
Feature-Level Change Impact Analysis Using Formal Concept Analysis

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony
UMR CNRS 5506, LIRMM, University of Montpellier 2 for Sciences and Technology, France

E-mail: {Eyalsalman, Seriai, Dony}@lirmm.fr

Abstract

Software Product Line Engineering (SPLE) is a system-
atic reuse approach to develop a short time-to-market and
quality products, called Software Product Line (SPL). Usu-
ally, the SPL is not developed from scratch but it is devel-
oped by reusing features (resp. their source code elements)
of existing similar systems developed by ad-hoc reuse tech-
niques. The feature implementations may be changed for
adapting SPLE context. The change may impact other fea-
tures that are not interested in the change, as a feature’s
implementation spans multiple code elements and shares
code elements with other features. Therefore, feature-level
Change Impact Analysis (CIA) is needed to predict affected
features for change management purpose. In this paper, we
propose a feature-level CIA technique using formal concept
analysis. In our experimental evaluation using three case
studies of different domains and sizes, we show the effec-
tiveness of our technique in terms of the most commonly
used metrics on the subject.

Keywords: Impact analysis, feature, source code, FCA,
software product line, product variants.

1 Introduction
SPLE is a engineering discipline providing methods to

promote systematic software reuse for developing short
time-to-market and quality products in a cost-efficient
way [1]. These products are referred to as SPL [1]. The
whole idea behind SPLE is to build core assets consisting
of all reusable software artifacts (such as source code, test
cases and son) that can be leveraged to develop SPL’s prod-
ucts. Building such core assets is driven by features that
SPL products should provide. A feature is “a prominent or
distinctive user-visible aspect, quality or characteristic of a
software system” [2].

Building SPL’s core assets from scratch is a costly
task [1]. Therefore, features (resp. their source code el-
ements) of existing similar systems developed by ad-hoc
reuse techniques should be reused as much as possible to
build SPL’s core assets [3]. Such systems are known as
product variants. The implementation of the obtained fea-

ture(s) may need to be changed for adapting SPLE context
by adding or removing requirements (resp. their source
code elements) [4]. The change may impact other fea-
tures that are not interested in the change, as a feature’s
implementation spans multiple code elements (e.g., classes
and methods) and shares code elements with other fea-
tures. To avoid such a situation, feature-level Change Im-
pact Analysis (CIA) is needed to detect introducing unde-
sirable interactions between feature implementations. Fur-
thermore, it is helpful to conduct change management from
a SPL manager’s point of view. For example, managers
may most likely be interested in evaluating a given source
code change in terms of affected features, in order to decide
which change strategy should be executed.

Feature-level CIA is far from a trivial task when we
have a large number of features. Manually tracing fea-
ture implementations to determine affected features is time-
consuming, error-prone and tedious. The CIA is seldom
considered at the feature level for changes made to the
source code level. Most of the existing works performs CIA
at the source code level with little works completed at re-
quirement and design levels [5]. In this paper, we propose
a technique to study CIA at the feature level using Formal
Concept Analysis (FCA). This technique takes, as input, a
change set composed of classes to be changed and com-
putes, as output, a ranked list of affected features. Each fea-
ture in this list has a probability to be affected representing
the feature priority to be checked by maintainers. Addition-
ally, we propose two metrics to measure to what degree a
given feature implementation is impacted and the change-
ability of the features.

The rest of this paper is organized as follows. Section 2
presents FCA. Sections 3 and 4 present the proposed ap-
proach and experimental evaluation, respectively. Next,
sections 5 and 6 discuss the related works and conclude the
paper respectively.

2 Background: Formal Concept Analysis
FCA is a technique for data analysis and knowledge rep-

resentation based on lattice theory [6]. Concept lattices are
core structures of FCA for extracting a set of concepts from

Table 1. A formal context for birds.

Fl
yi

ng

N
oc

tu
rn

al

Fe
at

he
re

d

M
ig

ra
to

ry

w
ith

-c
re

st

w
ith

-m
em

br
an

e

Flying-squirrel X X

Bat X X X

Ostrich X

Flamingo X X X

Chicken X X X

a dataset, called a formal context, composed of objects de-
scribed by attributes. A formal context is defined as a triple
K = (O,A,R) where O is a set of objects, A is a set of
attributes and R is a binary relation between objects and at-
tributes indicating which attributes are possessed by each
object. Table 1 presents an example of a formal context for
several animals described by their characteristics.

