modeling the context model and the generic feature
model. We developed a tool as an Eclipse RCP platform.
The Eclipse RCP platform takes as input the XML files
representing the business model and the feature model.
They are generated by an XSLT transformation from
the XMI versions of the UML models.

We validated our approach in the RIDER project on
a building meta-model used to describe smart build-
ings. The building meta-model has been modeled as
a UML model on which classes and associations were
stereotyped to represent navigable elements. The feature
model was built with our UML profile for feature
models [14].

Next, we intend to create views on the CSFM to
facilitate feature selection. They could show features re-
lated to a stakeholder concern, or allow choosing several
features at the same time, e.g., all the clones of a feature.
In future work, we want to enable the configuration
of new products according to features existing in other
products to facilitate their communication.
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