A formal concept is a pair (E, I) composed of an object
set (E ✓ O) and an attribute set (I ✓ A). E is the extent
of the concept (i.e., the objects covered by the concept). I
is the intent of the concept (i.e., the attributes shared by the
objects covered by the concept). For example, ({Chicken,
Flamingo}{Flying, Feathered}) is a concept of our exam-
ple.

Given a formal context K = (O,A,R), and two for-
mal concepts C1 = (E1, I1) and C2 = (E2, I2) of K,
the concept specialization order (s) is defined by C1 =
(E1, I1) s C2 = (E2, I2) if and only if E1 ✓ E2 (and
equivalently I2 ✓ I1). C1 is called a sub-concept of C2. C2

is called a super-concept of C1. Based on this specialization
order definition, an important property is that a sub-concept
inherits in a top-down manner the attributes (intent) of its
super-concepts, while a super-concept inherits in a bottom-
up manner the objects (extent) of its sub-concepts.

Let CK be the set of all concepts of a formal context K.
This set of concepts provided with the specialization order
(CK ,s) has a lattice structure, and is called the concept
lattice associated with K. Figure 1 shows the concept lattice
built for the formal context of Table 1.

3 The Proposed Approach
When source code classes that implement a feature are

changed, the change may be propagated to the neighbor
classes which the changed classes are coupled to. As a fea-
ture’s implementation may span multiple classes and fea-
tures may have shared classes, the change may lead to im-
pact the implementation of other features. Therefore, we
should determine the impact set of classes and coupling
relations between features to determine affected features.
We rely on structural and feature couplings to support these
purposes respectively. Structural coupling refers to inter-
dependencies between classes, such as inheritance, method
invocation, etc. Feature coupling is the degree to which the
source code elements implementing a feature (e.g., meth-

Figure 1. The concept lattice for the formal

context of Table 1.

ods, attributes, classes) depend on elements outside the fea-
ture [7]. Figure 2 gives an overview of our approach. This
approach relies on three main steps:(i) computing the im-
pact set of classes for source code changes, (ii) Determin-
ing coupled features using FCA, (iii) querying the generated
concept lattice to compute a ranked list of affected features.
The goal of the first step is to determine impact set classes
due to modifying a given change set of classes. Of course,
the impact set also includes the change set members. The
second step aims to determine coupled features by build-
ing the concept lattice. This lattice is queried in the third
step using the impact set computed in the first step to find a
ranked list of affected features.

Figure 2. Main steps of our CIA approach.

3.1 Determining the Impact Set of Classes

Analyzing the interdependencies between classes helps
to determine the coupled classes, and hence determine the
impact set of classes. We rely on the following interdepen-
dencies that represent coupling aspects in object-oriented
applications supporting CIA: (1) inheritance relationship:
when a class inherits attributes and methods of another
class, (2) method call: when a method of one class calls a
method of another class, (3) attribute access: when a class
accesses an attribute of another class, (4) shared attribute
access: when two classes access the same attribute of an-
other class. To capture these interdependencies, the given
source code is statically analyzed by building an abstract
syntax tree (AST) that can be queried to extract required
information.

Table 2. The formal context of features and

classes.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

F1 X X X X X

F2 X X X X X

F3 X X X X

F4 X X X

F5 X X X X X

F6 X X

F7 X X

3.2 Determining Coupled Features Using FCA

In this step, we rely on FCA to analyze coupling
relations between a given set of features. FCA allows us
to determine and visualize source code classes that are
shared among all features, among a subset of features
and those that are specific to each feature through the
hierarchical organization of the concept lattice. This step
takes as input a feature-to-class traceability matrix. This
matrix can be obtained by our previous work [8]. In this
matrix, each feature is linked to its implementing classes.
Columns and rows respectively represent features and
source code classes. This matrix represents the formal
context where features and classes respectively represent
objects and attributes. The relation between an object
and an attribute refers to which feature is implemented
by which class. According to this definition of the formal
context, we can obtain a concept lattice containing con-
cepts that are composed of a set of features sharing a set
of classes. Such a lattice represents dependencies between
features and classes (feature coupling). Table 2 is an
example of the formal context to be analyzed where objects
are {F1, F2, F3, F4, F5, F6, F7} while attributes are
{C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12}.
Figure 3 shows the corresponding lattice of the context
shown in Table 2. Based on this lattice we discover the
following observations:

- The impact of changes made to classes of concepts that
are located at the top of the lattice is propagated to all
extents (features) of these concepts. This is because the
classes of such concepts are shared among all or most lat-
tice concepts. Such classes should not be impacted as far
as possible because they may lead to the risk of changing
all features. For example, if C1 and C10 respectively at
Concept 7 and Concept 13 are modified or impacted, all
features (F1 to F7) will be affected.

- The impact of changes made to classes of lattice concepts
located at the bottom is local. For example, if C8 is mod-
ified or impacted, only F5 will be affected. Determining
these classes is useful to guide the maintainers to choose
from available change strategies, the one that considers
only such classes to implement the change request.

Figure 3. The concept lattice for the formal

context of Table 2.

- By descending vertically throughout the lattice, the im-
pact of changes is gradually decreased. For example,
if changes are made to {C1}, the set of affected fea-
tures will be composed of {F1, F2, F3, F4, F5}, but if
changes are made to {C7}, the set of affected features
will only be composed of {F3, F5}.

- Lattice concepts that are downwardly reachable from
jointly changed classes have a high probability of be-
ing affected. For example, assuming that impact set =
{C2, C3, C5}, then F1 has a higher probability of being
affected than F2. This is because F1 will be affected
by three joint classes {C2, C3, C5}, while F2 will be
affected by two joint classes {C2, C3}.

- Based on the generated lattice, we can determine isolated
sub-systems/parts and hence determine maintenance re-
sources that are required based on the affected sub-
systems/parts. For example, if the affected features are
F6 and F7 (i.e., part2) and they are maintained by spe-
cific team, a product manager can exclude other mainte-
nance teams and ask only the interested team to execute
the change.

3.3 Querying Concept Lattice
3.3.1 Determining Affected Features

In this step, we query the generated lattice by the impact
set of classes to retrieve features that are implemented by
these classes. The retrieved features represent two subsets
of affected features, following the two steps below. Firstly,
locating a set of lattice concepts that have as intent (exclud-
ing inherited intent) one or more of impacted classes. The
extents of these concepts are a subset of affected features.
Secondly, determining all downwardly reachable concepts
from concepts obtained in the step 1. The extents of these
concepts are another subset of affected features.

The first step is performed using a simple algorithm to
explore the concept lattice for determining the required con-
cepts, called (CON). Due to space limitation, we are unable
to present this algorithm. To perform the second step, we

propose algorithm 1. This algorithm is based on depth-first
search (DFS). The algorithm takes as input a list of con-
cepts computed in step 1 (CON) and the concept lattice to
be queried (CL). Lines 1-10 check each concept in CON
in turn so that each one becomes the root of a new tree
in the DFS. The extents of concepts that constitute such a
tree represent all affected features due to changes made to
classes of its parent concept. The function getAdjacentCon-
cepts() returns all concepts that are located immediately be-
low and directly related to the current concept (Co). LCF is
an accumulator for all traversed concepts. These traversed
concepts represent all downwardly reachable concepts from
CON’s concepts. LCF may contain some concepts that do
not have their own extent and LCF also can include re-
dundant concepts due to the overlap between DFS’s trees.
Therefore, lines 11-14 remove these concepts respectively
using the functions (RemovingConHavingEmptyExt()) and
(RemovingRedundantConcepts()). In line 15, we extract the
extent of LCF concepts using the function (ExtractingEx-
tent()) because the extent of these concepts represent the
affected features.

3.3.2 Ranking Affected Features

Based on the observations of concept lattice mentioned ear-
lier, we can deduce that the concept lattice organizes fea-
tures hierarchically according to their probability to be im-
pacted by a given change proposal. Therefore, we propose
two metrics adapted to feature-level CIA: Impact Proba-
bility Metric (IDM) and Changeability Assessment Metric
(CAM).

IDM is used to measure the degree to which a specific
feature can be affected. Features having high IDM values,
the functional requirements provided by these features have
a high probability to be affected. Therefore, their imple-
mentation should first be checked by maintainers. IDM val-
ues are in the range [0, 1]. Using IDM metric, we can rank
the affected features from the feature that has a higher IDM
value to the feature that has a lower IDM value. We propose
the following equation for IDM:

IDM(F) =
|{I}

T
{Impact Set}|
|{I}| ⇥ 100% (1)

In Equation 1, F is an affected feature while I is the in-
tent (classes) of a lattice concept having F as an extent and
also includes intents inherited in a top-down manner. Thus,
we need to compute the inherited intents of lattice concepts
(LCF) having the affected features. This is performed us-
ing the DFS algorithm to compute all upwardly reachable
concepts from each concept in LCF .

CAM is a metric for determining the percentage of fea-
tures that are affected by a given change. It describes the
changeability of all features in order to help product man-
agers to decide whether a change proposal is accepted or

Algorithm 1: LocatingAffectedFeatures
Input: CON, LC
Output: AF // list of affected features

1 LCF �
2 foreach j from 1 to |CON | do
3 ConceptStack CON [j]
4 while (ConceptStack is not empty) do
5 Co pop(ConceptStack)
6 AdjCos getAdjacentConcepts(Co, CL)
7 if (AdjCos is empty) then
8 LCF Co

9 else
10 push(AdjCos), LCF Co

11 foreach i from 1 to |LCF | do
12 if Extent(LCF [i]) is empty then
13 RemovingConHavingEmptyExt(LCF , i)

14 RemovingRedundantConcepts (LCF)
15 AF ExtractingExtent(LCF)
16 return AF

to find another change plan more suitable to employ. We
propose the following equation for CAM:

CAM =
#Affected Features

#All Features
⇥ 100% (2)

In equation 2, Affected Features represent a set of features
that are potentially affected by a given impact set of classes.
All Features represent all features. CAM values take a
range [0, 1]. If the computed CAM value is high, this means
that features (resp. their implementation) are more sensitive
for a given change proposal and vice versa.

By referring again to Figure 3 and considering that the
impact set is composed of {C3, C5, C6}, we find out that
the IDM and CAM values of this impact set as shown in
Table 3. The columns (Concept No, Features and Rank)
show respectively a set of concepts having affected features,
their affected features and the priority of these features to
be checked. These features are ranked based on their IDM
values. From Table 3, we notice that F4 has the highest
IDM value. Also, It shows that CAM for this impact set is
equal to (71%). This means that most of features will be
affected by this given impact set of classes.

4 Experimental Results and Analysis

4.1 Case Studies

For evaluation, we have applied our CIA technique re-
spectively to core assets of three different case studies:

Table 3. Impact results for {C3, C5, C6}
changes.

Concept No Features |{I}| |{I}
T
{FCS}| IDM Rank CAM

Concept 3 F4 3 2 66% 1

71%
Concept 1 F2 5 2 40% 2
Concept 0 F1 5 2 40% 2
Concept 2 F3 4 1 25% 3
Concept 4 F5 5 1 20% 4

ArgoUML-SPL1, MobileMedia2 and BerkelyDB-SPL3. Mo-
bileMedia is a small-scale system for managing multime-
dia files on mobile devices. The core assets of MobileMe-
dia supports 6 features such as, view photo, delete photo,
sort photos, etc. ArgoUML-SPL is a large-scale system for
UML modeling tool. The core assets of ArgoUML-SPL sup-
ports 8 features such as, the Class diagram, the State dia-
gram, the Activity diagram, etc. BerkeleyDB-SPL is a large-
scale embedded database system that can be embedded in
other applications as a storage engine. The core assets of
BerkeleyDB-SPL provides 25 features, such as transaction
management, concurrency control, etc.

4.2 Evaluation Measures

We relied on three measures inspired from information
retrieval, namely precision, recall and F-measure to evalu-
ate our CIA technique. Precision measures the accuracy of
estimated impact set of features (EIS) according to the ac-
tual impact set (AIS). The EIS represents the affected fea-
ture computed by our technique while AIS is computed by
manually tracing features to identify the affected features
for each given change proposal. Recall measures the de-
gree to which the EIS covers the AIS members. F-measure
makes a trade-off between precision and recall, so that it
gives a high value only in the case that both recall and pre-
cision values are high. Based on the definitions above, we
can deduce that precision also quantifies elements of EIS
that actually are not impacted (false-positive). Also, recall
quantifies the features that are not identified but are im-
pacted (false-negatives). Our proposed technique aims to
achieve high precision, recall and F-measure. All measures
have values within [0,1]. If the EIS has a high precision,
this means that maintainers spend less time and effort to lo-
cate affected features. If the EIS has a high recall, this gives
maintainers the confidence that all of affected features have
been considered.
4.3 Effectiveness of Our CIA Technique

Table 4 summarizes the results obtained by our CIA
technique. Columns describe respectively: change set of

1http://argouml.tigris.org/
2http://www.ic.unicamp.br/ tizzei/mobilemedia/
3http://wwwiti.cs.uni-magdeburg.de/iti db/research/cide/

Table 4. Precision, Recall and F-measure of

our CIA Technique.

CSC |CSC| |EIS| Precision Recall F-measure CAM

MobileMedia

CSC1 5 5 60% 75% 67% 100%

CSC2 5 6 83% 100% 90% 83%

CSC3 8 6 67% 100% 80% 100%

ArgoUML-SPL

CSC1 9 5 80% 100% 88% 62%

CSC2 8 4 75% 100% 86% 50%

CSC3 18 5 80% 100% 88% 62%

BerkeleyDB-SPL

CSC1 6 25 92% 100% 96% 92%

CSC2 5 25 100% 100% 100% 100%

classes (CSC), the size of CSC (|CSC|), the size of es-
timated impact set of features (|EIS|), precision, recall,
F-measure and CAM. We randomly select three different
CSCs for both ArgoUML-SPL and MobileMedia, and two
CSCs for BerkeleyDB-SPL. Therefore, we have 8 CSCs to
be analyzed. These selected CSCs are modified by con-
sidering different change types, including changes made
to class signature, class body, attributes, method signature
and method body.

Table 4, shows that precision values are fluctuated and
take a value in the range between 60% and 100%. This
fluctuation can be attributed to two reasons. Firstly, some
changes made to CSC do not have any impact on feature im-
plementations. These changes include deleting dead source
code (e.g., conditional branch that logically will never be
entered), adding output statements, etc. Secondly, the im-
pact set of classes may contain some classes that, in fact, are
not impacted. Such classes are called false-positive classes.
For example, consider that C1 and C2 are two classes con-
nected by a method invocation and C1 is proposed to be
changed by adding an attribute. In this case, C2 is con-
sidered as affected class in spite of it is not be affected by
this change. Such a case indicates features that are imple-
mented by false-positive classes actually are not affected.
Recall values shown in Table 4 are high where these values
take a range between 75% and 100%, and in most cases
they reach 100%. The reason that hinder our technique
to achieve 100% for all CSCs is that we do not consider
classes that are not neighbors of CSCs. These classes may
contribute to implement feature(s). F-measure values con-
firm that our CIA technique gives high precision and recall,
where these values are high taking a range between 67%
and 100%.

CAM values in Table 4 shows the changeability of fea-
tures of each case study against each CSC considered. We
notice that all CSCs of MobileMedia affect more than half
of its features. This is because MobileMedia is a small-scale
system, and hence its source code classes are strongly cou-
pled so that any change may impact many different features.
For ArgoUML-SPL, all changes made to its features affect

almost half of its features. This is due to ArgoUML-SPL’s
features being loosely coupled. They appear as isolated sub-
systems, for example, cognitive feature is implemented by
221 classes. For BerkeleyDB-SPL, changes made to its fea-
tures affect most of its features. By investigating the impact
set of classes and the concept lattice corresponding to this
case study, we find that one of the changed classes (Envi-
ronmentImpl) is located at the top of the lattice. This means
that changes made to this class are propagated to the imple-
mentation of most features, which leads to a rise in the value
of CAM. Based on CAM values shown in Table 4, we notice
that these values quantify the changeability of the features
against each change proposal. This allows SPL’s manager
to select the change strategy that results in the lowest possi-
ble CAM value.

5 Related Work
A large body of research is proposed for CIA. A compre-

hensive survey about CIA techniques can be found in [9].
The approach proposed by Revelle et al. [10] is the closet to
ours. They proposed a feature coupling metric for support-
ing CIA at the feature level since features that are strongly
coupled to a feature with modified implementation are the
most likely to be affected. In their approach, features with
a coupling value equal to or above a given threshold are
considered as coupled features. However, coupled features
under the specified threshold value may be affected by the
change as shown in their experimental results. Hammad et
al. [11] proposed an approach to determine which source
code changes impact the system architecture. Diaz et al.
[12] proposed an approach to perform CIA at the archi-
tectural level for changes induced at the requirement level.
Chechik et al. [13] proposed a model-based approach for
studying changes propagated between requirements and de-
sign models. Khan and Lock [14], utilized dependencies
between requirement-level concerns and architectural com-
ponents to studying the impact of requirement changes at
the architecture level. All works mentioned above, except
Revelle et al.’s work [10], do not support CIA at the feature
level. They perform CIA at other different levels of abstrac-
tion.

6 Conclusion
In this paper, we have proposed a feature-level CIA ap-

proach to study the impact of changes made to source code
of features obtained from product variants. This approach
is useful for conducting change management from SPL
manger’s point of view. Our approach takes, as input, a
change proposal at class level and computes a ranked list of
potential affected features. Also, we propose two metrics
to support this point of view. The proposed approach em-
ployed formal concept analysis, feature and structural cou-
plings. Our experiments on three core assets of three case

studies of different domains and sizes proved the effective-
ness of our approach in terms of the most used metrics on
the subject (precision, recall and F-measure).

References

[1] P. C. Clements and L. M. Northrop, Software product
lines: practices and patterns. Addison-Wesley, 2001.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson, “Feature-oriented domain analysis
(foda) feasibility study,” 1990.

[3] D. Beuche, “Transforming legacy systems into soft-
ware product lines.” in SPLC. IEEE, 2011, p. 361.

[4] J. Liu, D. Batory, and C. Lengauer, “Feature ori-
ented refactoring of legacy applications,” ser. ICSE
’06. New York, NY, USA: ACM, 2006, pp. 112–121.

[5] L. Bixin, S. Xiaobing, L. Hareton, and Z. Sai, “A
survey of code-based change impact analysis tech-
niques,” in software testing, verification and reliabil-
ity. Wiley Online Library, 2012.

[6] B. Ganter and R. Wille, Formal Concept Analysis:
Mathematical Foundations, 1st ed. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 1997.

[7] S. Apel and D. Beyer, “Feature cohesion in software
product lines: an exploratory study,” ser. ICSE ’11.
ACM, 2011, pp. 421–430.

[8] H. Eyal-Salman, A.-D. Seriai, and C. Dony, “Feature-
to-code traceability in a collection of software vari-
ants: Combining formal concept analysis and infor-
mation retrieval,” ser. IRI’13. California, USA: IEEE,
2013, pp. 209–216.

[9] D. L. Andrea, F. Fausto, and O. Rocco, “Traceability
management for impact analysis.” in ICSM, 2008, pp.
21–30.

[10] M. Revelle, M. Gethers, and D. Poshyvanyk, “Us-
ing structural and textual information to capture fea-
ture coupling in object-oriented software,” Empirical
Softw. Engg., vol. 16, no. 6, pp. 773–811, 2011.

[11] M. Hammad, M. L. Collard, and J. I. Maletic, “Au-
tomatically identifying changes that impact code-to-
design traceability during evolution,” Software Qual-
ity Control, vol. 19, no. 1, pp. 35–64, 2011.

[12] J. Daz, J. Prez, J. Garbajosa, and A. L. Wolf,
“Change impact analysis in product-line architec-
tures.” in ECSA, 2011, pp. 114–129.

[13] M. Chechik, W. Lai, S. Nejati, J. Cabot, Z. Diskin,
S. Easterbrook, M. Sabetzadeh, and R. Salay,
“Relationship-based change propagation: A case
study,” ser. MISE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 7–12.

[14] S. S. Khan. Simon Lock, “Concern tracing and change
impact analysis: An exploratory study,” ser. EA
’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 44–48.

